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Diffused expectation maximisation is a novel algorithm for image

segmentation. The method models an image as a finite mixture, where

each mixture component corresponds to a region class and uses a

maximum likelihood approach to estimate the parameters of each

class, via the expectation maximisation algorithm, coupled with

anisotropic diffusion on classes, in order to account for the spatial

dependencies among pixels.

Introduction: Any image can be considered as a set of N unlabelled

samples F¼ { f1, f2, . . . , fN}, on a 2-D discrete support O� Z2, with

N¼ jOj. Thus, an image segmentation=classification problem can be

defined in probabilistic terms as the problem of assigning a label k to

each site i, given the observed data F, and where each label k2 [1, . . . ,
K] defines a particular region=model. Different models are selected

with probability P(k), and a sample is generated with probability

distribution p( fijk, y) where y¼ {yk, k¼ 1, . . . , K} and yk is the vector
of the parameters associated with label k. Thus p( fijk, y) is the

probability of fi given the parameters of all models and the fact that

we have selected model (label) k. Each image can be conceived as

drawn from a mixture density, so that, for any site (pixel), p( fijy)¼P
k¼1
K p( fijk, y)P(k), and the likelihood of the data is L¼ p( fjy)¼Q
i¼1
N p( fijy). For clarity, we define p( fi) and p( f ), two probability

distributions; the former is the probability that a given grey level f is

assigned to pixel i, so that
P

i p( fi)¼ 1, whereas the latter is the

probability that, given any pixel i, it has grey level f.

Image segmentation can be achieved by finding the set of labels that

maximise the likelihood L¼
Q

i¼1
N P

k¼1
K p( fijk, y)P(k), or, equivalently,

(1=N) log L¼ (1=N)
P

i¼1
N log

P
k¼1
K p( fijk, y)P(k). By the weak law of

large numbers and the ergodic theorem the term to be maximised can be

written as E[log
P

k¼1
K p( fijk, y)P(k)]¼

P
f¼0
L�1(p( f )log

P
k¼1
K p( fijk,

y)P(k)), E being the expectation operator and L the number of grey

levels (e.g. L¼ 256). Simple manipulations lead to

1

N
logL ¼

PL�1

f¼0

pð f Þ log pð f Þ �
PL�1

f¼0

pð f Þ log
pð f ÞPK

k¼1 pð fijk; yÞPðkÞ

 !

ð1Þ

Hence a straightforward maximisation of log L can be obtained by

minimising the second term of the last expression, namely the

Kullback-Leibler (KL) distance D(p( f )k
P

k¼1
K p( fijk, y)P(k)) between

distributions p( f ) and
P

k¼1
K p( fijk, y)P(k), while holding the first term

fixed. This is exactly what is performed by the classic expectation

maximisation (EM) algorithm [1] which minimises the KL distance

between the manifold of the observed data and that of the true

distribution.

Alternatively, one could attempt a multistep approach by iteratively

minimising the entropy H( f )¼�
P

f¼0
L�1p( f ) log p( f ), while holding

p( f jk, y), P(k) fixed, and then minimising the KL distance D, while

keeping H( f ) fixed. In particular, from a segmentation standpoint, it is

interesting to reformulate entropy H( f ) in terms of spatially dependent

conditional probabilities p(kj fi). To this aim, first note that minimising

H corresponds to maximising the spatial entropy Hs¼�
P

i¼1
N p( fi)

log p( fi). In fact, probabilities p( fi ) and p( f ) can be estimated as

pi¼ p( fi )’ ( fi=ftot) and ftot¼
P

i¼1
N fi and p( f )’ (nf=N) where the

following relations hold: ftot¼
PN

i¼1 fi¼
P

f¼0
L�1nf f.

With the approximation introduced above H( f ) can be written as

H( f )¼�
P

f¼0
L�1(nf=N) log(nf=N) and similarly Hs¼�

P
f¼0
L�1 nf ( f=ftot)

log( f=ftot). By applying the approximation log x’ (x� 1) it is not

difficult to show that H( f )’ 1�
P

f¼0
L�1[p( f )]2 and Hs’ 1�

(N=ftot)E[ f
2]. These two relations show that Hs increases when H

decreases and vice versa. Next, recall that by Bayes’ rule p(kj fi)¼

p( fijk) � P(k)=p( fi), where p(kj fi ) is the probability to assign the label k

to pixel i(yk¼ const); then the minimisation of E[log p(kj fi )]¼P
i¼1
N p(kj fi )log p(kj fi ) corresponds to the maximisation of

E[log( p( fi))].

The main idea behind the diffused expectation maximisation (DEM)

approach is that maximisation should be attained so that labels cannot

be assigned to a pixel independently from others in its neighbourhood;

then, a process must be devised that takes into account spatial

correlations. It has been proved [2] that
P

i¼1
N p( fi) log p( fi)¼�Hs

is a Lyapunov functional decreasing under isotropic diffusion; however,

this result per se does not allow to select the optimal label. Note that,

for each label, neighbouring pixels should have the same probability to

be assigned label k, and that labels at boundaries between regions

should be characterised by an abrupt change of probability values.

Denote for simplicity hik¼ p(kj fi); for each model k, hik defines a

probability field on the image support D. Thus, each hik field should be

a piecewise constant function across the image and indeed this result

can be achieved [2] by a system of k anisotropic diffusions (@hik (t)=
@t)¼H � (g(Hhik)Hhik(t)) each performing on the kth label probability

plane, g(�) being a suitable conductance function, monotonically

decreasing, and H the gradient operator. Hence, small differences of

hik among pixels close to each other are smoothed out, since diffusion is

allowed, whereas large variations are preserved. As in the isotropic case,

anisotropic diffusion is proved to increase the spatial entropy Hs [2].

The algorithm: We obtain the maximisation of log L by iteratively

computing p(kj f, y), p( f jk, y), P(k) while diffusing on p(kj f, y),
which in practice regularises each k labelling field by propagating

anisotropically such labels. Since, in terms of the mixture model, we

are dealing with an incomplete data problem (i.e. we must simulta-

neously determine the labelling p(kj f ) given distribution parameters

yk and vice versa), a suitable choice for parameter estimation is the

EM algorithm interleaved with diffusion steps. Eventually, the

segmentation is performed using the estimated parameters k, yk.
The probabilistic model is assumed to be a mixture of Gaussians

p( f jk, mk, sk)¼ (1=
p
(2p)sk) exp(�((x� mk)

2=2sk
2), thus yk¼ (mk, sk),

mk, sk being the unknown means and deviations, respectively,

weighted by mixing proportions ak¼P(k). Note that we assume K

fixed, in that we are not concerned here with the problem of model

selection, in which case K may be selected by Bayesian information

criterion (BIC). DEM works as follows.

Estimation: repeat for t iterations until jlogL(tþ1)
� logL(t)

j< 2 :

i) E-step: with fixed parameters ak
(t), mk

(t), sk
(t), compute the labelling

probabilities at each site i as:

h
ðtÞ
ik ¼

aðtÞk pð fijk; m
ðtÞ
k ; sðtÞk ÞP

k a
ðtÞ
k pð fijk; m

ðtÞ
k ; sðtÞk Þ

ð2Þ

ii) D-step: propagate hik by m iterations of the discrete form of

anisotropic diffusion

h
ðtþ1Þ
ik ¼ h

ðtÞ
ik þ lH � ðgðHhðtÞik ÞHh

ðtÞ
ik Þ ð3Þ

and set h̃ik
(t)
¼ hik

(tþ1)

iii) M-step: with h̃ik
(t) fixed, calculate the parameters that maximise

log L:

aðtþ1Þ
k ¼

1

N

P
i

~hh
ðtÞ
ik ; m

ðtþ1Þ
k ¼

P
i
~hh
ðtÞ
ik fiP

i
~hh
ðtÞ
ik

; sðtþ1Þ
k

¼

P
i
~hh
ðtÞ
ik ½ fi � mðtÞk �

2P
i
~hh
ðtÞ
ik

ð4Þ

and calculate log L(tþ1).

Segmentation: for each site i2O, obtain final labelling via estimated

parameters by assigning to i, the label k for which maxk{ p( fijk, mk, sk)}
hold.

Simulation: We have experimented with the method on different

kinds of natural images. The test image used in this Letter is shown

in Fig. 1a. To demonstrate the segmentation performance of the

algorithm, both EM and DEM have been applied by assuming

K¼ 4 classes. Non-uniform initial estimates were chosen for ak
(0),

mk
(0), sk

(0) parameters; {mk
(0)} were set in the range from minimal to

maximal values of fi in a constant increment; {sk
(0)} were set in the

range from 1 to max{ fi} in a constant increment; {ak
(0)} were set from

max{ fi} to 1 in a constant decrement and then normalised,P
k ak

(0)
¼ 1. For what concerns the D-step of the DEM algorithm, it

is not limited to any specific selection of the conductance g, provided

that label boundaries are preserved, numerical stability guaranteed,

and probabilities hik
(t) renormalised so that their sum is one after each
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iteration [4]; in our experiments we set g(Hhik)¼ jHhikj
�9=5, l¼ 0.1; a

number of m¼ 10 iterations of (3) was used. We found that conver-

gence rate is similar for both methods, convergence being achieved

after t¼ 60 iterations (with 2 ¼ 0.1). More important, by comparing

the results obtained by standard EM (Fig. 1b) and by DEM method

(Fig. 1c), it is apparent the higher perceptual significance and the

reliability of the latter as regards region classification. For visualisa-

tion purposes, a pixel i belonging to class k, is coloured as fi¼ mk.

a b c

Fig. 1 Original image and segmentation results

a Original image
b Segmented image obtained using EM method
c Segmented image obtained using DEM method

Conclusions: The DEM algorithm is different from related

approaches previously proposed. Several methods have tried to

incorporate within the EM algorithm a prior term in order to

maximise a log posterior probability instead of log-likelihood, thus

leading to quite complex EM steps [3]. Alternatively, Haker et al. [4]

compute an initial posterior probability map, through some kind of

classification (e.g. clustering), followed by anisotropic diffusion on

such map in order to account for spatial constraints among sites;

clearly, in this way final results strictly depend upon the goodness of

the initial labelling. Here, we follow a different approach: we operate

on the maximisation of the log-likelihood function, and spatial

context is implicitly accounted for via label diffusion along maximi-

sation. As a result we obtain a quite simple but effective segmentation

algorithm, which can be easily interpreted in terms of a competi-

tion=co-operation scheme on the k label probability planes: the E and

M steps implement a competition among the different labels at site i,

while the D-step can be considered as a co-operation step among sites

on the same plane. Its flexibility makes it suitable for any type of

application.
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