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In this paper we address the issue of how form and motion can be integrated in order to
provide suitable information to attentively track multiple moving objects. Such integra-
tion is designed in a Bayesian framework, and a Belief Propagation technique is exploited
to perform coherent form/motion labeling of regions of the observed scene. Experiments
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1. Introduction

Visual attention not only restricts various types of visual processing to certain spa-
tial areas of the visual field,8 but also accounts for object-based information, so
that attentional limitations are characterized in terms of the number of discrete
objects which can be simultaneously processed.15 Several theories have been con-
cerned with how object-based individuation, tracking and access are realized and,
in particular, Pylyshyn’s FINST (FINgers of INSTantiation) proposal has comple-
mented such theories.15 The model is based on a finite number, say k � 4, 5, of
visual indexes (fingers, inner pointers) that can be assigned to various items and
serve as means of access to such items for higher level processes that allocate focal
attention. The visual indexes bestow a processing priority, insofar as they allow focal
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attention to be shifted to indexed items, possibly moving, either under volitional
control or due to habituation factors, without first searching for them by spatial
scanning.

In Ref. 2, a general model was discussed that, grounding in the functional archi-
tecture of biological vision, provides a computational account of FINST theory
within a Bayesian approach. The Bayesian perspective has been gaining some cur-
rency in vision science since Helmholtz conjecture of perception as unconscious
inference9 and is currently the focus of serious investigation (e.g. see Ref. 6, 12
and 13).

In a nutshell, the FINST conjecture may find its Bayesian computational coun-
terpart in the framework of multiple hypotheses tracking coupled with a suitable,
top-down modulation of gaze shift.2 To this end the first issue is the design of a
mechanism for instantiating “inner pointers” to each moving object k, in order to
keep track of his current state yk

t (e.g. position and dimension at time t). It is worth
remarking that here we use the term “object” in a broad sense, to indicate a coher-
ent region or visual pattern, which is likely to be associated to a physical object in
the world (in some way close to the “proto-object” concept in cognitive science15).
It has been shown2 that such pointers can be realized as a set of hypotheses that
are kept alive in parallel with time. Then, the indexed items can be pursued by
Bayesian recursive filtering

p(yk
t |Zk

t0:t) ∝ p(Zk
t |yk

t )
∫

p(yk
t |yk

t−1)p(yk
t−1|Zk

t0:tn−1
)dyk

t−1, (1)

where p(yk
t |Zk

t0:t) is the probability that object k is in state yk
t at time t, given

the sequence of observations Zk
t0:t = {Zk

t ,Zk
t−1, . . . ,Zk

t0} and Zk
t denotes the set of

features observed on the same object. In particular, Eq. (1) can be implemented
via the Condensation algorithm.2,11

The second issue is the ability to select one object k among other objects
j �= k under volitional control. The winner-take-all strategy has been proposed,15

which can be implemented2 via MAP rule on the posterior probabilities
p(yk

t |Zk
t , yj

t ,Zj
t )j �=k of gazing, at time t, object k in state yk

t , given the state and
average features of each surrounding object indexed in the scene. The posterior
grows as a function of the “feature contrast” of Zk

t against Zj
t , j �= k (likelihood)

and the commitment of observing object k within a given task or context (prior
knowledge). The posterior thus defines a top-down focus of attention (FOA) even-
tually used to modulate a bottom-up saliency density map, in order to take the
final decision (motor command) of setting the gaze at a location (state) yFOA

t .
Clearly, at the heart of this approach [cfr. Eq. (1)], there is the capability of con-

sistently deriving a suitable prediction based on dynamics p(yk
t |yk

t−1), embodying
knowledge about how the object might evolve from time t− 1 to t, and to perform
an update relying upon the likelihood p(Zk

t |yk
t ) of the current observation Zk

t . In
this respect, it is worth noting that many approaches use simplified dynamics (e.g.
first order models) and observations (e.g. color histograms), while in a complex
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vision system the richness of information made available by other visual modules
(optical flow, segmentation, etc.) should be exploited.2

Here, the very issue we address is that object dynamics, to compute prediction
and feature observations to evaluate the likelihood, can be more effectively derived
and handled by dynamic integration of form and motion information into consistent
percepts of moving forms, which we obtain by resorting to Bayesian propagation
machinery.19,6 Indeed, progress in motion analysis has shown that motion estima-
tion and form segmentation are tightly coupled and that mechanisms of spatial
form analysis must be incorporated into the motion estimation procedure. This has
led to a new generation of algorithms that iterate between optic flow estimation
and segmentation, and namely the Expectation-Maximization (EM) algorithm has
been devised as a suitable tool.18,17

Here we take one step further by exploiting the Belief Propagation (BP) algo-
rithm to integrate motion and form information. Processing of visual motion in
biological systems undergoes two levels of processing, a motion data level and an
object-relevant level.16 The motion data level, primarily involving cortical area V1,
uses image filtering mechanisms to extract motion signals, and it has been gener-
ally viewed as a purely stimulus-driven filtering process. The object-relevant level is
needed to account for motion perception of complex stimuli and is likely to integrate
and segment motion information collected from the motion data level into discrete
object representations. The dorsal extrastriate cortex, especially the human ana-
logue to monkey MT/MST complex is thought to be a critical cortical site for this
type of integrative motion processing. On the other hand, measurements of the color
sensitivity in cortical areas linked to the perception of motion, particularly the MT
or V5 area, have shown measurable responses to moving isoluminant stimuli con-
taining only chromatic contrast, suggesting that color contributes to moving image
segmentation, and that other neurons, perhaps ones with more explicit chromatic
signals such as those in V4, are recruited for segmentation purposes.4

An emerging consensus is that object-based perceptual and attentional mecha-
nisms may interact with integrative motion processing at this level.16,4 In the fol-
lowing section we will discuss how Bayesian BP can be suitably adopted to account
for such issues and to infer information that eventually could better fit the needs
of Bayesian filtering [Eq. (1)].

2. Overview of the Method and Definitions

Assume that K colored objects are observed in a scene, and each object can be
described by a vector of parameters θk, e.g. the average color µk. Such objects
undergo different kinds of motion, which can be described by L motion models
Λ = {vl}L

l=1; here we denote the motion model vl as the pair (vl, ρl), speed and
direction, respectively, taking values among three possible speeds (slow, average,
fast) and eight different directions. In this context, a consistent percept of a moving
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form can be defined as a region in which any point of that region is assigned the
same label/state s indexing one among K×L possible motion/form states. Namely,
the label represents a “pointer” to access motion and shape features that uniquely
defines the object as “that” moving form.

What we propose here is that one such labeling can be formulated as an inference
of the “hidden” motion/form state, which relies upon joint observations of motion
and shape features.

The input to our system is represented by a pair of subsequent frames (Zt−1,Zt),
where each frame is a field Zt = {zcolor

i,t }N
i=1 of vector-valued random variables zcolor

i,t

defined in a suitable color space, and index i ∈ Ω identifies a site (pixel) in the frame
support, the square lattice Ω ⊆ Z

2.
Let l ∈ L = {1, 2, . . . , L} denote motion labels , k ∈ K = {1, 2, . . . , K} segmen-

tation labels; labels l, k are used to assign a site i to one of the L motion models and
to one of the K objects, respectively. Let s ∈ S = {1, 2, . . . , M} denote motion/form
labels. S is named the motion/form state space, defined as the cartesian product
K × L, of dimension |S| = K × L = M . In other terms, since l indexes motion
models {vl}L

l=1 and k indexes object parameters {θk}K
k=1, label s is an index for

the table m(s) = [vl(s), θk(s)] representing all combinations of motion models and
object parameters describing the observed scene. Let zOF

i,t denote an optical flow
vector at a site i. Define motion features as the random variables zmotion

i,t that can
take values in the motion label set L, and form features as the random variables
zform

i,t taking values in the segmentation label set K. Motion and form features can
be collected in the random fields Zmotion

t = {zmotion
i,t }N

i=1 and Z form
t = {zform

i,t }N
i=1,

respectively; a realization of Zmotion
t is denoted motion map, while a segmentation

map is a realization of Z form
t .

Motion and form features can be combined into a joint observation zobs
i,t , given

motion and form observations zmotion
i,t = l̂, zform

i,t = k̂, by assigning zobs
i,t = s so

that m(s) = [vl≡l̂(s), θk≡k̂(s)] holds. Such variables can define the random field
Zobs

t = {zobs
i,t }N

i=1; a realization of the latter will be named joint observation map.
Eventually, let Xt = {xi,t}N

i=1 denote the random field of hidden random vari-
ables xi,t ∈ S. Thus, the problem we address here is to infer the most likely
motion/form state Xt on the basis of the joint observation Zobs

t . The method can
be summarized in the following steps.

For each pair of subsequent frames (Zt−1,Zt):

(1) Compute optical flow field {zOF
i,t }N

i=1. Obtain motion map Zmotion
t by

assigning to each site i the most probable velocity model as zmotion
i,t =

arg maxl{p(zOF
i,t |l, vl)}.

(2) Compute the form map Z form
t by assigning to each site i, zform

i,t =
arg maxk{p(zcolor

i,t |k, µk,Σk)}.
(3) Given Zmotion

t and Z form
t , compute the joint map Zobs

t by assigning to each
site i the state zobs

i,t = s consistent with motion and form observations at
that site.
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Fig. 1. Functional outline of the method and intermediate results rendered as gray level maps.
From left to right: the input pair of frames with superimposed velocity vectors; optical flow map
coded in HSV color space (V = const) to represent speeds (S) and directions (H) followed by its
coarse motion coding by using three speeds and eight directions. The latter and the segmentation
result are combined into the joint observation map Zobs

t . The bipartite graph represents the set
of hidden variables Xt (circle nodes), coupled with the joint observation map.

(4) Use a loopy Belief Propagation algorithm to infer the most likely “hidden” map
Xt, through the joint density p(Xt,Zobs

t ) represented via a graphical model with
a pairwise Markov network topology.

Note that step (1) results in a quantization of the motion field, while step (2) per-
forms a segmentation of the observed scene. Eventually, the BP step integrates such
information by taking into account spatial constraints and thus inferring a coherent
moving form. Intermediate results of the different processing steps are illustrated
in Fig. 1 by using a simple example of synthetic moving objects: namely, a black
triangle, a green disk and a red square that are moving in different directions and
with different speeds. The same example will be exploited throughout this section
to detail the proposed approach. It is easy to note that, even in this “toy” exam-
ple, features derived from motion analysis, although quantized, and segmentation
are per se unreliable for characterizing a moving form, and the joint map itself
could not be straightforwardly used for such purpose. This remark motivates the
introduction of an inference step performed by resorting to Belief Propagation.

3. Computation of Motion Features

Results presented in Fig. 1 (cfr. the optical flow map) give evidence of the gen-
eral problem that optical flow fields derived from multiple motions usually display
discontinuities (motion edges) and sparseness. This poses a severe issue on direct
exploitation of the flow map to characterize motion at the object level.18,17

To overcome such drawback, we assume that the input to the network should
capture tuning properties of MT neurons in terms of their velocity selectivity.20,7

Rather than model all of the details in the neural circuits that might be responsible
to achieve such tuned responses,7 we instead use a simpler system (similarly to
Ref. 20) to compute a quantized velocity encoding (Fig. 2). To this end, the initial
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Fig. 2. Motion models located as points within the velocity frame, denoting a discrete set of
velocities Λ = {v1, . . . , vL}.

velocity flow field {zOF
t,i }N

i=1 is obtained by using Horn–Shunk algorithm;10 an exam-
ple is provided in Fig. 1. Then, we assume that a number L of possible velocities
(motion models) exists, each characterized by different speed and direction. The
latter are represented by a finite set of locations Λ = {vl}L

l=1 in a velocity reference
frame, where index l labels a motion model (location) and axes represent compo-
nents vlx and vly as in Fig. 2; in other terms, each location is tuned to a different
velocity. Three speeds (slow, average, fast) and eight different directions are used
as illustrated in Fig. 2; speed quantization is adaptively determined on the basis
of zOF

i,t distribution (histogram). The actual velocity vector zOF
i,t = [zxOF

i,t , zyOF
i,t ]T

at an image point i, as obtained by optical flow, is encoded by a finite mixture of
velocity receptor units (2D Gaussian functions) centered on frame points vl ∈ Λ:

p(zmotion
i,t |Λ) =

L∑
l=1

P (l)p(zOF
i,t |l, vl), (2)

with

p(zOF
i,t |l, vl) =

1

(2π)(D/2)σ
1/2
l

exp
(
− (zxOF

i,t − vlx)2 + (zyOF
i,t − vly)2

2σ2
l

)
, (3)

where D = 2 and P (l) represents the prior probability of observing a kind of motion.
In the absence of context (e.g. a cognitive bias), P (l) can be retained as uniform.
Each point in the velocity space thus encodes the degree to which the local velocity
matches its preferred velocity. Note that parameter σl, which is responsible for
the corresponding velocity “receptive field” width, increases with speed in order to
provide a uniform covering of nonuniform sampling space (Fig. 2).

In order to associate a model l to each pixel, we have to find the maxl{p(zOF
i,t

|l, vl)} probability. Eventually, we obtain the motion map Zmotion
t = {zmotion

i,t }N
i=1at

time t, by setting at each site i

zmotion
i,t = arg max

l
{p(zOF

i,t |l, vl)}. (4)

An example rendered as a gray level map is provided in Fig. 1.
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4. Computation of Form Features

Initial form features are derived through segmentation, that is by assigning a label
k to each site i, given the observed data zcolor

i,t = [Yi,t, Cbi,t, Cri,t]T in the Y CbCr

color space. Segmentation is accomplished via Diffused Expectation Maximization
(DEM),3 a variant of the expectation maximization (EM) algorithm. The method
models an image/frame as a finite mixture, where each mixture component corre-
sponds to a region class and uses a maximum likelihood approach to estimate the
parameters of each class, via the EM algorithm, coupled with anisotropic diffusion
on classes, in order to account for the spatial dependencies among pixels.

To this end, the probabilistic model is assumed to be the mixture

p(zcolor
i,t |Θ) =

K∑
k=1

P (k)p(zcolor
i,t |k, θk), (5)

where Θ = {θk, k}K
k=1 and θk = (µk,Σk) is the vector of the parameters (mean

vectors and covariance matrices) associated to label k ∈ K. Each label k defines a
particular region/form, and p(zcolor

i,t |k, θk) are multivariate gaussians

p(zcolor
i,t |k, µk,Σk) =

exp(− 1
2 (zcolor

i,t − µk)TΣ−1
k (zcolor

i,t − µk)
(2π)(D/2)|Σk|1/2

, (6)

weighted by mixing proportions P (k). Note that, we can consider the covariance
matrices being diagonal because of the choice of the Y CrCb color space, and, fur-
thermore we assume K fixed, in that we are not concerned here with the problem
of model selection. Parameters of each object are estimated via DEM.3 After the
parameter estimation stage has been completed, segmentation is achieved by assign-
ing to each site i, the label k for which maxk{p(zcolor

i,t |k, µk,Σk)} holds:

zform
i,t = argmax

k
{p(zcolor

i,t |k, µk,Σk)}. (7)

The assignment produces the segmentation map at time t, Z form
t (see Fig. 1).

5. Inference of Moving Forms via Belief Propagation

At this stage, local observations of both motion and form features are available at
each point of the observed scene, and collected into the motion and segmentation
maps, Zmotion

t and Z form
t . Then, the integration of such features into consistent

percepts can be formulated in terms of the inference, for each point i, of the most
likely joint motion/form state xi,t, given Zmotion

t and Z form
t .

Here we show how such inference can be accomplished through Belief
Propagation.19,14 BP algorithms can best be understood by imagining that each
node in a Markov net, which is responsible for a local observation, communicates
by “messages” with other connected nodes about what their beliefs should be. The
messages converge after a finite number of steps, when each node has correctly
computed its own belief b(xi,t) (posterior distribution).

Formally, we want to estimate the joint probability p(Xt,Z form
t ,Zmotion

t ), where
Xt = {xi,t}N

i=1 is the field of hidden random variables xi,t taking values in S.
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To this end, we use the joint observation Zobs
t = {zobs

i,t }N
i=1 derived from the pair

(Zcolor
t ,Zmotion

t ) as described in Sec. 2, by assigning zobs
i,t = s so that m(s) =

[vl≡l̂(s), θk≡k̂(s)] holds, and where l̂ and k̂ are consistent with motion and form
observation zmotion

i,t = l̂, zform
i,t = k̂ at the same site i. For what concerns object

parameters, we only retain the vector mean µk and omit covariance Σk. Also, each
motion model vl is represented in terms of speed and direction (vl, ρl). Thus label s

provides access to features (vl(s), ρl(s), µk(s)) in the look-up table m(s), namely
the quantized speed and direction of motion, and average color of the kth region.
Also it is worth remarking that at this stage, the state space S is dynamically
reduced to those state/models that have been actually employed; in other terms
the cardinality of the space is |S| = K̂ × L̂ = M̂ , where M̂ � M .

The random field Zobs
t represents the set of observed variables to estimate the

density p(Xt,Z form
t ,Zmotion

t ) via p(Xt,Zobs
t ), where Zmotion

t ,Z form
t ,Zobs

t ,Xt share
the same support (topology), the connected grid Ω. Then, coupling between motion
and form modules can be represented via a graphical model, with a pairwise Markov
network topology as illustrated in Fig. 1. Define E the corresponding set of edge
indexes of the set Xt; two nodes, say i, j ∈ Ω are correlated if and only if the index
associated to the edge, in this case (i, j), exists in the set E. The overall or “joint”
probability that defines a generative model on this graph is

p(Xt,Zobs
t ) =

1
ZQ

∏
(i,j)∈E

ψi,j(xi,t, xj,t)
N∏

i=1

φi(xi,t, z
obs
i,t ), (8)

where φi(xi,t, z
obs
i,t ) represents the compatibility function between xi,t and zobs

i,t , also
called the evidence for xi,t, and ψi,j(xi,t, xj,t) represents the compatibility function
between xi,t and xj,t, also called the interaction between i and j.19 The main goal is
to find the belief b(xi,t) = p(xi,t,Zobs

t ), that is the marginal probability distribution
of each node to be in a state xi,t.

The belief at each node could be obtained by marginalizing p(Xt,Zobs
t ); unfor-

tunately, marginalization is not an efficient method due to exponential in the size of
the graph. To turn an exponential inference computation into one which is linear,
Belief Propagation (BP) algorithms were proposed,19 that calculate beliefs by local
message-passing where each message is defined as:19

mij(xj,t) = β
∑

xi,t∈S

[
ψj,i(xj,t, xi,t)φ(xi,t, z

obs
i,t ) ×

∏
s∈Γ(i)\j

msi(xi,t)
]
, (9)

where Γ(i) � {j|(i, j) ∈ E} defines the neighborhood of node i. For graphs which
are acyclic the BP algorithm gives the exact marginal probability distribution14

b(xi,t) = p(xi,t,Zobs
t ) = αφ(xi,t, z

obs
i,t )

∏
j∈Γ(i)

mji(xi,t), (10)

where α is a normalization constant, and
∑

xi,t∈S b(xi,t) = 1. Notwithstanding the
grid topology we are exploiting, strong empirical results and recent theoretical work
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Fig. 3. BP evolution at iterations 1, 15, 35, 60. The right-most map represents as gray level the
final form/motion labeling Xt achieved.

provide support for a very simple approximation: applying the propagation rules
above even in a network with loops.5 Yet, we have to solve the problem of designing
suitable compatibility functions φ and ψ.

5.1. Compatibility functions

In order to model compatibility functions φ(xi,t, z
obs
i,t ) and ψ(xi,t, xj,t), recall that,

according to the discrete formulation of the BP algorithm we have provided,
both the observations zobs

i,t and the hidden states xi,t take values within the set
S labeling the M̂ form/motion models. Compatibilities can be determined5 as
φ(xi,t, z

obs
i,t ) ∝ p(xi,t, z

obs
i,t ), ψ(xi,t, xj,t) ∝ p(xi,t, xj,t), that is in both cases, due

to our representation, as p(s, s′), s, s′ ∈ S indexing a pair of models. In the vein of
Ref. 5, we assume a Gaussian penalty

p(s, s′) =
3∏

q=1

exp
(
− (mq(s) − mq(s′))2

2σ2
q

)
, (11)

where mq(s) represents one of three fields of table m(s) = [vl(s), ρl(s), µk(s)]
indexed by s and σ2

q is a penalty parameter.
By providing initialization and compatibility functions obtained as described

above, the BP algorithm iterates message passing among nodes [see Eq. (9)] until
convergence to a final state map Xt (Fig. 1). Convergence condition6 is obtained as
1
N

∑N
i=1 |b(xi,t) − b(xi,t−1)| < ε, where ε is experimentally determined (ε = 0.004).

In Fig. 3, an excerpt of intermediate outputs of BP evolution is shown.

6. Experimental Work

Different clips have been produced to simulate different conditions, one synthetically
generated and three representing fixed-camera outdoor sequences. Due to limita-
tions of space, we present here results obtained on a single outdoor clip, which
is the most critical with respect to motions and lighting conditions, with people
walking at different distances from the camera, at different speeds and directions.
Figure 4 illustrates results of the proposed method obtained on a pair of frames of
the sequence; the top row shows the different maps as described in Fig. 1, while
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Fig. 4. Example of results on a real sequence. Top row, from left to right: input frames, maps
from segmentation, optical flow, motion coding, joint observation. Bottom row: BP evolution at
iterations 1, 10, 15, 20, 25, 30. The right-most map represents the form/motion labeling achieved.

the bottom row of the image shows BP evolution, converging after 30 iterations
(ε = 0.004). Segmentation was performed by using initially K = 6 object classes,
while all motion models L = 17 were allowed (M = 104). After these steps only
M̂ = 6 models survived. Also, segmentation was obtained after only a single itera-
tion of the DEM algorithm. The motivation for limiting the segmentation process
to a broad initialization is grounded in the fact that the “optimal” perception of
a moving form can be conceived as the best trade-off achieved by integration of
the two processes, motion estimation and segmentation, as provided by the BP
algorithm, which needs not be equivalent to either the best segmentation result or
motion estimate per se.

Note that the two people walking towards the camera and dressing clothes that
are similar with respect to the average color are equally labeled, while a different
label is assigned to the one walking leftwards behind. Other parts of the scene
(ground and building) having null velocity are nevertheless distinguished due to
difference in color. It is worth remarking that occlusions are implicitly handled,
provided that occluded objects are characterized by different color and/or motion
models; clearly, a moving object partially occluded by another object of similar
color and motion, will be merged with the latter. On the other hand, the occlusion
issue should be more appropriately addressed at the tracking stage.

The next example (Fig. 5) summarizes at a glance results obtained on the whole
video by integrating form/motion estimation within the attentive tracking system
presented in Ref. 2. In particular, the row in the middle collects results obtained
by the Condensation tracking2; this relies upon the form/motion estimation and
cooperates with the face detection module; the bottom row shows how attention
is deployed in terms of FOA setting. Also, experiments have been performed with
human observers to compare model-generated gaze-shifts. The subjects involved
were 39 students (19 to 26 years old), with normal or corrected-to-normal vision,
and naive with respect to the purpose of the experiment. Each subject was sit-
ting in front of the display of the eye-tracking system (ASL 5000) at a distance
of 60 cm. Results eye-tracked from five subjects have been preliminary used to
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Fig. 5. Top, from left to right: an excerpt of the input sequence. Center: corresponding person
and face tracking. Bottom: produced fixation points (FOAs).

train the model, and derive prior probabilities (estimated as fixation frequencies of
specific objects, e.g. faces, moving persons, etc.); the other 34 subjects were eye-
tracked to compute a “reference” scanpath to include fixations common to many
observers (average observer). Results, in terms of overlap between observed and
model-generated FOA areas, achieve on the average 54% of successful hits (more
than 80% overlap), in the absence of a given task, reaching 90% when a task (e.g.
observe people) was given.

7. Final Remarks

The method proposed relies on Belief Propagation to integrate form and motion
information into coherent percepts of moving objects, thus providing a suitable
basis for tracking within an attentive system.2 When compared to the motion seg-
mentation step adopted in Ref. 2, the proposed method not only achieves better
results in terms of effectiveness, but also exhibits higher independence from optical
flow and segmentation input. This allows to avoid the use of more sophisticated
algorithms2 for correcting optical flow drawbacks and to reduce the number of iter-
ations performed along the DEM segmentation. Further, the discrete label-based
representation exploited by BP, makes joint estimation of motion and shape more
efficient than the method adopted in Ref. 2. One limitation of the work presented
here is the fixed camera setting, and current efforts are spent to adapt the model
in order to deal with camera motion, by taking into account feedback as provided
by active camera control (e.g. pan, tilt commands). Also, the sequential nature of
video analysis is not taken into account here, while it could be embedded within
the method in order to exploit at frame Zt+1, estimates of parameters computed on
Zt.6 On-going research is investigating a possible generalization via nonparametric
BP techniques.13
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