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Abstract

In this paper a new method for segmenting medical images is presented, the multiresolution diffused expectation-maximization (MDEM)
algorithm. The algorithm operates within a multiscale framework, thus taking advantage of the fact that objects/regions to be segmented usually
reside at different scales. At each scale segmentation is carried out via the expectation–maximization algorithm, coupled with anisotropic
diffusion on classes, in order to account for the spatial dependencies among pixels. This new approach is validated via experiments on a variety
of medical images and its performance is compared with more standard methods.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Computer algorithms for segmentation, the partitioning of an
image into meaningful regions, play a crucial role in the delin-
eation of anatomical structures of interest in several biomed-
ical imaging applications, such as diagnosis, localization of
pathology, study of anatomical structures, treatment planning
and computer integrated surgery. The process of image seg-
mentation assigns pixels to regions defined by labels. For in-
stance, in segmenting skin lesions, one label may be assigned
to pixels within the lesion region, another label to pixels out-
side such region; in magnetic-resonance (MR) images three la-
bels may be used to distinguish gray-matter, white-matter and
cerebrospinal-fluid tissue. Labeling is performed requiring cer-
tain regularity constraints to be satisfied.

More formally, consider an image F defined on a domain �,
then the segmentation problem is to determine the set of K re-
gions Rk ⊂ �, k= 1, . . . , K , satisfying an homogeneity pred-
icate H, such that: (1)

⋃K
k=1 Rk =�, with Rk ∩Rl �= ∅, k �=

l; (2) H(Rk) = true,∀k; (3) H(Rk ∪ Rl ) = false,∀Rk,Rl

∗ Corresponding author. Tel.: +39089964275; fax: +39089964218.
E-mail addresses: boccig@unisa.it (G. Boccignone), pnapoletano@unisa.it

(P. Napoletano), vcaggian@unina.it (V. Caggiano), ferraro@ph.unito.it
(M. Ferraro).

0010-4825/$ - see front matter � 2005 Elsevier Ltd. All rights reserved.
doi:10.1016/j.compbiomed.2005.10.002

adjacent. The first condition states that the partition has to cover
the whole image and that any given pixel cannot belong to two
regions; the second indicates that each region has to be uniform
with respect to the predicate H; the last condition prevents two
adjacent regions from being merged into a single region that
satisfies H.

A wide array of techniques, both for gray-level and color
images, has been used in the past (for in-depth surveys, see
[1–3]) either exploiting image-domain or feature-space based
approaches but so far there is no satisfactory solution to image
segmentation.

Image-domain based techniques try to account for feature-
space homogeneity while ensuring spatial compactness, for
instance by progressively growing image regions or either by
subdividing and merging the regions according to a feature-
based predicate H (e.g, color similarity) [4]. Classical region
growing, however, is not completely automated, since initial
seed points must be given from which regions are grown. Split-
and-merge techniques do not require seed points [5], but they
may exhibit over-segmentation, with the occurrence of many
small, disconnected regions; in order to promote significant
regions, multiresolution schemes can be applied. Multiresolu-
tion provides an interesting strategy to carry out the refinement
of segmentation [6,7], by operating on the image at different
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scales/resolutions, using for instance a quadtree, wavelets [7]
or a pyramid structure [8]. Segmentation can also be obtained
by detecting edges among regions [1], however edges cannot
be used directly to define a region and further processing (edge
linking, grouping etc.) is then required. In general such classi-
cal techniques have the critical limitation of using local criteria
(pixel based). The homogeneity criterion has the function of
deciding whether a pixel belongs to the growing region or not
and the decision of merging is generally taken based only on
the contrast between the evaluated pixel and the region. How-
ever, it is not easy to decide when this difference is small (or
large) enough to take a decision. Limitations of purely local
methods has led to the use of Markov random fields (MRF)
models (in particular Gibbs MRF), which combine local spa-
tial interactions, also incorporating edge information, with a
global cost function (e.g., energy) [9]. Difficulties associated
with MRFs are the proper selection of the parameters control-
ling the strength of spatial interactions, and that they require
computationally intensive algorithms [10]. Deformable models
[11] (e.g., active contours), partial differential equations (e.g.,
anisotropic diffusion [12]), and in general variational methods
relying upon the minimization of some global energy func-
tion, either related to image discontinuities (edges) or to region
uniformity, can be seen as deterministic counterparts of MRFs
[13,14]. In general, active contours are sensitive to initial con-
ditions and are really effective only when the initial position
of the contour in the image is sufficiently close to the real
boundary.

Feature-space based techniques work out in some feature
space (e.g., color or texture) and solve the segmentation prob-
lem by finding clusters (regions) in such space or by finding
the peaks of histograms (empirical distributions of the fea-
tures); for instance, histogram thresholding is among the most
popular technique [15]. The main limitations of this technique
are that often, because of the noise, the profiles of the his-
tograms are rather jagged giving rise to spurious peaks, and
that it does not take into account the spatial characteristics of
an image; furthermore the extension to color or multivalued
images is not straightforward. Some of these problems can be
solved by embedding connectivity information [16] or by re-
sorting again to multiresolution representations, e.g., wavelets
[17,18]. Clustering methods such as K-means, fuzzy c-means
can be seen as unsupervised classifier methods [19], pattern
recognition techniques that seek to partition (cluster) a fea-
ture space derived from the image [1]. Of particular interest
for the work presented here, is that such clustering algorithms
can be given a generalized form [20] known in the literature
as the expectation–maximization (EM) algorithm, [21]. The
EM algorithm assumes that pixel intensities are independent
samples drawn from a linear combination of probability dis-
tributions, usually Gaussians [22] (finite mixture model, see
Section 2 for details). In the E-step expectation–maximization
computes the posterior probabilities that a pixel belongs to a
certain class, whereas in the M-step computes maximum like-
lihood estimates of the parameters characterizing the distribu-
tions (that for Gaussian distributions, correspond to means and
covariances), and mixing coefficients. Assignment to a class of

a pixel is eventually provided according to maximum poste-
rior probability with respect to the given classes. Note that like
thresholding and clustering algorithms, EM does not directly
incorporate spatial modeling and can therefore be sensitive to
noise and intensity inhomogeneities. To overcome such draw-
backs several methods have tried to incorporate MRFs or, in
general, a prior term in order to maximize a log-posterior prob-
ability instead of log-likelihood, thus leading to quite complex
EM steps (see, for a discussion [23,24]). Recently, a diffused
expectation–maximization (DEM) algorithm has been proposed
for gray-level images [25], in which a diffusion step provides
spatial constraint satisfaction.

Here we presents a twofold extension of the diffused
expectation–maximization approach: the algorithm will be ex-
tended to deal with vector (i.e. color) images and furthermore
it will operate in a multiresolution framework to take advan-
tage of the fact that objects/regions to be segmented usually
reside at different scales.

2. Method

2.1. Theoretical background

Let the plane of the image be formed by N pixels, and let
fi be the gray-level associated to the ith pixel; gray-levels are
supposed to be drawn from a finite set and range from 0 to
M − 1, so that there are M possible values. More formally,
any gray-level image can be considered a set of N unlabeled
samples F = {f1, f2, . . . , fN }, on a 2D discrete support � ⊆
Z2, with N = |�|.

The image segmentation problem can be defined in prob-
abilistic terms as the problem of assigning a label k to each
pixel i, given the observed data F, and where each label k ∈
[1, . . . , K] defines a particular region/model. Different mod-
els are selected with probability P(k), and a sample is gener-
ated with probability distribution p(fi |k, �) where �={�k, k=
1, . . . , K} and �k is the vector of the parameters associated to
label k. Thus p(fi |k, �) is the probability of fi given the pa-
rameters of all models and the fact that we have selected model
(label) k. Each image can be conceived as drawn from a mix-
ture density, so that, for any pixel,

p(fi |�)=
K∑

k=1

P(k)p(fi |k, �); (1)

terms P(k) represent the mixing coefficients and it is usual to
adopt the notation �k ≡ P(k). The likelihood of the data is

L= p(F |�)=
N∏

i=1

p(fi |�). (2)

For clarity’s sake, we define two probability distributions p(fi)

and �(f ); the former is the probability that, given a gray-level f
it is assigned to pixel i, so that

∑
i p(fi)=1, whereas the latter

is the probability that, given any pixel i it has gray-level f. Then
p(fi) is a spatial distribution of the gray-levels across the im-
age, whereas �(f ) is the probability to find a given gray-level f,
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irrespective of the position in the image. Image segmentation
can be achieved by finding the set of labels that maximizes the
likelihood L = ∏N

i=1
∑K

k=1 P(k)p(fi |k, �), or, equivalently,
by using Eqs. (1) and (2)

1

N
logL= 1

N

N∑
i=1

log
K∑

k=1

p(fi |k, �)P (k). (3)

By the weak law of large numbers and the ergodic theorem
the right-hand side of Eq. (3) can be written as the expectation
with respect to gray-level f

E

[
log

K∑
k=1

p(fi |k, �)P (k)

]

=
M−1∑
f=0

(
�(f ) log

K∑
k=1

p(fi |k, �)P (k)

)
. (4)

Simple manipulations lead to

1

N
logL=

M−1∑
f=0

�(f ) log �(f )

−
M−1∑
f=0

(
�(f ) log

�(f )∑K
k=1 p(fi |k, �)P (k)

)
. (5)

Hence a straightforward maximization of logL can be
obtained by minimizing the second term of the last ex-
pression, namely the Kullback–Leibler (KL) divergence
D(�(f )‖∑K

k=1 p(fi |k, �)P (k)) between distributions �(f )

and
∑K

k=1 p(fi |k, �)P (k), while holding the first term fixed.
This is exactly what is performed by the classic EM algorithm
[21] which minimizes the KL divergence between the manifold
of the observed data and that of the true distribution.

In particular, when Gaussian distributions are used to model
the density mixture of Eq. (1), the E- and M-steps can easily
be computed in closed form. Define hik = p(k|fi, �); in the
E-step these posterior probabilities are given by

h
(t)
ik =

�(t)
k p(fi |k, �(t)

k , �(t)
k )∑

k �(t)
k p(fi |k, �(t)

k , �(t)
k )

(6)

while in the M-step, with h
(t)
ik fixed, the parameters � and mixing

proportions �k = P(k) that maximize logL, are obtained as

�(t+1)
k = 1

N

∑
i

h
(t)
ik , �(t+1)

k =
∑

i h
(t)
ik fi∑

i h
(t)
ik

,

�(t+1)
k =

∑
i h

(t)
ik [fi − �(t+1)

k ]2∑
i h̃

(t)
ik

, (7)

The E- and M-steps are iterated until | logL(t+1)−logL(t)|< �.
Alternatively, one could attempt a multistep approach by iter-

atively minimizing the entropy H(f )=−∑M−1
f=0 �(f ) log �(f ),

while holding p(F |k, �), P(k) fixed, and then minimizing the
divergence D, while keeping H(f ) fixed. Interestingly, from the
segmentation standpoint, the problem can be reformulated in

a way which takes into account the spatial correlations among
pixels, as follows.

Empirical approximations of probabilities p(fi) and �(f )

are given by

pi = p(fi) � fi

ftot
and ftot =

N∑
i=1

fi , (8)

and

�(f ) � nf

N
, (9)

and the relation ftot=∑N
i=1 fi=∑M−1

f=0 nf f holds. From these
probabilities two different entropies can be derived, namely
H and Hs, that capture different types of uncertainty related to
the stochastic process of which the image is a sample; from
�(f ) the entropy H can be defined as

H(f )=−
M−1∑
f=0

�(f ) ln �(f ), (10)

whereas a spatial measure of entropy is

Hs =−
N∑

i=1

p(fi) ln p(fi)= E

[
ln

1

p(fi)

]
. (11)

By making use of (8) and (9) it is not difficult to prove that
Hs increases when H decreases. Intuitively, when the image
is uniform (all pixels have the same gray-level) Hs will be
maximum, while H will be 0 since there is only one gray-
level f with probability p(f ) = 1. Thus a minimization of
H corresponds to a maximization of Hs.

The main idea behind the DEM approach is that maximiza-
tion should be attained in a way label assignment to a pixel de-
pends on the labels in the pixel neighborhood; then, a process
must be devised that takes into account spatial correlations. It
has been proved [26] that−Hs=∑N

i=1 p(fi) log p(fi) is a Lia-
punov functional decreasing under isotropic diffusion; however
this result as such does not allow to select the optimal label.
Note that neighboring pixels should have the same probability
to be assigned a given label k and that labels at boundaries be-
tween regions should be characterized by an abrupt change of
probability values. Thus, each hik = p(k|fi, �) field should be
a piecewise constant function across the image and this result
can be achieved [26] by a system of k anisotropic diffusion
equations

�hik(t)

�t
= ∇ · (g(∇hik)∇hik(t)) (12)

one for each label probability plane; g(·) is a suitable conduc-
tance function, monotonically decreasing. Hence small differ-
ences of hik among pixels close to each other are smoothed
out, since diffusion is allowed, whereas large variations are
preserved. As in the isotropic case, anisotropic diffusion is
proved to increase the spatial entropy Hs [26]. The DEM
algorithm obtains the maximization of logL by iteratively
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computing p(k|f, �), p(F |k, �), P(k) along the expectation
and maximization steps via Eqs. (6), (7) and interleaving this
computation with diffusion on p(k|f, �), through Eq. (12)
which in practice regularizes each k labeling field by propagat-
ing anisotropically such labels. Eventually, the segmentation
is performed by using the estimated parameters k, �k .

2.2. Extension to multi-valued images

A vector-valued (multi-valued) image can be considered a set
of N unlabeled samples F= { f1, f2, . . . , fN }, on a 2D discrete
support � ⊆ Z2, with N = |�|, where each sample fi is a
D-dimensional vector [f 1

i , f 2
i , . . . , f D

i ]T; in other terms, F is
a set of single-valued images {F 1, F 2, . . . , FD}, sharing the
same domain. A color image can be considered a vector-valued
image, each component corresponding to one of the three color
channels; for instance an RGB image, can be represented as
{F R, F G, F B}.

A color space is a geometrical and mathematical representa-
tion of color; there is a variety of such representations either de-
rived from hardware considerations (e.g., RGB, YCrCb, NTSC,
YIQ, CMYK, etc.), or colorimetry issues (e.g., XYZ, UCS,
CIELAB, CIELUV), or visual perception motivations (Oppo-
nent colors, IHS, HSV, etc.). A survey can be found in [27,28].
We will use the YCrCb color space; this choice is motivated by
the fact that YCrCb de-correlates the original tristimulus color
components, thus granting independence of the color channels.
The mapping {F R, F G, F B} �→ {F Y, F Cr, F Cb} from the RGB
space to YCrCb space is accomplished through linear transfor-
mation [28].

2.3. Multiresolution representation of images via pyramids

It has been observed previously that the DEM approach takes
into account the spatial interactions among pixels in the image;
it should be noted, however, that different types of regions are,
in general, characterized by different interactions lengths, e.g.
points in almost uniform regions have longer interaction range
than those in weak texture, and, moreover such range depends
on the scale on which the analysis is performed [29]. Then the
problem arises on which is the optimal scale at which segmen-
tation must be carried out: a low resolution might result in a too
coarse segmentation, with different regions merged together,
whereas a high resolution, on the contrary could result in many
fragmented images and involves a heavy computational load.

In particular, when dealing with very complex images, such
as vector-valued images, clearly one should be concerned in
obtaining reliable segmentation results, while keeping accept-
able computational costs. Both issues can be accounted for
by resorting to a multiresolution representation of the original
image, e.g., a pyramidal representation [8]. On the one hand,
propagation of information gained from coarse resolution lev-
els makes significant objects/regions in the image more rele-
vant respect to weak textures and noise. On the other hand,
pyramids provide an efficient tool to reduce the computational
load both as regards the iterations necessary to maximize the
likelihood—by initializing the parameter set on the basis of the

parameters estimated at the coarser level—and for what con-
cerns the diffusion step, which, at each iteration needs only to
work upon a sub-sampled version the probability maps.

A multiresolution representation can be derived from the
original color image, by means of a Gaussian pyramid [8] ob-
tained by performing a low-pass filtering via convolution with a
gaussian G(�l ) [8], l being the level of resolution, followed by a
sub-sampling of the smoothed scalar field, here the color chan-
nel Fd , where the index d denotes the color component [30]:

f
d,(l+1)
i = S ↓ G(�l ) ∗ f

d,(l)
i , (13)

where S ↓ is the down-sampling operator. Note that the transi-
tion from scale l to scale l+1 produces a coarser representation
of the image, and hence f

d,(0)
i = f d

i , is the highest resolution
level and corresponds to the original image.

We will denote by P{Fd} the Gaussian pyramid build on
the scalar field, Fd , while P{F}={P{F 1}, . . . ,P{FD}}, is the
Gaussian pyramid representation of the vector-valued image.
The level l of the pyramid P{F} will be indexed by P(l){F},
or, for notational simplicity, by F(l).

Fig. 1 provides an example of the pyramidal decomposition
of a computed tomography (CT) scan image rendered as a gray-
level image. The pyramidal representation of a vector-valued
image is shown in Fig. 2 by using a skin lesion image; in
particular, for visualization purposes, the “color” pyramid of the
same image is shown on the left (Fig. 2(a)), actually obtained
through the decomposition P{F}={P{F Y},P{F Cr},P{F Cb}}
on the Y, Cr, Cb channels respectively, presented in the right
picture Fig. 2(b).

In our implementation, pyramid depth is automatically com-
puted given the size of the image at the coarsest level.

2.4. The MDEM algorithm

As previously remarked, a key property of pyramids is
that long range interactions can be captured by short paths
in the coarse levels, as the paths are through points repre-
senting blocks of pixels instead of pixels. Such multireso-
lution representation is used as follows. At a certain level
l of the pyramid, different from the lowest resolution level,
maximization of logL is obtained by iteratively computing
p(k(l)|F(l), �(l)), p(F(l)|k(l), �(l)), P(k(l)) while diffusing on
p(k(l)|F(l), �(l)) over sites i:

�p(k(l)| f(l)i , �(l))

�t

= ∇ · (g(∇p(k(l)f(l)i , �(l)))∇p(k(l)| f(l)i , �(l))); (14)

Eq. (14), defines a system of D diffusion equations for each
labeling plane k.

As previously discussed, this step can be used to in-
corporate spatial coherence into segmentation techniques.
Using anisotropic diffusion on the posterior probabilities
p(k(l)|F(l), �(l)) to capture local spatial constraints is moti-
vated by the intuition that posteriors with piecewise uniform
regions result in segmentations with piecewise uniform re-
gions. Application of anisotropic smoothing on the posterior
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Fig. 1. A pyramidal representation of a CT scan image using four resolution levels of decreasing resolution, from left to right, f d,(0) (the original image),
f d,(1), f d,(2), f d,(3).

Fig. 2. A pyramidal representation of a color image (skin lesion); (a) the “color” pyramid of the original image; (b) from left to right the scalar pyramids
P{F Y},P{F Cr},P{F Cb} of the Y, Cr, Cb channels, respectively.

probabilities is possible even in case classes are described by
general probability distribution functions [31].

At such level, the labeling planes p(k(l)|F(l), �(l)) are ini-
tialized by up-sampling the probability maps that have been
previously derived at the coarser level l + 1:

p(k(l)|F (l))= S ↑ p(k(l+1)|F (l+1)). (15)

This way the algorithm uses the probabilistic labeling proposed
at coarser levels, while reducing the iteration steps necessary to
achieve convergence of the expectation–diffusion–maximization
cycle at that level.

The probabilistic model is assumed to be a mixture of mul-
tivariate gaussians

p(F|k, µk, �k)= exp(−(1/2)(F− µk)
T�−1

k (F− µk)

(2�)D/2|�k|1/2
,

(16)

�k={µk, �k} being the unknown mean vectors and covariance
matrices, respectively, weighted by mixing proportions �k =
P(k). Note that, we can consider the covariance matrices being
diagonal because of the choice of the YCrCb color space, and,
furthermore we assume K fixed, in that we are not concerned
here with the problem of model selection.
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In summary, the MDEM algorithm works by performing two
steps: in an unsupervised learning stage, parameters of the mix-
ture and mixing coefficients are derived; in the classification
step, the learned mixture is used to segment the image.

The learning step is articulated as follows:

1. Transform the RGB image (F R, F G, F B) to (F Y, F Cr, F Cb).
2. Compute the pyramidal representation of the image P{F Y},P{F Cr},P{F Cb} via Eq. (13).
3. Initialize hL,ik, �L,k, µL,k, �L,k at the coarsest level L of the pyramid.
4. for (l = L− 1, . . . , 0) do.
5. Propagate to the upper level probabilities hl,ik ← hl+1,ik , by up-sampling, according to Eq. (15), and parameters

�l,k ← �l+1,k , µl,k ← µl+1,k , �l,k ← �l+1,k

6. t ← 1
7. repeat
8. {E-step: given �l , obtain the distribution of the hidden variables}
9. for (i = 1, . . . , N) do

10. for (k = 1, . . . , K) do
11.

h
(t)
l,ik ←

�(t)
l,kp(f(l)i |k(l), µ

(t)
l,k, �

(t)
l,k)∑

k �(t)
l,kp(f(l)i |k(l), µ

(t)
l,k, �

(t)
l,k)

(17)

12. end for
13. end for

{D-step: propagate hl,ik by T (l) iterations of the discrete form of anisotropic diffusion (14)}
14. for (k = 1, . . . , K) do
15. for �= 0 . . . T (l)− 1 do
16. for (i = 1, . . . , N) do
17.

h
(t+�+1)
l,ik ← h

(t+�)
l,ik + 	∇ · (g(∇h

(t+�)
l,ik )∇h

(t+�)
l,ik ) (18)

18. end for
19. end for
20. h̃

(t)
ik ← h

(t+T (l))
l,ik ,∀i

21. end for
{M-step: with h̃

(t)
l,ik fixed, calculate the parameters that maximise logL}

22. for (k = 1, . . . , K) do
23.

�(t+1)
l,k ← 1

N

∑
i

h̃
(t)
l,ik (19)

24.

µ
(t+1)
k ←

∑
i h̃

(t)
l,ik f(l)i∑

i h̃
(t)
l,ik

(20)

25.

�
(t+1)
l,k ←

∑
i h̃

(t)
l,ik[ f(l)i − µ

(t+1)
l,k ]2∑

i h̃
(t)
l,ik

, (21)

26. end for
27. t ← t + 1
28. until | logL(t+1) − logL(t)|< �
29. end for

The initialization of the MDEM algorithm at the coarsest level
is performed, by running the E-, D-, M-steps but with parame-
ters �L,k, µL,k, �L,k initialized as reported in the experimental
section.
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Fig. 3. Intermediate representations and final output of the method obtained on the CT image: (a) the labeling planes {p(k(l)|F(l))}l=0,1,2,3
k=1,2,3 ; (b) a layered

representation of the three region classes (top three planes) and the segmented image (bottom plane); (c) the final segmentation result of the MDEM algorithm
(right image) compared with the original (left), by using �k parameter as a gray-level to graphically represent the regions of class k.

Fig. 4. Skin lesion segmentation (right) using the MDEM algorithm compared with the original image (left).

After that the parameter estimation stage has been completed,
segmentation is achieved for each pixel i ∈ � by assigning to

i, the label k for which maxk{p(f
(0)
i |k(0), µ

(t)
0,k, �

(t)
0,k)} holds.

Eventually, the segmented YCrCb image is back-transformed
to RGB space.

The algorithm has been outlined for color images (D =
3). Note that the algorithm applies to gray-level images as
a special case (D = 1); also, the case of noncolor vector-
valued images can be handled. The final output and interme-
diate representations produced by the proposed method are
summarized at a glance in Fig. 3; for graphical simplicity we
will use the scalar CT image shown in Fig. 1. Assuming a
number of classes equal to 3, i.e. k = 1, 2, 3, in Fig. 3(a),

the labeling planes {p(k(l)|F (l))}l=0,1,2,3
k=1,2,3 are shown for each

resolution level l = 0, 1, 2, 3, as gray-level images, brighter
levels denoting higher probability; note how, for each of

the three classes the probability maps are progressively re-
fined when going from the coarsest level l = 3 to the finest
level l = 0. At the end of the learning stage, segmentation
of the original image is obtained which can be conceived
as a layered representation of the original image, each layer
grouping regions/objects of the same class (Fig. 3(b)). By
collapsing the three layers on a single plane, the segmentation
result is obtained and compared with the original (Fig. 3(c)).
Fig. 4 presents an example of skin lesion classification per-
formed on the color image of Fig. 2. Two classes have been
used, skin and lesion. It can be noted that, beyond spatial ac-
curacy, by using the vector mean µk as the color to represent
the regions of class k, the segmented result is chromatically
coherent with the original image.

The performance of the MDEM algorithm with respect to
both EM and DEM can be evaluated in terms of maximization
rate of the log-likelihood. In Fig. 5 logL is plotted versus the
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Fig. 5. Plot of logL vs. number of iterations: MDEM (solid line), DEM (dash line), EM (dotted line).

number of iterations; it is apparent that the log-likelihood is
much higher in the MDEM case which already at the coarsest
level yields a value of logL which is larger than those of
the other methods. The steps in the continuous line correspond
to the transitions from a coarser to a finer scale, and clearly
demonstrate the advantage of a multiscale representation. The
number of iterations in the case of EM and DEM algorithms,
was equal to the total iterations of MDEM (sum of iterations
carried out at each level), and the same parameter initialization
has been adopted.

3. Procedures and results

A first set of experiments aimed at comparing the proposed
method with other methods either feature or spatial based.
Among feature based technique we have chosen the EM al-
gorithm and its DEM variant; also, for scalar, gray-level im-
ages we implemented a version of entropy-based thresholding
which can iteratively account for more than two classes, based
on a modified version of well known Kapur, Sahoo and Wong
algorithm [15]. The algorithm works as follows. Consider the
histogram of the gray-level f, and define p(f ′) = n(f ′)/N ,
where n(f ′) is the number of pixels with gray-level f ′ and N
the total number of pixels. Next define 
(f )=∑f

f ′=fmin
p(f ′)

and form distributions F1 = p(f ′)/
(f ), f ′ ∈ [fmin, f ] and
F2 = p(f ′′)/(1− 
(f )), f ′′ ∈ [f + 1, fmax] For each level f,
the Shannon entropies of distributions F1, and F2 can then be
computed. They are

HS(F1)= −
f∑

f ′=fmin

p(f ′)

(f )

log
p(f ′)

(f )

, HS(F2)

= −
fmax−1∑

f ′′=f+1


(f ′′)
1− 
(f )

log

(f ′′)

1− 
(f )
.

These entropies are then added to give the total entropy for
f : Htot(f ) = HS(F1) + HS(F2). The optimal threshold t for
distinguishing between two adjacent regions of different bright-
ness is the level f which maximizes the uncertainty measured
by Htot : t = argmax{Htot(f )}, in that this value has the same
probability of belonging to either region. In order to achieve
the multilevel thresholding for more than two classes, the pro-
cedure is iteratively applied to compute a sequence of thresh-
olds t1, t2, . . . , tK−1, for segmenting K classes. This algorithm
is used only on scalar images, since its generalization to vector-
valued ones is not straightforward.

A split-and-merge algorithm was chosen among spatial based
techniques and preferred to region growing since not needing
initialization of seed points. The algorithm used is the classic
recursive algorithm where regions are split and merged until
they have a variance � below a specified threshold �th. In the
case of scalar images the variance is simply the gray-level vari-
ance of the considered region, while for vector-valued images
it is set to the joint total variance

∑D
d=1 �d of the D channels.

Since the method proposed here is a general-purpose seg-
mentation technique, we have experimented on different kinds
of medical images. The data set included 90 images, namely
CT scans, radiographs, dermatologic and eye fundus images.
CT and radiographic images are useful to assess the perfor-
mance of MDEM on scalar images, while the latter allow
evaluation with respect to vector-valued ones. Examples from
this set of experiments are presented using the test images
shown in the following.

For showing results on gray-level images, we use an image
of a CT scan of the head at the level of the orbits, middle ear,
and paranasal sinuses, Fig. 6(a) and an image of a radiography
of the hand, Fig. 6(b). In the case of the CT image, where
gray-level values represent average X-ray absorption distorted
by noise and artifacts, the initially perceived complexity of the
CT can be reduced by first identifying the major anatomical
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Fig. 6. Scalar images: (a) CT scan of the head at level of the orbits, middle ear, and paranasal sinuses; (b) Radiograph of a hand.

Fig. 7. Vector-valued images: (a) Skin lesion; (b) Glaucomatous eye.

subregions. In the case of radiographic image, it is of interest to
detect the radiopaque parts of a radiograph. Results from vector-
valued images are illustrated using one image of skin benign
cancer, Fig. 7(a), and a image digitized from a photograph of
the optic disc of a glaucomatous eye, Fig. 7(b). Skin lesions are
of particular interest to test a vector-valued image segmentation
algorithm, since they come in a variety of colors, and changes
of colors from a lesion to its background can be effectively used
for segmentation, although color variations may exist within
the lesion or in the background [32].

A second set of experiments aimed at validating segmenta-
tion results of our method with a ground-truth. To this end we
compared MDEM segmentation of images of skin lesions with
segmentation of the same images provided by experts in the
field of skin cancer.

The experimental setting was the following. For all the ex-
periments, the depth of the pyramid, in the MDEM algorithm,
is automatically computed by fixing the minimum length/width

to the size of 20 pixels. This value has been found to be a
reasonable trade-off between an accurate segmentation, which
requires the initialization of a number of classes/regions undis-
tinguishable at the coarsest resolutions (e.g., 10, 5 and so on),
and an efficient bootstrapping of the EM procedure.

Then, nonuniform initial estimates were chosen for
�(0)
L,k, µ

(0)
L,k, �

(0)
L,k parameters at such level. The values of the

components of the mean vector {�(0)
L,k} ranged from the min-

imum to the maximum value of fi , elements {�(0)
L,k} of the

covariance matrix took values in the range from 1 to max{fi};
finally {�(0)

L,k} were set from max{fi} to 1 and then normalized

so that
∑

k �(0)
L,k = 1. In all cases the variations of the param-

eters were constant. The conductance function g used in the
diffusion step of the algorithm can have a quite general form,
but must be such that label boundaries are preserved, and
numerical stability guaranteed. In order that diffused quanti-
ties remain probabilities, that is, are positive and add to one,
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Fig. 8. CT image segmentation results. From left to right, the original image and segmentation results of DEM, EM, split-and-merge, iterative entropy
thresholding, MDEM methods. Regions are coded with their average gray-value.

Fig. 9. Hand radiograph segmentation results. From left to right, the original image and segmentation results of DEM, EM, split-and-merge, iterative entropy
thresholding, MDEM methods.

a suitable normalization must be provided after each iteration
step; to this end, the functions h

(t)
ik are renormalized so that

their sum is one after each iteration [31]. In our experiments
we set g(∇hik)=|∇hik|−9/5, while the values of 	, the number
of T (l) iterations of (18) performed at level l is automatically
set as T (l)= 3× (1+ L− l), L being the maximum depth of
the pyramid. The number of classes, K, was chosen to account
for the classes to be determined in each experiment, with re-
spect to different types of images, while convergence of the
algorithm was controlled by � = 0.1. For all the experiments,
the same setting was used for EM, DEM and MDEM algo-
rithms. The number K of classes automatically determines the
number of thresholds Nt = K − 1 to be iteratively computed
for entropy thresholding (e.g., 2 thresholds t1 and t2 are needed
to discriminate among 3 classes of regions).

Fig. 8 shows the results obtained on the CT image using
DEM, EM, split-and-merge, iterative entropy thresholding and
MDEM by considering K=3 classes; regularization parameter
of anisotropic diffusion was set as 	= 0.05. For the split-and-
merge method, the threshold value �th = 1000 was experimen-
tally chosen because providing the best performance.

It can be noted that DEM and MDEM achieve the most
reliable segmentations, but the latter is more precise in dis-
carding small spurious regions, due to the multiresolution
analysis. Worst performance is shown by the standard split-and
merge method, which is also outperformed by the thresh-
olding method, though the latter exhibits higher sensitivity
to noise.

Results obtained for the hand radiography are summarized
in Fig. 9. In this case K = 6 classes were taken into account;
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Fig. 10. Skin lesion segmentation. From left to right, the original image and segmentation results of DEM, EM, split-and-merge, MDEM methods. Regions
are coded with their average color value.

Fig. 11. Skin lesion contour: from left to right, original image, contours traced by a specialist, contours extracted after MDEM segmentation.

Fig. 12. Glaucoma image: (a) from left to right, original image, DEM, EM, Split and Merge, MDEM; (b) Contour of the Cup and the Disk of the Glaucoma.

anisotropic diffusion parameter was set as 	= 0.01. The split-
and-merge method, was run with �th = 1000. Results achieved
show the same ranking among the considered methods as in
the previous experiment, in terms of quality of segmentation.

In the skin lesion case (Fig. 10) we have compared the meth-
ods considering K = 4 classes (three main region classes plus
one class for outliers), 	= 0.1 and the split-and-merge method
was run with �th = 300.

Note that for this specific case the classical EM performs
better than DEM in terms of spatial precision, because of
over-smoothing in the diffusion step. However, the MDEM al-
gorithm is able to constrain smoothing due to multiresolution
analysis. Interestingly enough, split-and-merge performance
on vector-valued images is higher than its performance on

gray-scale since variance is jointly taken into account over the
different channels.

To better appreciate the result obtained by MDEM, in
Fig. 11, the ground truth (marked contours) found by an expert
in the field of skin cancer, where a lesion boundary potentially
exists, is compared with the contour automatically traced via
edge detection performed on the segmented region.

The last example of this set of experiments (Fig. 12) shows
results in the case of an image of the eye fundus. In this case
a glaucoma is present. We used K = 6 classes, 	= 0.1 and the
split-and-merge method was run with �th = 200. Segmentation
results are illustrated in Fig. 12(a). Note that glaucoma is a
neuropathy for which the evaluation of optic disk morphometry
can be of cardinal importance. For instance, the measure of the
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Fig. 13. Skin lesion segmentation results: (a) Original: from left to right, images 1–3 represent atypical lesions, 4 and 5, malignant lesions; (b) Ground truth
(lesion boundaries manually traced); (c) boundaries automatically detected after MDEM processing and overlaid with the original.

Fig. 14. Skin lesion segmentation results: (a) Original: from left to right, the images represent benign lesions; (b) Ground truth (lesion boundaries manually
traced); (c) boundaries automatically detected after MDEM processing and overlaid with the original.

cup to disk ratio is a widely accepted figure of merit. Thus, to
better appreciate segmentation results, in Fig. 12(b) boundaries
of the cup and the disk have been extracted from the segmented
image and overlaid on the original, to show how this preliminary

step may allow easy computation of such ratio, when followed
by simple circle fitting.

Eventually, we present some examples from a second set
of experiments performed on images of pigmented lesions
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(either benign, atypical, malignant). To analyze such lesions it
is necessary to accurately locate and isolate the lesions. Thus,
results obtained by the MDEM algorithm have been compared
with ground truths traced by experts in the field of skin cancer
(Figs. 13 and 14). For ease of comparison, the contours of the
segmented regions have been extracted via edge detection and
overlapped onto the original image. Parameter settings were
the same as in the case presented in Fig. 11.

4. Final remarks

MDEM is a novel scheme that results in a simple but effec-
tive segmentation algorithm for color images that: (1) retains
the appealing characteristics of a feature clustering based ap-
proach; (2) takes into account spatial constraints while avoid-
ing complex schemes such as MRFs; (3) it operates within a
multiresolution framework, in order to reliably define regions
of interest and efficiently perform required computations.

Note that the MDEM algorithm is different from previously
proposed related methods. For instance, different approaches
have tried to incorporate within the EM algorithm a prior term
in order to maximize a log-posterior probability instead of log-
likelihood, thus leading to quite complex EM steps [23,24]. On
the other hand, Haker et al. [31], have suggested to compute an
initial posterior probability map, through some kind of prelim-
inary classification (e.g., clustering), followed by anisotropic
diffusion performed on such initial map in order to diffuse spa-
tial constraints among probability sites; clearly, in this way final
results strictly depend upon the goodness of the initial labeling.
Here, we follow a different approach: we operate on the max-
imization of the log-likelihood function, and spatial context is
implicitly accounted for along maximization via diffusion. Fur-
ther, in order to take advantage of the structure of the image as
represented at different scales, this methods has been carried
out in a multiscale framework, thus yielding an accurate seg-
mentation, without unduly increasing the computational load.

Here it as been assumed K fixed, in that we are not concerned
with the problem of model selection. In general, this problem
could be tackled by resorting to BIC or Akaike’s information
criteria [20]. However, this may not be necessary for biomedical
images, since, depending on the application, the value of K
is often assumed to be provided by prior knowledge of the
anatomy being considered.

As a result we obtain a simple iterative segmentation algo-
rithm which can be easily interpreted in terms of a multiresolu-
tion competition/cooperation scheme: at each resolution level
of the pyramid, the E- and M-steps can be seen as an individual
site competition between the k different label planes, while the
interleaved diffusion step can be considered as a cooperation
step within sites on the same plane.

With respect to the computational load, the whole algorithm
is slightly slower than the EM procedure. Currently, it takes 30 s
for a 256× 256 2D image, using an Intel PIV 3.4 GHz proces-
sor, equipped with 2 GHz RAM, under Windows XP operating
system.

Finally, simulations show that the method performs quite
well on a variety of medical images either with respect to more

standard methods or also techniques specifically designed for
an application (for instance, our skin lesion segmentation re-
sults can be compared with examples provided by Xu et al. [32]
and available at www.cs.wright.edu/people/faculty/agoshtas/
paper_fig.htm), and it is flexible enough to be used in a wide
range of applications.

5. Summary

In the work presented here image segmentation of vector-
valued images is carried out within a multiresolution frame-
work. A multiscale representation is provided by Gaussian
pyramids defined in the YCrCb color space, one for each color
channel, and segmentation is performed in a hierarchical fash-
ion, starting form the coarsest representation, so that results
at a scale provide initial condition to segmentation in the next
lower (finer) scale; this propagation of information from coarse
resolution levels makes significant objects/regions in the image
more relevant respect to weak textures and noise. Also, pyra-
mids provide an efficient tool to reduce the iterations necessary
to maximize the likelihood while optimizing the diffusion step,
which, at each iteration acts upon a sub-sampled version of the
probability maps. At each scale segmentation is obtained via
an expectation–diffusion–maximization loop in which standard
expectation–maximization is coupled with a an anisotropic dif-
fusion of the posterior probabilities of label assignment; this
way MDEM takes into account spatial correlations in the image.
The new approach has been validated on a variety of medical
images and through comparisons with more standard methods.
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