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In this paper, we discuss how image segmentation can be handled by using Bayesian
learning and inference. In particular variational techniques relying on free energy mini-
mization will be introduced. It will be shown how to embed a spatial diffusion process
on segmentation labels within the Variational Bayes learning procedure so as to enforce
spatial constraints among labels.
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1. Introduction

The process of image segmentation is generally understood as the partitioning of
the observed data (pixels) into meaningful constituent parts (regions), which can
be achieved by assigning region labels to pixels in accordance with a uniformity, or
homogeneity criterion (color similarity, spatial proximity, etc.). A large number of
techniques have been proposed, over the years, both for grey-level and color images,
(for an in-depth survey, see Refs. 9 and 13) but so far there is no satisfactory
solution.

Despite its intuitive definition, segmentation is, at the most general level, a hard
problem since real world images are fundamentally ambiguous and our perception
of an image changes over time. On the one hand, the aggregation of pixels into
segments representing meaningful parts is a compelling challenge, such parts are
often too complex to be characterized through low-level image features without
taking into account prior knowledge of the scene and objects within the scene. On
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the other hand, the use of object-based information, requires that objects have
been identified, while identification in turn relies upon object segmentation. Fur-
ther, the semantic interpretation of an image is highly subjective and application
dependent. As commonly experienced in computer vision, it is more productive to
adopt the minimalist view of segmentation as a process which results in a “reason-
able” partitioning of the image, a hypothesis conveniently exploited by other visual
routines.18

This minimalist version of the problem, still challenging but solvable, neverthe-
less requires that any algorithm, in order to be effective, must cope with uncertain-
ties related to the data, the choice of useful features and the actions to be taken for
achieving the proposed partitioning, while exploiting prior knowledge on the data
if available.

To this end, probability theory, and, in particular, the Bayesian approach, offers
a mathematically consistent way to formulate segmentation algorithms in terms of
model based inference.6,9,10 The adoption of Bayesian methods is further motivated
by the need of learning the parameters of the underlying models.

In this paper we will discuss how the problem of perceptual Bayesian learn-
ing and inference for segmentation purposes can be suitably managed by using
variational techniques relying on free energy minimization.2,14 The use of Varia-
tional Bayes (VB) techniques is fairly recent in computer vision (see Ref. 10 for an
in-depth discussion), and to the best of our knowledge there are only two attempts
to exploit it for segmentation,16,22 but with some important limitations such as the
lack of spatial constraints16 or trading off model generality for model tractability.22

Here, we will show how such limitations can be overcome by embedding a spatial
diffusion process on segmentation labels within the VB learning procedure.

2. Segmentation in a Bayesian Perspective: Background

Segmentation, from a probabilistic viewpoint, can rather naturally be considered
as a missing data problem.9 The complete data space is represented by a pair
of random fields: Y = {yn}Nn=1 is the observed random field whose configuration
(image) consists of the measurements at each random variable yn (pixel), which
may be either a scalar or D-dimensional vector-valued; X = {xn}Nn=1 represents
a configuration of unobservable, hidden variables, where the value (label) of each
random variable xn indicates to which region or object k ∈ {1, . . . , K} each pixel
belongs. Here n indexes the set of sites S = {1, 2, . . . , N}, the square lattice domain
of the image.

The observed data set Y is assumed to be generated from hidden states X and
the segmentation process, starting from Y, aims at estimating for each pixel the
hidden object/class it belongs to. This implies learning the model, using the model
to infer the partitioning probability and deciding the most reliable partitioning.

In a Bayesian setting, the generative model, indexed by m ∈ M within the set of
modelsM, is specified in terms of both a prior distribution over the causes (X, Θ),
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namely P (X, Θ|m), and the likelihood function P (Y|X, Θ, m). Thus, hidden and
observable data are coupled by the generative model specified through the joint
probability distribution P (Y, X, Θ|m) = P (Y|X, Θ, m)P (X, Θ|m).

Learning a generative model corresponds to making the probabilistic distribu-
tion of input data, implied by a model of parameters Θ, as close as possible to those
actually observed. To this end, it is possible to derive the marginal distribution of
the data generated under the model m (evidence) that has to be matched to the
input distribution P (Y)

P (Y|m) =
∫
X,Θ

P (Y|X, Θ, m)P (X, Θ|m)dXdΘ. (1)

Once the parameters of the generative model have been learned, the recognition
model is defined in terms of inverse probability,14 and inference of hidden variables
X defining the partitioning of the image, is performed via Bayes’ rule:

P (X|Y, Θ, m) =
P (Y|X, Θ, m)P (X, Θ|m)

P (Y|m)
. (2)

Finally, for a given pixel configuration Y, the best segmentation estimate X̂ can
be recovered under some suitable extremum principle (e.g. minimum mean squared
error, MMSE or maximum a posteriori, MAP) related to the posterior probability
P (X|Y, Θ, m).

However, marginalization in Eq. (1) is often difficult because, in principle, all
parameters of the model can be coupled; furthermore, the estimate X̂ can be dif-
ficult to compute without approximations. Thus, in general, the generative model
cannot be easily inverted and it may not be possible to parametrize the posterior
distribution.

A variational solution is to posit a simpler approximate distribution Q(X, Θ)
that is consistent (same support) with P (X, Θ, Y) (in the following we drop model
index m for notational simplicity). Any such distribution can be used to provide
a lower bound to the evidence P (Y), or equivalently to the log-likelihood L(Y) =
log P (Y), which can be rewritten as:

L(Y) =
∫
X,Θ

Q(X, Θ) log
P (X, Θ, Y)
Q(X, Θ)

dXdΘ +
∫
X,Θ

Q(X, Θ) log
Q(X, Θ)

P (X, Θ|Y)
dXdΘ

= F(Q) + KL(Q||P) (3)

where KL(Q||P) is the Kullback–Leibler divergence between the approximating dis-
tribution and the true posterior distribution, while F(Q) represents a lower bound
on L(Y). By definition KL(Q||P) ≥ 0, being equal to 0 when Q(X, Θ) = P (X, Θ|Y),
which implies that L(Y) ≥ F(Q). The “best” approximating distribution Q∗(X, Θ)
is then the one that maximizes F(Q), or equivalently minimizes the Kullback–
Leibler divergence between the distribution Q(X, Θ) and the true joint posterior
P (X, Θ|Y).
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For notational simplicity, define the latent variables Z = {X, Θ}. It is a com-
mon practice to restrict the family of Q so that they comprise only tractable
distributions,14 for instance, those that can be factorized as Q(Z) =

∏M
i=1 Qi(Zi)

with M = Np + N , Np being the number of parameters in the set Θ.
It has been shown that the free-form variational optimization of F(Q) with

respect to the distributions Qi provides the optimal solution2:

Q∗
j (Zj) =

exp[I(Zj)]∫
exp[I(Zi)]dZi

(4)

with I(Zj) =
∫

log P (Z, Y)
∏

i�=j Qi(Zi)dZi. The variational approximation thus
maximizes F(Q) as a functional of the distribution Q(X, Θ), by iteratively max-
imizing F, with respect to each Qj,

∂F (Q)
∂Qj

= 0, j = 1 · · ·M .
Note that the set of equations used to recover Q∗

j (Zj) is a set of coupled fixed
point equations (Q∗

j (Zj) is computed in terms of Qi(Zi)), that require an iterative
solution. In particular, for Q(X, Θ) = Q(X)Q(Θ) and Q(X) =

∏N
n=1 Q(xn) the

following holds.1

Theorem 1. Let m be a model with parameters Θ giving rise to an i.i.d. data set
Y = {yn}Nn=1 with corresponding hidden variables X = {xn}Nn=1. A lower bound on
the model log marginal likelihood is F(Q) =

∫
X,Θ

Q(X)Q(Θ) log P (X,Θ,Y)
Q(X)Q(Θ)dXdΘ, and

this can be iteratively optimized by performing the following updates (superscript t

denoting iteration number):

VBE step:

Qt+1(xn) ∝ exp
[∫

Θ

Qt(Θ) log P (xn, yn|Θ, m)dΘ
]
, ∀n (5)

VBM step:

Qt+1(Θ) ∝ P (Θ|m) exp
[∫

X

Qt+1(X) log P (xn, yn|Θ, m)dX
]

. (6)

Moreover, the update rules converge to a local maximum of F(Q).

These steps represent a Bayesian generalization of the E and M steps of the
classic Expectation–Maximization (EM) algorithm14 and in the following it will be
referred to as the VBEM algorithm.

As we will see, the distribution Q(X) over hidden variables that approximates
the true posterior P (X|Y, Θ) provides a natural form to estimate the Gaussian
component weights (called in this case variational responsibilities) when the image
is modeled via a Finite Gaussian Mixture (FGM) model, which is widely used in
probabilistic image segmentation.9,16,22,23
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According to the FGM model, each pixel yn is generated by one among K

Gaussian distributions N (yn; µk, Λ−1
k), with µk, Λk, the means and the precision

matrix (inverse covariance) of the kth Gaussian, and likelihood

P (yn|Θ) =
K∑

k=1

πkN (yn; µk, Λ−1
k). (7)

Here {πk}Kk=1 are the mixing coefficients, with
∑K

k=1 πk = 1 and πk ≥ 0 for all k.
Denote Θ = {π, µ, Λ} the vector of parameters (random variables), with π =

{πk}Kk=1, µ = {µk}Kk=1, Λ = {Λk}Kk=1.
Each hidden variable xn ∈ X related to observation yn, is a 1-of-K binary

vector of components {xnk}Kk=1, in which a particular element xnk is equal to 1
and all other elements are equal to 0, that is xnkε{0, 1} and

∑
k xnk = 1. In other

terms, xn indicates which Gaussian component is responsible for generating pixel
yn, P (yn|xnk = 1, Θ) = N (yn; µk, Λ−1

k).
The FGM generative model (joint probability P (Y, X, Θ)) is defined as follows

(see Bishop2 for details): P (Y, X, π, µ, Λ) = P (Y|X, µ, Λ)P (X|π)P (π)P (µ, Λ),
where P (Y|X, µ, Λ) =

∏N
n=1 P (yn|xn, µ, Λ) =

∏N
n=1

∏K
k=1N (yn, µk, Λ−1

k )
xnk ,

P (X|π) =
∏N

n=1 P (xn|π) =
∏N

n=1

∏K
k=1 πk

xnk , P (µ, Λ) =
∏K

k=1N (µk;
m0, (β0Λk)−1)W(Λk; W0, ν0), P (π) = Dir(π|α) = C(α)

∏K
k=1 πα0−1

k .
Here the conjugate priors over model parameters µ, Λ and π, namely

N (µk; m0, (β0Λk)−1),W(Λk; W0, ν0) and Dir(π|α), are the Gaussian, Wishart and
Dirichlet distributions, respectively,2 and α0, W0, ν0, β0, m0 are the hyperparameters
of the model.

VB learning considers the approximating distribution Q(X, π, µ, Λ) factorized
as Q(X)Q(π, µ, Λ) = Q(X)Q(π)Q(µ, Λ), and the lower bound F(Q), is maximized
by applying Eq. 4. Close form computation results in the following solutions for the
factors of the variational posterior2,17:

Q(X) =
N∏

n=1

K∏
k=1

qnk
xnk , (8)

Q(π) = C(α)
K∏

k=1

π
(Nk+α0−1)
k , (9)

Q(µ, Λ) =
K∏

k=1

N (µk; mk, (βkΛk)−1)W(Λk; Wk, νk), (10)

where qnk � P (k|yn, µk, Λ−1
k ) denote the responsibilities, each representing an

approximation to the posterior probability of labeling pixel yn as belonging to
the kth class.

Unfortunately, the FGM model relies upon the assumption of independence
of pixel data and class labels, which is inadequate for images where some form
of spatial constraints should be introduced. Spatial constraints can be introduced
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explicitly but this usually makes very complex the underlying graphical model and
the learning/inference procedures.11,22,23 In Boccignone et al.,5 to keep the model
structure simple it has been proposed to introduce spatial constraints while per-
forming the VB learning algorithm. A heuristic justification of the method was
presented, graphically showing how each step of the resulting algorithm is guar-
anteed to increase or leave unchanged the lower bound F on the fixed marginal
likelihood. The method can be formally derived as follows.

3. A Method for Embedding Spatial Constraints in VBEM
for Gaussian Mixture Models: Theory

A property of the variational interpretation of the EM algorithm is that at each
step we are allowed to assign any distribution Q(xn) to individual pixels as long as
this increases the lower bound F.

In order to design such transformation, it is convenient to define the following
quantities in analogy with statistical physics, that allow a deeper insight of the
physical meaning of the bounding functional F(Q), namely: the Helmholtz free
energy

FH = − log Z = −L(Y) = − log
∫

X,Θ

P (Y, X, Θ)dΘdX; (11)

the Gibbs’ variational free energy

FG = −F(Q) = −
∫

X,Θ

Q(X, Θ|Y) log
P (X, Θ, Y)
Q(X, Θ|Y)

dXdΘ; (12)

the average energy (internal energy);

U(Q) = −
∫

X,Θ

Q(X, Θ|Y) log P (X, Y, Θ|m)dXdΘ; (13)

the entropy

S(Q) = −
∫

X,Θ

Q(X, Θ|Y) log Q(X, Θ|Y)dXdΘ. (14)

Then, by taking into account Eq. (3), the following holds:

FG = FH + KL(Q||P ) = U(Q)− S(Q), (15)

which says that the Kullback–Leibler distance will be zero, when the variational
Gibbs’ free energy FG is equal to the Helmholtz free energy FH . From a statistical
physics point of view, the problem of learning is thus the problem of minimizing
the Gibbs’ free energy with respect to the distribution Q(X, Θ).

Assume that after a VBE step the new distribution Q(X) has been obtained via
Eq. (5). Then we can apply any transformation G(Q) → Q̃ such that the Gibbs’
free energy FG decreases (i.e. F(Q) = −FG increases). For instance, recalling that
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FG = U(Q) − S(Q), one can choose a mapping G(Q) such that the entropy S(Q)
[Eq. (14)] increases. This can be stated more precisely as follows.

Lemma 1. Consider the iterative optimization of F(Q) as performed through
Eqs. (5) and (6). If a transformation G(Q(X)) is applied such that

S(G(Q(X))) ≥ S(Q(X)), (16)

then the update rules converge to a local maximum of F(Q).

Proof. By using factorization Q(X, Θ) = Q(X)Q(Θ), the normalization constraints∫
Q(X)dX = 1 and

∫
Q(Θ)dΘ = 1, and assuming Θ fixed, Eq. (14) can be rewri-

tten as:

S(Q) = −
∫

Q(X) log Q(X)dX−
∫

Q(Θ) log Q(Θ)dΘ = S(Q(X)) + const. (17)

Thus, since FG = U(Q) − S(Q) and FG = −F (Q), any transformation such that
Eq. (16) holds, decreases Gibbs’ free energy FG and increases the lower bound
F (Q), i.e. F(G(Q)) ≥ F(Q) and the conclusion holds as a direct consequence of
Theorem 1.

This simple result indicates a viable solution to embed spatial constraints in
variational learning. Assume that after a VBE step [Eq. (5)], the new distribution
Q(X) has been obtained.

Proposition 1. Let Gt be an irreversible transformation parametrized by t, with
t ≥ 0, acting as a translation in the scale space. Then Gt is instantiated by either
isotropic or anisotropic diffusion and the transformation Gt : Q(X) → Gt(Q(X))
decreases the Gibbs’ free energy FG along the variational optimization.

Proof. We first compute S(Q(X)) = −EQ(X) [log Q(X)]. From Eq. (8), log Q(X) =∑N
n=1

∑K
k=1 xnk log qnk. Since E [xnk] = qnk (see Ref. 2 for detailed discussion),

then the following holds:

S(Q(X)) = −
K∑

k=1

N∑
n=1

qnk log qnk =
K∑

k=1

Sk(Q(X)), (18)

where Sk(Q(X)) =
∑N

n=1 qnk log qnk is a spatial entropy on responsibilities (segmen-
tation labels). Since the total entropy can be written as the sum of the entropies
Sk, each related to a label, the treatment can be restricted to the action of Gt on a
single probability qnk. Transformation Gt is such that, as t grows, probabilities qnk

are shifted toward increasingly coarse scales of resolution. To make the argument
more precise assume the domain on which qnk is defined to be a continuum D, in
other words replace the discrete variable n with r ∈ D; furthermore, Gt generates
a family of functions qk, and each element of the family will depend also on t, so
that, in conclusion qk is defined on the product space D × T , qk : (r, t)→ qk(r, t).
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The action of Gt on qk is determined by its differential operator ∂
∂t : to make

Gt a transformation from fine to coarse scales of resolution it is enough to set ∂
∂t

equal to a diffusion operator so that ∂
∂t = div(g(r)∇), where g is a function that

specifies the type of diffusion process under consideration. Then we obtain a system
of partial differential equations, one for each k,

∂qk(r, t)
∂t

= ∇ · (g(r)∇qk(r, t)), (19)

where, by virtue of latent variable factorization, each equation is independent of
the others.

If g is a constant, Eq. (19) is the usual isotropic diffusion equation, ∂qk(r,t)
∂t =

g ·∇2qk(r, t)), and g is just the diffusion coefficient, whereas anisotropic diffusion is
obtained by requiring g(·) to be a monotonically decreasing function of ‖∇qk(r, t)‖,
the norm of the gradient of q.

Isotropic and anisotropic diffusion increase spatial entropy4,8 and it has been
shown20 that, in both cases, the functional −Sk =

∑N
n=1 qnk log qnk is a Lyapunov

functional, decreasing under the transformation for t → ∞. In conclusion then,
for each component k, Eq. (19) increases the kth entropy Sk, thus giving rise to a
growth of the total entropy S(GtQ(X)) =

∑K
k=1 Sk(GtQ(X)) as t increases. There-

fore, condition specified by Eq. (16) is satisfied, and lower bound optimization is
achieved, see Lemma 1 and Theorem 1.

It is worth noting that isotropic diffusion is sufficient to guarantee a spatial
conditioning of labels pertaining neighboring pixels3 but does not allow selection
of the optimal label in that the solution of [Eq. (19)] would be qnk = constant for
all k, meaning that all pixel have the same probability with assigned label k.

Note that neighboring pixels, belonging to the same region, will have the same
probability assigned a given label k and that labels at boundaries between regions
should be characterized by an abrupt change of probability values. Thus, each qk

should be a piecewise constant function across the image and this result can be
achieved20 by a system of k anisotropic diffusion equations. Because of the form of
g, small labeling differences of qk among pixels close to each other are smoothed
out, since diffusion is allowed, whereas large variations are preserved.

Summing up, when Q(X) has been modified to account for spatial constraints
through a diffusion step (VBD step), it can be used in the VBM step to maximize the
negative free energy F(Q) with respect to the parameters. We name this procedure
the Variational Bayes Diffused EM (VBDEM).

4. The Learning and Segmentation Algorithm

Standard VB learning of the FGM model2,17 amounts to an iterative update
of hidden variables and parameters distributions [Eqs. (8)–(10)]. This entails
a solution2,17 in which the computation of the approximating posteriors qnk
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(VBE step)

qnk = e(−D
2 log 2π)π̃kΛ̃1/2

k e(− 1
2 νk(yn−mk)T W−1

k (yn−mk))e
(− D

2βk
) (20)

and that of hyperparameters (VBM step), obtained by adding data counts to prior
counts,

αk = α0 + Nk, βk = β0 + Nk, mk =
β0m0 + Nkµk

βk
,

Wk = NkΣk +
Nkβ0

βk
(µk −m0)(µk −m0)T + W0, νk = ν0 + Nk,

(21)

is repeated until convergence.2,17

To compute the hyperparameter update, the following statistics of the observed
data with respect to the qnk need to be calculated2,17:

πk =
1
N

N∑
n=1

qnk, Nk = Nπk, (22)

µk =
1

Nk

N∑
n=1

qnkyn, Σk =
1

Nk

N∑
n=1

qnk(yn − µk)(yn − µk)T . (23)

Spatial constraints on the distribution of segmentation labels Q(X) are applied
through the discretized version of diffusion equation (19):

qnk(τ + 1) = qnk(τ) + λ(∇ · (g(‖∇qnk‖)∇qnk(τ))). (24)

At convergence, segmentation is obtained by setting yn = µk∗ where k∗ =
argmaxk qnk � arg maxk P (k|yn, µk, Λ−1

k ).
The VBDEM procedure is summarized in Algorithm 1. The initialization of

the conjugate prior parameters α0, W0, ν0, β0, m0 is performed similarly to Ref. 17,
while the negative free energy F is straightforwardly computed via closed-form
solution.2,17

The computational complexity of a single iteration of the VBDEM algorithm
in the inference/learning stage is determined by the order of complexity of the
VBE and VBM steps plus the order of complexity of the VBD step. Recalling
that K, D, N denote the number of Gaussian components, the pixel dimension
(for color images D = 3) and the number of pixels, respectively, the VBE and
VBM steps have the same order of complexity of the standard EM algorithm,
namely O(KD2N). For what concerns the VBD step, the order of complexity for
diffusing on K components is in principle O(KT N); however, since we are not
committed here to achieve the fixed point solution of the equation but rather
to a filtering/regularization operation, we set T to be a constant, small number
of iterations, then O(KT N) � O(KN). Thus, the order of complexity of a sin-
gle inference and learning iteration is O(KD2N) + O(KN) = O(KD2N), and if
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Algorithm 1 Learning and Segmentation via VBDEM.
{Spatially constrained inference and learning}
Initialize prior parameters:
α0 = 0.001, W0 = 0.01DI, ν0 = D, β0 = 1, m0 = 1

N

∑
n yn;

Initialize responsibilities q
(0)
nk via k-means algorithm;

Initialize statistics N
(0)

k , Σ
(0)

k , µ
(0)
k e π

(0)
k according to Eq. 22 ;

Initialize hyperparameters α
(0)
k , W

(0)
k , ν

(0)
k , β

(0)
k , m(0)

k according to Eq. 21;
Initialize lower bound F (0); Fnew ← F (0);
t← 0;
repeat

F old ← Fnew ;
{VBE-step}
for (n = 1, ..., N) do

for (k = 1, ..., K) do
Compute the posteriors q

(t)
nk according to Eq. 20;

{VBD-step}
for (k = 1, ..., K) do

for (τ = 1, ..., T ) do
for (n = 1, ..., N) do

Diffuse responsibilities q
(t)
nk(τ + 1) via anisotropic diffusion Eq. 24;

{VBM-step}
for (k = 1, ..., K) do

Compute statistics π
(t)
k , N

(t)

k , µ
(t)
k , Σ

(t)

k according to Eq. 22;
for (k = 1, ..., K) do

Update hyperparameters β
(t)
k , m(t)

k , W
(t)
k , ν

(t)
k via Eq. 21;

Compute lower bound F (t); Fnew ← F (t);
t← t + 1;

until |Fnew − F old| < ε

{Segmentation}
for (n = 1, ..., N) do

k∗ ← argmaxk q
(t)
nk ;

yn ← µk∗ ;

convergence is reached after a number T of iterations, the overall complexity even-
tually is O(TKD2N). It is worth remarking that the marginal real time increase,
occurring in practice due to diffusion computations, can be further reduced by
adopting more sophisticated discretization schemes in place of the finite difference
scheme used in Eq. (24) (e.g. Additive Operator Splitting21). Finally, the com-
plexity of the segmentation step is O(KN), the responsibilities qnk being available
from previous steps. To give an idea of the actual execution time, for a 256× 256
color image (D = 3, N = 65536), K = 7 components, T = 10 diffusion steps, and
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convergence achieved after T = 30 iterations, the elapsed time is 63.6 s; this result
is obtained by nonoptimized Matlab code executing under the Mac OS X 10.4.11
operating system running on a 2 GHz Intel Core Duo Processor, 2GB RAM.

5. Simulation

We have experimented the method on different kinds of sports, natural and med-
ical images. Here, due to space limitations, we present one significant example for
each category, namely the Players, Landscape and Skin cancer images, shown in
Figs. 1(a), 2(a) and 4(a), respectively. The Players image is a complex one due to
the variety of colors and shape details present in the original scene; the Landscape
provides a difficult example of a set of regions subtly distinguished by color shading.
Finally, the Skin cancer image is part of a set of images for which the ground-truth
segmentation is available. For each image we compare results obtained by using the
EM, VBEM and VBDEM algorithms.

The input to the algorithms is an RGB image which is converted to the YCrCb
color space. Initialization of the VBEM algorithm is the same as the initialization
of VBDEM previously described. The approximate posteriors qnk are initialized by
using few iterations (5) of the k-means algorithm2; the same number of iterations
are used to initialize the EM algorithm. Convergence condition |F new − F old| < ε,
is controlled by setting ε = 10−4.

For what concerns the VBD step, the conductance function g can have a quite
general form, but it must be such that label boundaries are preserved, and numerical
stability guaranteed. Here we set g(∇qnk) = |∇qnk|−9/5, λ = 0.01 and a number of
T = 10 iterations is used. The functions qnk(τ) are renormalized after each iteration
so that their sum is one.

The optimal number K of classes — the model selection problem that for
the FGMs corresponds to the selection of the correct number of Gaussians —
is determined for each image via cross-validation based on Gibbs’ free energy
minimization.17 This procedure is motivated by the fact that the Bayesian Informa-
tion Criterion for model selection is recovered from the negative free energy.1,2,14 In
Fig. 3, a demonstration of such technique over 10 classes, for the Landscape image,
is reported; here the best choice is K = 6. By applying the same criterion, K = 6
and K = 5 were selected for the Players and Skin cancer images, respectively.

(a) (b) (c) (d)

Fig. 1. Segmentation results. (a) The original image of the Players; (b) EM; (c) VBEM;
(d) VBDEM.
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Experimental results obtained with the different methods for these images are
reported in Figs. 1(a) and 2(a).

First, and most importantly, it should be noted that, by using the vector µk as
the color to represent the region of class k, the segmentation obtained with VBDEM
is chromatically more coherent with the original image, as it can be seen by com-
paring the results obtained by standard EM [Figs. 1(b) and 2(b)], VBEM method
[Figs. 1(c) and 2(c)], and VBDEM method [Figs. 1(d) and 2(d)]. In fact, it is read-
ily apparent the higher perceptual significance and the reliability of the VBDEM
results, [Figs. 1(d) and 2(d)], as regards region classification and spatial uniformity.

In particular, results obtained for the Players image illustrate the VBDEM
performance with respect to chromatic faithfulness and detail preservation. Further,
the results achieved on Landscape show that though the VBEM method provides a
better performance than classic EM (which merges some regions of different colors),
nevertheless it cannot take advantage of spatial constraint propagation controlled
in VBDEM by anisotropic diffusion on responsibilities (compare mountain region
completion, Figs. 2(c) and 2(d)).

It is worth remarking at this point that the evaluation of segmentation algo-
rithms thus far has been subjective. This is due to image segmentation being an
ill-defined problem (see discussion in Sec. 1); except for specific domains where
one can resort to domain expert’s knowledge, there is no unique ground-truth seg-
mentation of an image against which the output of an algorithm may be com-
pared. In principle, in the absence of a unique ground-truth segmentation, the

(a) (b) (c) (d)

Fig. 2. Segmentation results. (a) The original image of the Landscape; (b) EM; (c) VBEM;
(d) VBDEM.

Fig. 3. Model selection for the Landscape image. The x-axis represents the number of classes,
the y-axis represents the Gibbs’ free energy function on a log-scale. In this case, the minimum is
achieved for K = 6.
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comparison should be made against the set of all possible perceptually consis-
tent interpretations of an image; some advance in this direction has been recently
reported.19 However, this endeavor is far from trivial and certainly beyond the scope
of this paper, mainly focused on theoretical aspects of segmentation in a Bayesian
framework.

Nevertheless, it is possible in our case to give a quantitative insight of the
performance of the proposed method by exploiting the Skin cancer image. The
ground-truth is shown in Fig. 4(b), where the two borders of interest (the cyan
outer contour and the yellow inner contour) identified by a dermatologist have
been overlapped on the original image.

According to Huang and Dom,12 segmentation performance can be evaluated in
terms of the accuracy of the extracted region boundaries. To this end, for each point
r of a computed boundary, the minimum Euclidean distance from r to all the points
in the corresponding ground-truth boundary is calculated. This provides a distance
distribution from which a number of statistics can be derived, such as its mean and
standard deviation; a perfect match between two borders should yield zero mean
and zero standard deviation. We apply this procedure for both the outer and the
inner borders marked in the ground-truth [Fig. 4(b)], and the corresponding borders
in the segmented images [Figs. 4(c)–4(e)]. Results are reported in Table 1. The
median of the distance distribution is also given since a large standard deviation
may reveal the existence of outliers, in which case the median provides a better
indication in terms of the accuracy of the segmentation.

The Skin cancer image belongs to a data set of 20 dermatologic images for which
the ground-truth traced by an expert is available; the results shown in the table
are representative of those obtained on the whole data set.

(a) (b) (c) (d) (e)

Fig. 4. Segmentation results. (a) The Skin cancer original image; (b) the ground-truth traced
by a specialist; (c) EM; (d) VBEM; (e) VBDEM.

Table 1. Boundary-based evaluation of the three segmentation algorithms.

Mean1 Std1 Median1 Mean2 Std2 Median2

EM 53.55 37.27 50.07 60.43 36.64 66.94
VBEM 15.26 5.77 15.03 2.36 1.84 2
VBDEM 5.78 4.30 5 1.77 1.31 1.41

Note: Mean1, Std1, Median1 refer to the outer border distance distribution;
Mean2, Std2, Median2 refer to the inner border.
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(a) (b)

Fig. 5. A clustered representation of pixel label assignment obtained via (a) VBEM and (b)
VBDEM, respectively. Each color (red, green, blue, magenta and black) denotes one among the
five segmentation classes.

It is worth noting that by inspecting Fig. 4(d), we find that apparently the
number of classes shown by the VBEM result seems to be equal to 4, in disagreement
with the optimal number (K = 5) selected through cross-validation; in contrast,
VBDEM segmentation [Fig. 4(e)] agrees with the exact number. This “missing
label” phenomenon can be explained by representing the five segmentation labels
as colors in a 3D (YCrCb) color space. To this end, each pixel is associated to a
point in this space according to its label k (Fig. 5), and thus colored with the color
identifying the kth class. As it can be seen from Fig. 5(a), the actual number of
classes for VBEM is K = 5, but the class represented by “red” is assigned to few
pixels, whereas many more are assigned to the overlapping “green” class (in some
sense the “green” class wins over the “red” one). By contrast, Fig. 5(b) obtained
through VBDEM shows how the anisotropic diffusion acts on class assignments by
preserving the “red” class boundaries, thus providing a more balanced distribution
of labels with respect to VBEM.

6. Concluding Remarks

This paper contributes a novel approach to image segmentation in which a Varia-
tional Bayes technique is spatially constrained in order to overcome drawbacks due
to independent pixel labeling.16

The proposed VBDEM algorithm is somehow related to those approaches in the
classic Maximum Likelihood (ML) setting in which prior terms have been incorpo-
rated within the EM algorithm so as to maximize a log-posterior probability instead
of log-likelihood, see for instance, Ref. 11 or 23. However here, we are not working
in a ML setting, but, rather, in a full Bayesian framework where parameters are
treated as random variables and a distribution is derived for each of them; this way
we avoid the problem of overfitting and achieve a regularized solution. Meanwhile,
because of the generality of the proposed method we are not concerned with either
designing specific priors or trading off model design for integrability constraints.22

This allows the method to be adopted for a variety of fields and different kinds of
images. Promising results have been obtained for medical images, thus indicating
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a potential field of application. Nevertheless, by resorting to optimized code (a C
language implementation should decrease the actual execution time of an order of
magnitude), the algorithm is expected to be suitable for video analysis, where at
each frame parameter initialization may be provided by statistics computed from
the previous frame.

Interestingly enough, Nasios and Bors16 have considered the unconstrained
VBEM algorithm as a learning procedure for a Gaussian neural network, acting
at each pixel as a competitive process among the k different labels. In the algo-
rithm we propose here, competition is integrated with a cooperation in terms of
a diffusion step within sites on the same labeling plane; it should be noted that
both competitive and cooperative processes occur in nature for the formation of
patterns,15 thus, in some sense, recognition, to be effective, must feature both com-
petitive and cooperative elements.

Finally, the problem of model selection has been addressed here through cross-
validation via Gibbs’ free energy minimization.17 However, it should be noted that
model selection is naturally handled in the Bayesian framework,2,14 and could
be straightforwardly incorporated here along the iterations of the learning step,
following suggestions proposed by Corduneanu and Bishop.7
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