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Computational color constancy algorithms are commonly evaluated only through angular error analysis on anno-
tated datasets of static images. The widespread use of videos in consumer devices motivated us to define a richer
methodology for color constancy evaluation. To this extent, temporal and spatial stability are defined here to deter-
mine the degree of sensitivity of color constancy algorithms to variations in the scene that do not depend on the
illuminant source, such as moving subjects or a moving camera. Our evaluation methodology is applied to compare
several color constancy algorithms on stable sequences belonging to the Gray Ball and Burst Color Constancy
video datasets. The stable sequences, identified using a general-purpose procedure, are made available for public
download to encourage future research. Our investigation proves the importance of evaluating color constancy
algorithms according to multiple metrics, instead of angular error alone. For example, the popular fully convolu-
tional color constancy with confidence-weighted pooling algorithm is consistently the best performing solution
for error evaluation, but it is often surpassed in terms of stability by the traditional gray edge algorithm, and by the
more recent sensor-independent illumination estimation algorithm. © 2021 Optical Society of America

https://doi.org/10.1364/JOSAA.434860

1. INTRODUCTION

Color constancy is defined as the human ability to perceive the
chromatic appearance of a scene as relatively constant, notwith-
standing changes in illumination conditions [1]. Inspired
by this feature of the human vision system, the field of com-
putational color constancy was born and developed with the
objective to transfer the same ability to digital camera sensors.
Computational color constancy, from now on referred to as
simply “color constancy,” is often modeled with two explicit
steps: illuminant estimation and illuminant correction. The
correction step in particular is often carried out through a von
Kries-like transform [2], using a diagonal matrix to apply inde-
pendent correction to the response of cone photoreceptors.
Although known to be suboptimal and unable to fully handle
metameric effects [3], the von Kries transform is commonly
adopted due to its simplicity. Color constancy methods are usu-
ally compared to angular error metrics such as the recovery error
[4] and the reproduction error [5]. The comparison of color
constancy methods based on angular errors is sometimes aided
by statistical tools such as the Wilcoxon test [6], or by graphical
tools such as the Angle-Retaining Chromaticity (ARC) diagram
[7]. For many years, angular error evaluation has been extremely
useful in assessing color constancy methods and guiding the
research. However, it neglects other important aspects of the
characterization of color constancy algorithms, related to their
stability in the video domain.

This property has become extremely valuable since con-
sumer devices are increasingly used for video acquisition and
reproduction [8]: In this context, the discomfort of poor illu-
minant correction is potentially amplified if such correction
also changes over time without justification, thus introducing
unpleasant flickering artifacts. To this extent, existing works
have tackled the problem of temporally aware color constancy
[9,10], exploiting the information coming from multiple frames
to produce a more robust illuminant estimation. Nonetheless,
traditional single-frame methods can also be applied to video
sequences, with or without the aid of temporal consistency post-
processing [11]. As such, the main goal of this investigation is
to study the direct applicability of single-frame color constancy
algorithms in the video domain. We have identified two possible
scenarios of interest: moving subjects in front of the camera and
a panning/zooming camera, as depicted in Fig. 1. In these cases,
if the scene illuminant remains constant, the expected behavior
of a color constancy algorithm is that the output is also constant,
ignoring the intrinsic chromaticity of newly framed elements.

The two scenarios of interest can be analyzed by resorting to
appropriately annotated datasets for video color constancy, the
best to date being the Gray Ball dataset [12], and the very recent
Burst Color Constancy (BCC) dataset [10]. Both scenarios are
depicted in such datasets, and often co-occur in the same video
sequence. We will thus refer to the general term temporal stabil-
ity as the capability of a given algorithm to maintain a consistent
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Fig. 1. Changing scene content under constant illuminant
conditions: moving subjects in front of the camera (top) and pan-
ning/zooming camera (bottom). A color constancy algorithm that
is temporally and spatially stable should provide a self-consistent
response in these scenarios.

output response in a situation where the illuminant remains
relatively constant, while the scene content changes over time.
In addition, the specific panning/zooming camera scenario can
be synthetically recreated by introducing cropping operations at
various scales in individual frames of a color constancy dataset.
This is similar to a preprocessing technique proposed by Qian
et al. [9] to simulate a camera movement for robust BCC. This
type of analysis on synthetic data allows us to provide more
precise information about the specific case of a moving camera
with stationary content. Given the nature of the experiment, we
will refer to spatial stability as the capability of an algorithm to
maintain a consistent illuminant estimation, assuming a unique
illumination source, when looking at different portions of the
scene.

For a real-life application, the assumption of unique illumina-
tion source is seldom completely verified because, for example,
of the presence of multiple lights at different correlated color
temperatures, mutual surface inter-reflections, or coexistence of
sun/shadow areas. Nonetheless, we argue that a time-consistent
correction of the image color can be a desirable property, as
long as moderate camera movements are in action. In other
words, spatial stability should not be expected, nor enforced,
for drastic changes in image framing. For this reason, we apply
our synthetic panning and zooming operations at various scales,
we show the trending stability at all levels, and eventually focus
our conclusions at the highest scale, which corresponds to the
most moderate camera movement. Many algorithms for single-
frame color constancy internally perform a spatially varying
illuminant estimation, which is eventually mapped back to a
global illuminant by consensus [13], or clustered to perform
multi-illuminant estimation [14]. Considerable effort also has
been made by the scientific community to provide spatially
varying annotation of illuminant information, resorting to
moving color targets such as with the DRONE dataset [15] or
to computer-generated imagery such as with the MIST dataset
[16].

In this paper we first analyze the aforementioned temporal
and spatial stability properties of existing suitable datasets for
computational color constancy. We then present a methodology
to analyze the stability of color constancy algorithms themselves.
Our goal is to define a common procedure for method compari-
son, and to assess the degree to which such methods are sensitive

to changes in the scene that do not depend on the illuminant
source. The information emerging from our analysis identifies
methods that are intrinsically stable, thus holding the greatest
potential for expansion to video color constancy without heavily
relying on temporal consistency post-processing techniques.

2. DATASETS SELECTION AND
PREPROCESSING

To perform the stability analysis of color constancy algorithms
free of any bias from the underlying data, it is necessary to
exploit datasets that are, respectively, temporally and spatially
stable. In this section, we verify whether this condition is met
on existing datasets and, when it is not, we describe the required
preprocessing steps. The same procedure could be potentially
applied to any future datasets for video color constancy that is
properly annotated.

A. Gray Ball Dataset

Gray Ball [12] is one of the few datasets potentially suitable for
temporal color constancy. It contains 11,346 images divided
into 15 sequences, with many shots acquired at close intervals
to one from another. Many of the images depict people, and
include both indoor and outdoor scenarios, the latter taken in
two different locations. The dataset was collected using a Sony
VX-2000 digital video camera, and every shot includes the
eponymous gray ball color target for ground truth annotation
in the bottom-right corner. For illuminant estimation, the
images have been masked to exclude the color target starting
from pixel row 135 and column 226. The 360× 240 px images
are provided in nonlinear 8-bit RGB format. Since several color
constancy methods rely on the assumption of linear sensors, the
following pipeline has been applied:

1. Linearize the image (gamma correction withγ = 2.2).
2. Estimate the illuminant.
3. Delinearize the estimated illuminant (γ = 1

2.2 ).

It should be noted that the precise value for gamma correction
is derived by common usages of the Gray Ball dataset [17], but
it is not guaranteed to match the actual device characterization.
This linearization strategy, despite being an approximation for
color constancy outside the camera pipeline [18], still allows the
processing of images that are closer to the RAW sensor data with
respect to the original sRGB, while at the same time performing
error analysis between the output of unaltered existing methods
and the official dataset ground truth.

The Gray Ball dataset does not respect the temporal stability
characteristics needed for this work; therefore, it requires a spe-
cific preprocessing to remove temporally unstable sequences. In
this paper, we refer to a temporally stable sequence as a sequence
that (1) does not contain video cuts, (2) does not involve abrupt
illuminant changes, and (3) does not span a wide set of illu-
minants (even if gradually changing). We address these three
conditions in three different ways.

The video cuts have been resolved by human selection, mean-
ing that the 15 original sequences of the Gray Ball dataset have
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Fig. 2. Visualization of the number of frames for each sequence of
the Gray Ball dataset before the manual division for video cuts (left)
and after (right).

been manually divided into 337 smaller sequences, contain-
ing only smooth transitions of the scene content. The final
distribution of the resulting sequence lengths is shown in Fig. 2.

The identification of abrupt illuminant changes has been
achieved by quantifying the largest change in the expected
illuminant E = (r , g , b) between consecutive frames. More
precisely, for each pair of consecutive frames in a sequence S, we
calculated the recovery error between their ground truth illumi-
nants and then we selected the maximum of such errors. From
now on we will refer to this metric as the maximum illuminant
change (MIC ):

MIC(S)=max(errrec(E Si , E Si+1)), I = 1 . . . NS − 1,
(1)

where NS is the number of frames of sequence S.
The recovery error [4] as used in Eq. (1), is computed between

two generic illuminants U and V as

errrec(U , V )= arccos

(
U · V
|U ||V |

)
, (2)

where “·” indicates the dot product, and “||” the Euclidean
norm.

To identify sequences spanning a large range of illuminants,
we instead relied on a metric for scatteredness. Specifically, we
first converted the ground truth illuminants into ARC [7],

a bidimensional representation where Euclidean distances
correspond to angular distances in the original RGB space.
Then, we computed the standard distance [19] of the resulting
points, which is a bidimensional generalization of the standard
deviation, defined as

ST D(S)=

√√√√ NS∑
i=1

(xSi − xS)
2

NS
+

NS∑
i=1

(y Si − y S)
2

NS
, (3)

where (xSi , y Si ) are the ARC coordinates of the i -th illuminant
of sequence S, and (xS , y S) indicates the average of each coordi-
nate for the sequence.

The information captured by these measures is visualized
in Fig. 3: For each sequence, we show the illuminant change
between consecutive frames (whose maximum corresponds
to MIC ), as well as the ground truth illuminants distribution
in ARC (whose scatteredness corresponds to STD). The two
metrics, MIC and STD, were then combined to provide a single
value that describes the instability of each sequence: We first
computed the standard score of both metrics by normalizing
them for the corresponding cross-sequence average and stand-
ard deviation, and we subsequently computed an equal-weight
average. The resulting distribution was finally split in half using
the median value as a threshold to divide the dataset into 168
stable sequences and 169 unstable sequences. In the following,
we will refer to the selection of temporally stable sequences as
the filtered Gray Ball dataset. Backtracking this division to the
initial measures, it roughly corresponds to applying a threshold
over MIC at 1.5◦ and STD at 0.8◦, which appears adequate after
a visual inspection of the dataset. However, due to the arbitrary
nature of any specific threshold, we make available for public
download our entire dataset division into subsequences, along
with the corresponding values of stability-related measures to
allow further developments by other researchers [20].

With respect to spatial stability, the Gray Ball dataset has been
used for many years for global illuminant estimation analysis,
under the implicit assumption of spatial stability. This assump-
tion is, however, generally unsubstantiated. It is possible, for
example, to find outdoor scenarios where part of the scene is

Fig. 3. Temporal stability analysis of two sequences from the Gray Ball dataset: a stable sequence (MIC = 0.189, ST D= 0.115), top; and
an unstable sequence (MIC = 8.812, ST D= 14.912), bottom. For each sequence, we show a sample of the frames (left), the illuminant change
between consecutive frames (center), and the illuminants distribution in ARC diagram (right).
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illuminated by direct sunlight and part of it is in shadow, illu-
minated only by the blue of the sky. This configuration breaks
the assumption of constant illumination across the image and,
furthermore, it cannot be automatically filtered. Despite the fact
that the color target (the gray ball) can capture incoming light
from different directions, it only describes the illumination con-
dition in the foreground of the picture, and it does not provide
any way to associate the different illuminant chromaticities to
specific image regions. Notwithstanding these considerations,
for the sake of completeness and for consistency with the exist-
ing corpus of color research, we also will perform spatial stability
analysis on this dataset as well.

B. BCC Dataset

The BCC dataset, sometimes referred to as the Temporal
Benchmark dataset, was recently presented by Qian et al. [10],
and it was specifically collected to meet the requirements of the
temporal color constancy problem. It consists of 600 sequences
of varying length (between 3 and 17 frames), divided in 400
sequences for the training set and 200 for test set, the latter used
in our analysis. Consistent with the Gray Ball dataset, BCC cov-
ers indoor and outdoor scenes with varying weather and daylight
conditions. The images were shot with the use of a Huawei Mate
20 Pro mobile phone, and stored in a proprietary 16-bit RAW
format. Reprocessed 8-bit PNG images at 3648× 2736 px
resolution were also made available by the dataset authors, and
these images were specifically used in our work.

With respect to the temporal color constancy problem, the
sequences collected for the BCC dataset are assumed implicitly
stable by design. This allowed the authors to avoid capturing
the images with a color calibration target installed in the scene,
and thus to avoid unintentionally conveying information to
learning-based methods. Instead, the SpyderCube calibration
target was put in the scene immediately after the sequence acqui-
sition to create an out-of-sequence reference shot that represents
the entire video sequence. For these reasons, there has been no
need, nor possibility, of a preprocessing step from our part.

Concerning the spatial stability, the BCC dataset was col-
lected and presented without any explicit statement in terms
of single or multiple illuminant sources. A visual inspection
of the dataset images confirmed the absence of images visibly
illuminated by multiple sources of light, with the exception of
few daylight/shadow instances, as also observed in the Gray Ball
dataset.

3. ANALYZED COLOR CONSTANCY METHODS

We selected a variety of color constancy algorithms for our
stability analysis, including traditional solutions based on hand-
crafted features, as well as more recent approaches based on
deep learning. All methods are sensor-independent and, when
necessary, trained on different datasets than the ones used for
our analysis to ensure the absence of any bias and to provide
fair results. This particular set of methods has been selected as a
case study; however, the same procedure can be applied to any
existing method for color constancy.

Edge-based color constancy (EB) [21] is a popular framework
introduced in 2007 by van de Weijer et al. as a generalization of

multiple algorithms based on low-level image statistics. The free
parameters of these methods (Minkowski norm p and standard
deviationσ ) have been selected as reported in [22]:

• Gray World (GW): p = 1,σ = 0.
• White Point (WP): p =∞,σ = 0.
• Shades of Gray (SoG): p = 4,σ = 0.
• General Gray World (GGW): p = 9,σ = 9.
• 1st order Gray Edge (GE1): p = 1,σ = 6.
• 2nd order Gray Edge (GE2): p = 1,σ = 1.

The standard deviation parameter σ describes the Gaussian
filter applied by the underlying algorithms, and as such its
impact on the final performance is tightly related to the size
of the input image. We downscaled the images from the
BCC dataset to have the maximum side be 360 pixels long,
thus reaching the same dimensions as the images from the
Gray Ball dataset. Preliminary experiments also showed that
downscaling the BCC dataset resulted, on average, in better
performance with regard to upscaling the Gray Ball dataset.
This pre-processing has been applied only for edge-based color
constancy, since other algorithms have different requirements or
involve an internal rescaling of the input image.

More recent color constancy algorithms have also been
considered. Cheng et al. [23] introduced a color constancy algo-
rithm based on principal component analysis (PCA), observing
that the mere analysis of color distribution provides as much
information for illuminant estimation as a more complex spa-
tial analysis. Their solution selects a predefined percentage of
dark and bright pixels using a projection distance in the color
distribution. In our experiments, the percentage parameter has
been set to 3.5% following the best-performing configuration
reported by the authors.

The grayness index (GI) [14] is a learning-free metric devel-
oped by Qian et al. to identify neutral surfaces (gray pixels) in an
input image following the dichromatic reflection model [24].
This allows the estimation of single illuminant as well as multi-
ple illuminant information. The default pretuned parameters
from the official implementation have been used in our work.

Quasi-unsupervised color constancy (QU) [25] was devel-
oped by Bianco et al. to detect achromatic pixels in color images,
after conversion to gray scale. Their solution is based on a con-
volutional neural network that can be trained without color
constancy annotation, relying instead on the weak assumption
that training images have been approximately balanced. The
model used in this analysis was trained on images from the
ILSVRC2012 dataset of the ImageNet initiative [26].

Fully convolutional color constancy with confidence-
weighted pooling (FC4) [27] by Hu et al. implements a neural
network architecture that assigns confidence weights to various
patches of an input image, based on the level of information and
reliability that such patches are estimated to carry for the task of
color constancy. The official implementation is supplied with
pretrained models on each fold of the ColorChecker dataset
[28]. In our analysis, we used the SqueezeNet-based model [29]
pretrained on “fold 2 and 0.”

In sensor-independent illumination estimation (SIIE) [30]
authors Afifi et al. developed a learnable sensor-independent
pseudo-RAW space to be used to “canonicalize” the RGB
values of any given camera, under the explicit assumption of
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input linear RAW–RGB images. Due to the nature of the Gray
Ball dataset, where images are not in RAW format but already
processed by an undisclosed camera pipeline, this method is
expected to underperform, despite our synthetic linearization.
For our analysis, we used the Matlab 2018b model pretrained on
the NUS [23] and Cube+ [31] datasets.

4. ANALYSIS OF TEMPORAL STABILITY

In this section, we assess the temporal stability of color con-
stancy algorithms, under the assumption of temporally stable
sequences, such as those from the filtered Gray Ball dataset and
the BCC dataset.

We applied two measures to describe the temporal stability
of a color constancy algorithm: maximum illuminant change
MIC and standard distance ST D. These are the same criteria
defined in Eqs. (1) and (3) of Section 2 to automatically identify
stable sequences in the Gray Ball dataset; however, in this case
the evaluation has been performed on estimated illuminants
as opposed to ground truth illuminants. Each method was
assigned two temporal stability scores, by averaging each of the
two aforementioned measures across the sequences, for any
given dataset.

Temporal stability alone is hardly effective to evaluate the
quality of a color constancy algorithm. For example, a “do noth-
ing” algorithm would score the best value for temporal stability,
while not being able to produce an effective illuminant estima-
tion. For this reason, all algorithms have also been evaluated
in terms of traditional single-frame error measures, such as the
recovery and reproduction error. The recovery error is computed
according to Eq. (2), while reproduction error is computed as

errrep(U , V )= arccos

(
U
V

|
U
V |
√

3

)
, (4)

where U is the ground truth illuminant and V the estimated
illuminant. For the sake of consistency with the stability mea-
sures, in this analysis, we averaged the error values for each frame
in a sequence, and subsequently averaged the cross-sequence
results. Our stability/error evaluation is conceptually equivalent
to assessing a solution in terms of precision and accuracy. The
results related to the filtered Gray Ball dataset are presented
in Table 1, in terms of maximum illuminant change (MIC ),
standard distance (STD), recovery error (errrec), and reproduc-
tion error (errrep). The two temporal stability metrics are also
visualized in Fig. 4 in conjunction with the recovery error to
better visualize the performance of the analyzed methods.

From the experiment on the Gray Ball dataset, we first observe
that the methods perform very similarly for both the standard
distance and maximum illuminant change metrics. Generally
speaking then, stability and accuracy are also partially corre-
lated, as highlighted in Fig. 4. This behavior is a consequence
of our focus on temporally stable datasets: With such data, a
method can be globally accurate only if it is also temporally
stable. This is specifically manifest in the absence of points in the
top-left corner of the plots. Despite this correlation, several rank
inversions are present between stability and error measures. For
example, while FC4 is the most accurate method, it is surpassed
in MIC -based stability by several methods. Of these, GE2 and

Table 1. Temporal Stability and Error Evaluation of
Color Constancy Algorithms on the Filtered Gray Ball
Dataset

a

Stability Measures Error Measures

Method M I C ↓ ST D ↓ errrec ↓ errrep ↓

GW [21] 3.38 2.76 6.79 7.06
WP [21] 2.81 1.55 5.76 6.01
SoG [21] 3.14 2.57 5.88 6.06
GGW [21] 3.82 3.01 6.31 6.52
GE1 [21] 2.78 2.35 5.66 5.89
GE2 [21] 1.80 1.39 5.41 5.74
PCA [23] 3.66 2.74 5.75 6.04
GI [14] 7.81 4.95 7.65 8.03
QU [25] 2.89 2.15 5.40 5.63
FC4 [27] 3.35 1.97 4.63 4.97
SIIE [30] 2.32 2.30 6.31 6.65

aAll values are expressed in degrees; the lower the better. In Tables 1–4, the
best values are displayed in bold.

Fig. 4. Visualization of the temporal stability and recovery error
of different methods on the Gray Ball dataset. Temporal stability is
expressed as either maximum illuminant change (left) or as standard
distance (right). The Pareto front is visualized. For all measures, the
lower the better.

WP also appear to be the most stable in terms of the STD metric.
Conversely, GI, the worst method on this dataset, performs
consistently the worst on all the chosen metrics.

The same analysis for temporal stability has been performed
on the BCC dataset, as illustrated in Table 2 and Fig. 5. Similar
observations from the Gray Ball also can be extended to this
dataset, in terms of the correlation between the different met-
rics. The SIIE method outperformed FC4 on the Gray Ball
dataset only in terms of MIC , while it performs consistently
better for both temporal stability metrics on the BCC dataset. In
this case, the single worst-performing method according to all
metrics is the very simple white point (WP) algorithm.

The different conclusions that can be derived from analyzing
the two datasets can be traced back to the type of images and
the type of annotations. We recall that the Gray Ball is not dis-
tributed in linear RAW format, which limits the accuracy of the
color constancy algorithms. We note the type of annotations
because the BCC only has sequence-level ground truth informa-
tion, which is in line with the assumption of temporal stability,
but reduces the precision of the analysis.

5. ANALYSIS OF SPATIAL STABILITY

In this section, we assess the spatial stability of color constancy
algorithms, under the implicit assumption of spatially stable
datasets. We divided each image into five windows on a set of
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Table 2. Temporal Stability and Error Evaluation of
Color Constancy Algorithms on the BCC Dataset

a

Stability Measures Error Measures

Method M I C ↓ ST D ↓ errrec ↓ errrep ↓

GW [21] 2.70 3.20 5.32 7.08
WP [21] 6.31 5.07 6.98 8.26
SoG [21] 4.10 3.49 5.31 6.95
GGW [21] 4.37 4.01 5.92 7.61
GE1 [21] 3.58 3.40 5.52 7.30
GE2 [21] 3.40 3.01 4.79 6.10
PCA [23] 4.01 3.33 5.16 7.12
GI [14] 4.11 3.50 4.63 6.30
QU [25] 3.26 2.95 4.28 5.87
FC4 [27] 3.08 2.64 4.21 5.75
SIIE [30] 2.54 2.52 4.49 6.06

aAll values are expressed in degrees; the lower the better.

Fig. 5. Visualization of the temporal stability and recovery error of
different methods on the BCC dataset. Temporal stability is expressed
as either maximum illuminant change (left) or as standard distance
(right). The Pareto front is visualized. For all measures, the lower the
better.

fixed locations that cover the entire image: one for each angle
and one in the center. A larger window size implies a higher over-
lap among windows, which corresponds to moderate camera
movements in our synthetic setup. In such a scenario, we argue
that having a consistent output in the color correction also is a
desirable property for real-life applications because the change
in overall incident illumination on such a scale can be expected
to be limited. Given the arbitrary nature of fixing a window size,
we present information at various scales from 50% to 90% of the
original image sides, with a step of 10%. We will refer to the final
scale (90%) to derive any conclusions about spatial stability.

All the analyzed color constancy methods have been applied
to each window of each image. As for the temporal stability
problem, we are interested in capturing both the accuracy and
precision of analyzed algorithms; specifically, we resort to angu-
lar errors errrec and errrep for accuracy, and standard distance
STD for precision. The maximum illuminant change MIC
was well suited to highlight flickering phenomena in temporal
sequences, but it does not provide any meaningful information
if applied to the five windows of spatial stability analysis.

Table 3 and Fig. 6 report the aforementioned metrics on the
Gray Ball dataset, with a detail per window size in the figure.
Since larger windows are necessarily more overlapped, they are
expected to lead to better stability, so any comparison should
be made across methods and not across window sizes. This
expectation is verified, as visible in the left side of Fig. 6, where
all curves exhibit a monotonic decreasing behavior. The plotted
information at a 90% window side is also presented numerically

Table 3. Spatial Stability Evaluation of Color
Constancy Algorithms on the Gray Ball Dataset at 90%
Window Side

a

Stability
Measures Error Measures

Method ST D ↓ errrec ↓ errrep ↓

GW [21] 0.49 7.09 7.62
WP [21] 0.34 6.83 7.08
SoG [21] 0.44 6.17 6.49
GGW [21] 0.60 6.82 7.19
GE1 [21] 0.45 6.05 6.44
GE2 [21] 0.28 5.74 6.16
PCA [23] 0.49 6.40 6.85
GI [14] 0.96 7.02 7.61
QU [25] 0.55 6.45 6.73
FC4 [27] 1.12 5.67 6.02
SIIE [30] 0.49 7.53 7.92

aAll values are expressed in degrees, and the lower the better.

Fig. 6. Visualization of the standard distance (left) and recovery
error (right) of different methods on the Gray Ball dataset. For all
measures, the lower the better.

in Table 3. The most spatially stable algorithm on the Gray Ball
dataset is GE2, in line with the analysis on temporal stability
from Section 4. Interestingly, FC4 is the least stable algorithm,
specifically for large window sizes (90%), although it maintains
a relatively consistent stability performance for smaller window
sizes, compared to other methods. In terms of error analysis, a
general trend of improvement with larger window sizes is also
expected from the recovery error curves in Fig. 6. To this extent,
the only exception appears to be WP, which exhibits a reverse
trend: One possible explanation is that, by forcing the algorithm
to ignore parts of the image, it is more likely to produce a better
estimation from one or more windows. The behavior of FC4

is also unusual, displaying a significant improvement from the
50% window size to the 60% size, but then essentially maintains
the same error performance for the remaining window sizes.
Nonetheless, it, in general, is consistently the best performing
method with the Gray Ball dataset analysis.

Table 4 and Fig. 7 present the same spatial stability analysis on
the BCC dataset, showing an overall comparable behavior. The
expectation to observe improving performance with increasing
window sizes also is respected for this dataset, with the only
observed exception being the WP on the recovery error metric.
FC4 is the most accurate algorithm, with a significant gap from
the second-best methods: QU and SIIE. In terms of spatial sta-
bility, however, the conceptually simple GW appears to exhibit
the best performance.
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Table 4. Spatial Stability Evaluation of Color
Constancy Algorithms on the BCC Dataset at 90%
Window Side

a

Stability
Measures Error Measures

Method ST D ↓ errrec ↓ errrep ↓

GW [21] 0.24 5.65 7.46
WP [21] 0.55 6.70 7.99
SoG [21] 0.31 5.52 7.18
GGW [21] 0.40 6.07 7.77
GE1 [21] 0.38 5.88 7.72
GE2 [21] 0.29 5.03 6.38
PCA [23] 0.30 5.40 7.39
GI [14] 0.40 4.87 6.55
QU [25] 0.40 4.45 6.04
FC4 [27] 0.43 3.84 5.33
SIIE [30] 0.29 4.55 6.10

aAll values are expressed in degrees, and the lower the better.

Fig. 7. Visualization of the standard distance (left) and recovery
error (right) of different methods on the BCC dataset. For all measures,
the lower the better.

It is also interesting to observe that, on the BCC dataset, the
error statistics on learning-based algorithms can be neatly sepa-
rated from those of traditional handcrafted solutions, although
this does not apply to the Gray Ball dataset.

6. DISCUSSION OF AGGREGATED RESULTS

The analysis presented in this paper highlights the importance
of evaluating algorithms according to multiple measures, and it
can be useful in selecting the most appropriate color constancy
method depending on specific application constraints.

To this extent, Table 5 presents an aggregated view of the
information produced in the previous sections. The temporal
stability rank is based on an average of temporal stability mea-
sures MIC and ST D on both the Gray Ball and BCC datasets.
Similarly, the spatial rank is based on the average of spatial ST D
on both datasets, and the error rank is based on errrec and errrep

on the two datasets. Finally, a global rank is presented in the
last column of Table 5. This ordering is determined through
Borda’s method for rank aggregation [32,33], where individ-
ual ranks are averaged, and elements are ranked again based
on such average. This approach enables the combination of
statistics coming from different domains (temporal, spatial,
error), because it provides invariance to the different magnitude
and distribution of the underlying values. An equal-weighted
average has been used for our analysis; however, in the future
different applications might motivate the selection of different

Table 5. Aggregated Ranks of the Analyzed Color
Constancy Methods, According to Multiple Measures

a

Method
Temporal

Rank
Spatial
Rank

Error
Rank

Global
Rank

GW [21] 5 (3.01) 2 (0.37) 9 (6.76) 6
WP [21] 10 (3.94) 7 (0.44) 11 (6.95) 9
SoG [21] 7 (3.33) 2 (0.37) 4 (6.19) 3
GGW [21] 9 (3.80) 9 (0.50) 10 (6.78) 9
GE1 [21] 6 (3.03) 6 (0.42) 7 (6.31) 7
GE2 [21] 1 (2.40) 1 (0.28) 3 (5.67) 1
PCA [23] 8 (3.44) 5 (0.40) 6 (6.26) 7
GI [14] 11 (5.09) 10 (0.68) 8 (6.58) 11
QU [25] 4 (2.81) 8 (0.47) 2 (5.61) 4
FC4 [27] 3 (2.76) 11 (0.77) 1 (5.05) 5
SIIE [30] 2 (2.42) 4 (0.39) 5 (6.20) 2

aUnderlying values are expressed in degrees.

weights for the temporal, spatial, and error components. In
this particular setup, the best ranking method at a global level
appears to be GE2, coherently with the individual temporal
and spatial rank assessments. The second method is SIIE, which
strikes a good balance across all evaluation criteria. The highly
accurate and temporally stable method FC4 is penalized in the
global rank by its spatial instability, thus achieving intermediate
overall performance. Finally, the lowest-ranked method in our
experimental setup appears to be GI, which is negatively affected
by its poor error performance on the Gray Ball dataset, and by its
generally low stability.

7. CONCLUSIONS

We have introduced a new methodology to evaluate color con-
stancy algorithms by taking into account their temporal and
spatial stability. We have selected two color constancy datasets
from the state of the art: the Gray Ball and the BCC, which we
have analyzed and preprocessed for our evaluation, making the
resulting characterization available for public download. We
have conducted a case study on a wide set of color constancy
algorithms, although our evaluation methodology can be
applied to any given method. Concerning temporal stability,
which measures the output consistency throughout frames in
a video sequence, we have observed a general correlation with
traditional error metrics, although some notable exceptions
have been identified. The popular FC4 algorithm, for example,
is consistently the best performing one in terms of angular error,
but it is outperformed in terms of stability by the SIIE algorithm
on both analyzed datasets, and by several other methods on the
Gray Ball dataset. The spatial stability analysis, which evaluates
their output consistency across multiple windows of the input
image, also led to similar conclusions: FC4 has been identified as
the least stable algorithm for large window sizes on the Gray Ball
dataset, and is among the least stable ones on the BCC dataset,
despite confirming its supremacy in terms of traditional error
measures.

The analysis conducted in this paper provides the basis to
identify those single-shot color constancy algorithms that have
the greatest potential for expansion to video color constancy.
Future investigations could also account for computational
complexity: A method that is characterized by good or average
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performance in terms of traditional angular error, but which
displays scarce temporal and spatial stability, would potentially
require a post-processing step to enforce temporal consistency.
The resulting overhead at inference time could be prohibitive
for a video-oriented application if the initial method is not
inherently efficient.

Disclosures. The authors declare no conflicts of interest.

Data Availability. Data underlying the results presented in this paper are
available in [20].
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