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Abstract

Annotated datasets for automatic white balance (AWB) are used for the evalu-

ation and, when necessary, the training, of AWB methods. Relying on such

datasets requires awareness of the potential bias in their content and charac-

teristics: some methods are designed to rely on the presence of particular ele-

ments, such as human skin, while other methods learn implicit relationships

between image content and light properties from training data. The depen-

dency on these relationships makes it fundamental to understand whether the

available datasets are actually representative of common application scenarios,

such as the presence of human subjects, the diversity of composition, or the

illumination conditions. In this paper we overview the most common datasets

for Automatic White Balance, including those for single as well as multiple

illuminant estimation, providing a critical analysis on their characteristics.

Furthermore, we identify a number of existing methods for single illuminant

estimation, as a representative pool of approaches to the problem with various

levels of complexity. We investigate how the performance of these correlate to

the image content of common datasets.
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1 | INTRODUCTION

The advent of data-hungry learning approaches to solve
various computer vision tasks has highlighted their
dependency on the datasets used for training and verifi-
cation. The community of color imaging is not exempt
from this phenomenon, in particular the field of auto-
matic white balance (AWB), which is the task of

correcting a digital image as if the scene was captured
under some reference illumination conditions. AWB aims
at replicating in the digital domain a mechanism of the
human visual system called “color constancy,” which
allows people to stably perceive the chromatic property
of objects, completely or partially disregarding the source
of light.1 As such, Automatic White Balance can also be
referred to as computational color constancy.
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The most effective2,3 recent methods for AWB, often
based on machine learning and in particular on convolu-
tional neural networks, are trained and validated on spe-
cialized datasets. However, in some cases, these datasets
are characterized by limited diversity of content. In this
work, we analyze the most commonly used datasets for
AWB from different points of view: distribution of the
illuminants, image acquisition parameters, and semantic
content of the considered scenes. This analysis aims at
raising awareness about the extent to which such datasets
are representative of common application cases. A num-
ber of studies in the literature tried to describe and model
the distribution of image content in photo collections.
Hultgren et al4 provided in 2008 a data survey based on
the concept of “photospace,” where they analyzed the
distribution of about 500 user photos in terms of subject
distance to the camera and illumination levels, observing
a high concentration of short-distance subjects in rela-
tively low illumination conditions. Hudelist et al5 in 2015
conducted a user survey among photographers, to investi-
gate the most popular motivations for shooting. The
resulting top-most motives included immortalizing
human subjects in various events as well as long-range
landscapes. Ferwerda et al6 in 2018 inspected the pictures
published in the Instagram accounts of about 200 partici-
pants to their study. Although the precise distribution of
image content was not disclosed, commonly identified
categories included architecture and close-up views (body
parts, clothing items, etc.) A research led for the Honor
smartphone line7 in 2019 delved into the trends of smart-
phone use for photo acquisition by European users,
showing that the average subject in the study sample
takes about 600 selfies per year. Additional insights in
the imaged content also suggested a tendency to prefer
outdoor in-the-wild scenarios. These studies can be used
as a broad indication of what type of content is most
common in personal photo collections, and thus they can
suggest to what extent a given dataset is representative
for a real-world application, therefore focusing on the dis-
tance of depicted subjects, illumination levels, presence
of human subjects, distinction between close-up views
and indoor/outdoor environments, and general composi-
tion of landscape shots.

The fact that AWB datasets are sometimes used in
international challenges, and the growing tendency in
the scientific community to evaluate the quality of a
method only in quantitative terms, have polarized the
authors to look for marginal performance improvements,
sometimes in the order of few decimal degrees in terms
of angular error. The practical impact on human percep-
tion of such small variations, however, has been widely
studied and debated.8–13 Regarding the content of the
image, then, we know that this is increasingly used by
methods of Automatic White Balance, both in explicit

form,14,15 and implicitly within neural network learned
features.16,17 Bianco et al,15 for example, proposed a fully
automatic method to exploit the skin color extracted from
detected faces to estimate the illuminant in the scene.
While it has been shown that personal photo collections
often include human faces, we will show that this is not
true for AWB datasets. Buzzelli et al17 proposed a learn-
ing strategy that requires no explicit AWB annotations,
exploiting instead object-recognition labels, where a clas-
sifier is used as a proxy loss function for illuminant esti-
mation. This approached showed that the semantics of
the imaged content do indeed contain some information
that is beneficial to AWB. In light of these considerations,
the analysis presented in this paper can be useful not
only to design and acquire datasets more representative
of reality, but also to provide an incentive to the adoption
of more insightful evaluation protocols for AWB
methods, for example inspecting their performance on
specific classes of content.

The analysis presented in this paper extends our pre-
liminary work18 by introducing considerations about
multi-illuminant datasets, and by observing the relation-
ship between the image content and the performance of
various AWB methods. The document is organized as fol-
lows: Section 2 describes the most common datasets used
in AWB algorithms training and evaluation with focus on
the image content, and illuminants variability. Both
single-illuminant and multiple-illuminant datasets are
considered. In Section 3, we analyze the intrinsic biases
of the aforementioned datasets. In Section 4, the perfor-
mance of selected single-illuminant AWB algorithms are
analyzed with respect to the datasets content. Section 5
concludes the paper by summarizing our findings and
providing some suggestions for future directions.

2 | ANALYZED DATASETS

2.1 | Single-illuminant datasets

There are several single-illuminant datasets available in
the literature. Here we focus our attention to the most
widely used for benchmarking Automatic White Balance
algorithms. The considered datasets are: ColorChecker
by Gehler et al19; Cube++ and SimpleCube++ by
Ershov et al20; Gray Ball by Ciurea et al21; INTEL-TAU
by Laakom et al22; and NUS by Cheng et al.23 In the fol-
lowing, we briefly describe these datasets, whose main
characteristics are summarized in Table 1.

• Color Checker: Initially proposed by Gehler et al,19 the
dataset is composed of 568 images of indoor and out-
door scenes. Eighty-six images were shot with a Canon
EOS-1DS, and the remaining 482 with a Canon EOS
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5D. A copy of the “Macbeth” color chart is included in
each scene and used to annotate the image illuminant.
It is one of the most widely used dataset and, through
the years, changes to the ground truth have been pro-
posed, such as the “reprocessed” version by Shi and
Funt,24 and the more recent “recommended” version
by Hemrit et al.25 For the purpose of this work, we
used this latest version.

• Cube++ and SimpleCube++: The Cube++ dataset is
an iteration of the previous “Cube” and “Cube+.” It
contains a total 4890 images: 2361 shot using a Canon
EOS 550D camera, and 2529 with a Canon EOS 600D.
Its two neutral 18% gray faces were used to determine
the ground-truth illumination for each image, thus
potentially providing two annotations per image. A
subset of this dataset, named SimpleCube++, is com-
posed of 2234 images that have less than one degrees
difference between left and right ground truth illumi-
nation estimation. This is the version used for the ana-
lyses in this paper.

• Gray Ball: This dataset consists of 11 346 near-
consecutive images extracted from 15 video sequences
recorded with a video camera. The sequences were
taken in various indoor and outdoor scenes. Many of
the images also depict people. The dataset was col-
lected using a Sony VX-2000 digital video camera. In
the bottom-right corner of each image is present the
eponymous gray ball color target used for illuminant
annotation. The images are provided in non-linear 8bit
RGB format, which is found to hinder the performance
of many AWB algorithms.

• INTEL-TAU: This dataset is currently the largest avail-
able AWB dataset. It contains 7022 images captured
using three different camera models: Canon 5DSR,
Nikon D810, and Sony IMX135. The dataset has
mainly real scenes and some lab printouts. It is a
revised version of the INTEL-TUT image dataset26 that
was released in 2017 and later withdrawn due to pri-
vacy concerns. In the current dataset all recognizable
faces, license plates, and other privacy sensitive infor-
mation have been masked. Ground truth annotations
have been collected and associated to image batches
using a X-Rite ColorChecker Passport chart, positioned
as to reflect the main illumination source.

• NUS: The datataset is a collection of 1853 images col-
lected by the National University of Singapore (NUS).
Nine different cameras has been used to acquire the
images: Canon EOS-1Ds Mark III (259 images), Canon
EOS 600D (200 images), Fujifilm X-M1 (196 images),
Nikon D40 (117 images, not included in the more com-
mon “NUS-8” version of the dame dataset) Nikon
D5200 (200 images), Olympus E-PL6 (208 images),
Panasonic Lumix DMC-GX1 (203 images), Samsung
NX2000 (202 images), and Sony SLT-A57 (268 images).
All images include a 24-patch Macbeth Color Checker
target, and depict indoor, outdoor, close-up scenes, as
well as people.

2.2 | Multi-illuminant datasets

The aforementioned datasets for Automatic White Bal-
ance rely on the assumption of a single global illuminant
present in the scene. This simplification facilitates
research in the challenging domain of global illuminant
estimation. However, it neglects the reality that most
real-life scenes are in practice affected by multiple illumi-
nants, possibly due to different light sources at different
correlated color temperatures, mutual surface inter-
reflections, or the coexistence of sun and shadow areas.
To this extent, a growing field of research has focused on
the generation and exploitation of datasets for Automatic
White Balance in multiple-illuminant scenarios. One
intrinsic difficulty of this approach lies in accurately cap-
turing spatially-varying illuminant information for
ground truth generation. Among the available datasets,
the most notable ones are multi-illuminant dataset (MID)
by Bleier et al27; multi-illuminant multi-object (MIMO)
by Beigpour et al28; multi-illuminant synthetic test set
(MIST) by Hao et al29 and Drone by Aghaei et al.30

Table 2 summarizes the main characteristics of these
datasets.

• MID: The dataset depicts four laboratory scenes
(“chalk,” “figures,” “fruits,” “rabbit”), illuminated
alternatively by two Reuter's lamps and ambient light,
and captured with a Canon EOS 550D (Sigma 17-70
lens) for a total of 36 combinations. Different versions

TABLE 1 Analyzed datasets for single-illuminant Automatic White Balance, with their main characteristics

Name References Year Cameras Images Reference target

ColorChecker Gehler et al19 2008 2 568 24-patch Macbeth Color Checker

Cube++ Ershov et al20 2020 2 4890 Datacolor SpyderCUBE

Gray Ball Ciurea et al21 2003 1 11 346 Gray sphere

INTEL-TAU Laakom et al22 2021 3 7022 X-Rite ColorChecker Passport chart

NUS Cheng et al23 2014 9 1853 24-patch Macbeth Color Checker
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of each setup are made available, for example by vary-
ing the reflective properties of the objects and the cam-
era exposure, for a total 420 images. The ground truth
information is provided in non-uniform patches, as
shown in Figure 1, and it was collected by spray-
painting the captured scenes with grey paint. The
authors also note that this method of ground-truth
generation eliminates information about objects inter-
reflections.

• MIMO: This dataset depicts scenes in two setups: a labo-
ratory part set indoor with controlled illumination set-
tings, and a real-world part in less-constrained
environments. All the images were collected using a
Sigma SD10 camera based on a Foveon X3 sensor. The
laboratory images in particular were exposed to “red,”
“blue,” and “white” illuminants, and each scene was also
captured under only a single illuminant from each posi-
tion to generate the per-pixel ground truth. The real-
world images were exposed to either one indoor/outdoor
light and a colored projector, or to sun and no-sun
(shadow/ambient light). As such, the the ambient illumi-
nant is present on almost the entire image area, while
the direct illuminant covers only a part of each scene.

• MIST: The dataset overcomes the practical limitations
of dense ground truth collection, by relying on

synthetically generated scenes. It was designed for use
beyond white balance, therefore each rendered scene
is associated to a rich set of per-pixel information: per-
cent surface spectral reflectance, spectrum of the inci-
dent illumination, separate specular and diffuse
components of the reflected light, and depth. The total
900 images stem from three scenes rendered from
50 view points and in six different illuminant condi-
tions, using an extension of the Blender Cycles ray-
tracing renderer.

• DRONE: This dataset presents a wide variety of indoor
and outdoor real-world scenarios, for a total of 31 scenes.
The images are captured using a Nikon D700 DSLR
(Nikon 50 mm 1:1.4G lens). The peculiarity of the data-
set is that the problem of spatially varying ground truth
collection is captured by flying a drone mounted with a
uniform gray plastic ball, whose reflectance properties
are measured using the Photo Research SpectraScan
PR650 spectroradiometer. Each scene is accompanied
by an average of 100 shots with the drone in different
positions, and a composite sparse patch-wise ground
truth is generated based on these shots.

In addition to the aforementioned multi-illuminant
specific datasets, Cheng et al31 identified a subset of

TABLE 2 Multi-illuminant datasets

for Automatic White Balance, with

their main characteristics

Name References Year Images Scenes Ground truth

MID Bleier et al27 2011 420 4 Per patch

MIMO Beigpour et al28 2014 78 10 lab +20 real-world Per pixel

MIST Hao et al29 2020 900 3 � 50 view points Per pixel

DRONE Aghaei et al30 2020 31 31 Sparse locations

FIGURE 1 Image - ground truth pairs for different multi illuminant datasets. MID provides per-patch information. MIMO per pixel.

MIST per pixel, including both diffuse and specular reflection (image from the corresponding paper). DRONE sparse grayball-based

information (image from the corresponding paper). MID, multi-illuminant dataset; MIMO, multi-illuminant multi-object; MIST, multi-

illuminant synthetic test set
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66 images in the ColorChecker dataset, and 34 images
from the non-AWB RAISE dataset,32 as being illuminated
by two light sources. Furthermore, the single-illuminant
Cube++ dataset is acquired with a SpyderCUBE color
target, which allows capturing incident light information
from different sources. Some images within the dataset
reach an angular difference of 10�, which suggests the
presence of distinct light sources. However, no such
information is directly associated to specific image
regions. Images from the same camera and color target
were also used for the “Two-illuminant track” of the 2nd
International Illumination Estimation Challenge.33 Also
in this case the two illuminant sources were provided
without spatial reference, and the squared sum of two
angular reproduction errors was used for illuminant esti-
mation assessment.

3 | BIASES INTRINSIC IN AWB
DATASETS

In this section, we analyze the intrinsic biases of the
available datasets for Automatic White Balance, in terms
of distribution of the illuminants, image content, shoot-
ing parameters and illumination levels.

3.1 | Illuminants distribution

3.1.1 | Single-illuminant datasets

Most existing datasets for Automatic White Balance are
associated with ground truth information in the form of
Red, Green, and Blue (RGB) triplets, defined in the
camera-specific RAW RGB color space. This type of infor-
mation implies the application of the estimated illumi-
nant for white balance based on a von Kries-like
transform,34 using a diagonal matrix with multipliers a,
b, c to apply independent correction to, ideally, the
response of cone photoreceptors, or to the three color
channels:

a 0 0

0 b 0

0 0 c

0
B@

1
CA

R

G

B

0
B@

1
CA ð1Þ

This practice, although commonly adopted, is known
to be sub-optimal and unable to fully handle metameric
effects,35 and it suggests the need for richer ground truth
annotations in the collection of future datasets. Nonethe-
less, it is the balance technique of choice when handling
this type of information.

Based on the observation that each dataset is anno-
tated with RGB data in its own camera-specific RAW
RGB space (derived from the spectral sensitivities of the
sensors involved in the acquisition), a direct comparison
of the data distributions is not possible. Ideally, to do so
we would need to map the datasets illuminants into a
device-independent color space, taking into account said
spectral sensitivities. These, however, are often not avail-
able. An alternative option is therefore to normalize the
datasets with respect to a reference white, selected from
manual inspection of the images and formulated in the
form of a RAW RGB triplet, and applied by referring to
Equation (1). Despite the aforementioned limitations of
this approach, it allows for a certain degree of uniformity
across different data sources. More specifically, we chose
direct sunlight as the reference white, since images in
this setup could be easily identified by observing the sky
and/or cast shadows. By referring to a definition from the
Encyclopedia of Color Science and Technology,36 “Illumi-
nant D55 can be assumed to represent the SPD (Spectral
Power Distribution) for (direct) sunlight provided that
the sun is not too low in the sky.” Then, for each camera,
we handpicked an image that best-represents the previ-
ous definition. The image was selected by also consider-
ing metadata such as timestamp and approximate
location. We thus used the annotation of the selected
images as the corresponding camera reference white in
RAW-specific RGB form. The chromaticities of the

TABLE 3 Handpicked sunlight values (D55-like) for the

different cameras of popular single-illuminant AWB datasets

Dataset Camera R/G B/G

ColorChecker Canon EOS-1DS 0.5990 0.7969

Canon EOS 5D 0.5072 0.6791

SimpleCube++ Canon EOS 550D 0.4486 0.6739

Canon EOS 600D 0.4456 0.6807

Gray Ball Sony VX-2000 1.0000 1.0000

INTEL-TAU Canon 5DSR 0.4366 0.5996

Nikon D810 0.5003 0.7610

Sony IMX135 0.5650 0.6436

NUS Canon 1Ds MkIII 0.4832 0.6867

Canon 600D 0.4543 0.6716

Fujifilm XM1 0.5200 0.6015

Nikon D40 0.4551 0.6814

Nikon D5200 0.3967 0.6455

Olympus EPL6 0.5047 0.5592

Panasonic GX1 0.4223 0.6630

Samsung NX2000 0.3981 0.6382

Sony A57 0.3578 0.6651
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reference white for each camera are documented in
Table 3 in a normalized form such that the green channel
G is equal to 1. Among the considered datasets, only
INTEL-TAU provides a colorimetric characterization of
the employed cameras. This can be exploited to accu-
rately compute the corresponding reference white using
the D55 spectrum from the Light Spectral Power Distri-
bution Database.37

In Figure 2, we plot the normalized datasets in the
Angle-Retaining Chromaticity diagram38 to avoid any
representation-specific distortion of the data. The Carte-
sian coordinates αX and αY are here used to define a
frame of reference in a two-dimensional space where
Euclidean distances are highly-correlated to angular dis-
tances from the original RAW RGB space. They are in
turn obtained from polar coordinates αA and αR, which
are described in Reference 38 as hue-like and saturation-
like components. In the same plot, we also report the
non-normalized reference whites are indicated by an �
symbol. For further reference, the CIE series D illumi-
nants from D40 to D150 is also reported in each plot. We
can observe that the illuminants in all analyzed datasets

roughly follow the distribution of daylight illuminants.
All the datasets show additional data points at low corre-
lated color temperatures (CCT). These are typically found
in indoor scenarios illuminated by incandescent light
sources. Among the five datasets, Gray Ball and INTEL-
TAU exhibit the best coverage of high CCTs regions. This
shows that these datasets contain several images with
outdoor in-shadow surfaces. On a final note, with respect
to the illuminants along the greenish to magenta-is direc-
tions, i.e. the direction orthogonal to the axis defined by
CIE series D illuminants, we can see that they are poorly
represented by all the considered datasets. We argue that
collecting data for such non-natural light sources could
be useful for investigating human perception on artificial
lights.

3.1.2 | Multi-illuminant datasets

In terms of distribution of the involved chromaticities,
the MIST dataset is characterized by a discrete set of indi-
vidual illuminants, due to its synthetic nature, which are

FIGURE 2 Illuminant distributions for five single-illuminant automatic white balance datasets, normalized by sensor-specific reference

whites
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then blended into various combinations whenever multiple
light sources illuminate the same surface. The underlying
lights are standard illuminants D50, D65, A, F, 318 illumi-
nants from the Illuminating Engineering Society,39 as well
as several equation-based illuminants with Correlated Color
Temperature between 2000 and 10 000 K generated using
the equations for CIE-D series and the black body radiator.
Figure 3 offers a view of the illuminants in images from
MID, MIMO, and DRONE, retrieved from the correspond-
ing ground truth maps and tables. The procedure necessary
for sensor-specific normalization previously presented on
single-illuminant datasets was also employed here for the
DRONE dataset alone (hand-picked D55-like sunlight refer-
ence corresponding to R/G = 0.5549 and B/G = 0.6489).
Regarding MID and MIMO, no reliable information was
available to unambiguously indicate a sensor-specific refer-
ence white for the involved cameras, thus preventing a
direct comparison between the illuminant distributions
between datasets. It is however possible to notice how,
within the MIMO dataset, the illuminants of the “Real
world” subset cover a considerably wider range of chroma-
ticities than those of the “Lab” subset.

Summary statistics of the datasets illuminant distribu-
tions are presented in Table 4. By referring to chromatic
coordinates in ARC diagram, we can analyze these distri-
butions using metrics that imply data in a Euclidean
space: as mentioned, this representation maps RGB angu-
lar distances (considered meaningful for AWB) into
Euclidean distances. Following the example of an analy-
sis performed on datasets for video AWB,3 we compute
the standard distance40 STD of the ARC datapoints,
which is a bidimensional generalization of the standard
deviation:

STD¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN
i¼1

αXi �αXð Þ2
N

þ
XN
i¼1

αYi �αYð Þ2
N

vuut ð2Þ

where αXi , αYið Þ are the ARC coordinates of the ith illu-
minant in a given dataset, and αX , αYð Þ indicates the
average of each coordinate. This metric provides a mea-
sure of how spread the illuminants for a given dataset
are, taking into account density but neglecting cardinal-
ity, which is already accounted for in Tables 1 and 2.

FIGURE 3 Illuminant distributions for three multi-illuminant automatic white balance datasets. Sensor-specific normalization was

available and applied only to the DRONE dataset

TABLE 4 Summary statistics

describing the distribution of single-

illuminant and multi-illuminant

datasets in terms of fitting bivariate

Gaussian models and standard distance

Dataset μαX μαY Direction σA σB STD

SimpleCube++ 2.571 0.727 24.053� 11.565 1.188 11.623

ColorChecker 2.916 1.637 28.998� 11.174 1.116 11.220

Gray Ball 3.448 2.635 31.844� 9.977 1.107 10.038

INTEL-TAU 3.985 1.830 24.912� 9.975 1.447 10.078

NUS 4.598 2.253 23.073� 10.430 1.323 10.511

MID 4.151 9.530 47.990� 5.788 1.982 6.115

MIMO 4.208 5.642 59.479� 12.002 3.521 12.507

DRONE 6.943 3.377 29.515� 9.631 1.177 9.701

CIE D �5.002 �3.645 36.717� 10.254 0.083 10.029

BUZZELLI ET AL. 7



A more-detailed characterization can then be provided
by fitting each distribution with a bivariate Gaussian
model. In this case, we first process it via principal compo-
nent analysis (PCA) in order to highlight the main axis of
variation, described by the “Direction” column in Table 4,
and subsequently extract two-dimensional moments μ and
σ (average and standard deviation), where σ is related to
the principal components A and B. These pieces of infor-
mation can be put in comparison with the same analysis
on the CIE D illuminants, in order to provide a frame of
reference particularly for the μ and direction values.

3.2 | Image content

We have trained three convolutional neural networks on
a proprietary annotated dataset in order to analyze the
semantic content of the AWB images. The networks have
been trained to classify images with respect to the pres-
ence of people, type of environment, and type of compo-
sition, respectively reaching 95.01%, 96.10%, and 97.50%
accuracy on independent test sets. Using these networks,
we then performed inference on white-balanced images
from the five single-illuminant AWB datasets described
in Section 2.1. We used this automatic annotation proce-
dure to investigate the image contents of the AWB data-
sets. Figure 4 shows the aggregated results of the
inference process of each network.

From the obtained results, we can see that the amount
of images depicting human subjects is relatively small. This
problem could be partially due to privacy-protecting instru-
ments recently introduced in different countries such as the
General Data Protection Regulation (also known as GDPR)
in the European Union. It should be noted that some false
positives may occur since the automatic annotation is not
error-free. These false positives are related to statues,

posters, and other objects depicting people. The INTEL-
TAU dataset depicts a relevant number of people; however,
their faces are censored with an average-color mask. This
could be a problem for some semantic-based AWB methods
that explicitly rely on detecting human faces,15 and as such
they cannot be trained or evaluated on this type of data.
With respect to the depicted environment, that is, indoor,
outdoor, or close-up, and the composition, that is, close-to-
long range, all the datasets appear to be well balanced.

Contrarily to single-illuminant datasets, current
multi-illuminant datasets are composed of relatively few
scenes as reported in Table 2 (for a maximum of 31 scenes
in the DRONE dataset30). This allows for a direct inspec-
tion and analysis of the image content, instead of relying
on aggregated statistics and automated analysis that may
be subject to errors. None of the datasets depict any peo-
ple. In terms of environment and composition, all four
scenes of MID are strictly indoor of short range objects.
The MIMO dataset depicts all short-range compositions.
Of these, the 10 laboratory scenes are all indoor, while
the real world scenes include three clearly outdoor
setups, and the remaining 17 are shot indoor with occa-
sional secondary sources from outside. Similarly, the
DRONE dataset is composed of 10 clearly outdoor scenes,
while the remaining 21 are indoor with an occasional
mixture of indoor and outdoor light. For this dataset, the
subjects of the photos are mostly in the medium range,
with two short-range images. Finally, all three scenes of
the MIST dataset depict medium range indoor setups.

3.3 | Shooting parameters and
illumination levels

The next analysis refers to the illumination levels, that is,
low-light to bright-light conditions. We characterized the

FIGURE 4 Image content distribution of the single-illuminant automatic white balance datasets, according to three different sets of

classes
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illumination levels of the five single-illuminant AWB
datasets with two approaches.

The first approach is based on the EXIF data. We
extracted the shooting parameters from the images in the
dataset and analyzed their distribution, as reported in
Figure 5. It must be noted that EXIF data are not available
for the sRGB-encoded images in the Gray Ball dataset, so
no analysis can be performed in this particular case. More-
over, the images captured with the Sony IMX132 camera
in the INTEL-TAU dataset do not provide the ISO infor-
mation, so the results are partial for this dataset. If we
assume that the camera parameters were properly set dur-
ing shooting, the aperture, exposure time, and ISO infor-
mation can be used to approximate the scene illumination
level. This can be achieved, for example, by using the fol-
lowing equation proposed by Le et al41:

Imeasure ¼ log10
aperture2

exposure_time

� �
þ log10

250
ISO

� �
ð3Þ

Figure 6 (left), shows the distribution of the Imeasure

for the four datasets with available EXIF data.
The second approach for illumination characteriza-

tion is based on a classifier that is used to infer the scene
illumination level in discrete terms. We trained a Convo-
lutional Neural Network to classify an image into three
illumination types: “Highlight,” “Lowlight,” and “Sunset/
Sunrise.” The network was trained on a proprietary data-
set of annotated images, reaching 98.33% accuracy on an
independent test set. Prior to being classified, the images
in the AWB datasets were sRGB-rendered and white-
balanced in order to match the appearance expected by

FIGURE 5 Shooting parameters distributions for the analyzed automatic white balance datasets: Aperture, Exposure Time, and ISO

FIGURE 6 Illumination conditions computed by means of shooting parameters (left) and image analysis (right)

BUZZELLI ET AL. 9



the CNN. The distributions of the inferred scene illumi-
nation are reported in Figure 6 (right).

For reference, Figure 7 shows example images from
the SimpleCube++ dataset20 identified in terms of light-
ing conditions and illumination measure.

It is possible to observe that both analyses show a pre-
dominance of bright light scenes. Middle-to-low light
scenes are partially present in three of the five datasets:
INTEL-TAU, Gray Ball and SimpleCube++. Also the
ColorChecker dataset has some low-light scenes, but its
overall low cardinality must also be taken into

consideration. It is worth noting that the Sunset/Sunrise
class is scarcely represented in all datasets. Consumer
devices equipped with AWB modules do not always pro-
duce optimal results in these kind of imaging conditions,
therefore we argue that extreme imaging condition
should be included in the AWB datasets, to better repre-
sent challenging real-life application cases.

The analyzed cardinalities in terms of image content
(presence of people, environment, composition) and
lighting conditions that are at the basis of Figures 4 and 6
(left) for single-illuminant datasets, are also documented

FIGURE 7 Images from the

SimpleCube++ dataset,20 characterized

by the corresponding lighting conditions

and illumination measure (Im)

TABLE 5 Cardinalities of single-illuminant datasets with respect to the class sets considered within this paper: people/no people,

environment, composition, and lighting conditions

Set Class ColorChecker SimpleCube++ Gray Ball INTEL-TAU NUS

People/no people People 123 41 2269 1180 283

No people 445 2193 9077 5842 1570

Environment Indoor 254 758 5058 1466 415

Outdoor 85 1182 4614 2327 279

Close-up 229 294 1674 3229 1159

Composition Short range 165 961 6157 2667 741

Medium range 330 977 4215 2558 911

Long range (cityscape) 32 121 701 325 158

Long range (landscape) 41 175 273 1472 43

Lighting conditions Highlight 516 743 10 131 6089 1695

Lowlight 52 993 1165 911 158

Sunset/sunrise 0 498 50 22 0
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TABLE 6 Recovery and reproduction angular error statistics (average, median, and 99th percentile) for all combinations of considered

single-illuminant AWB methods (rows) and datasets (columns)

Method ColorChecker SimpleCube++ Gray Ball INTEL-TAU NUS

Average recovery angular error

WP 5.945 4.314 7.395 5.891 7.547

GW 4.716 3.185 6.814 4.937 4.224

SoG 4.178 3.117 6.273 4.752 5.069

GGW 4.364 3.131 6.892 5.103 4.686

GE1 3.890 3.059 6.101 4.599 3.913

GE2 4.070 3.172 5.717 4.194 3.771

FC4 1.922 2.116 5.523 2.571 3.587

GI 3.431 2.456 6.934 3.950 3.214

PCA 3.733 3.075 6.367 4.255 4.304

QU 3.289 2.387 6.463 3.474 3.418

SIIE 2.740 2.778 7.483 3.267 2.048

SURR 3.819 2.746 4.728 3.898 3.541

Average reproduction angular error

WP 7.181 5.084 7.989 6.684 8.449

GW 5.775 4.128 7.203 6.166 5.469

SoG 5.285 3.885 6.823 5.789 6.205

GGW 5.410 3.950 7.417 6.259 5.921

GE1 4.874 3.909 6.583 5.711 5.048

GE2 5.136 4.083 6.242 5.264 4.843

FC4 2.506 2.723 6.106 3.318 4.526

GI 4.334 3.214 7.413 4.967 4.234

PCA 4.725 3.766 6.785 5.252 5.362

QU 4.148 3.110 6.971 4.361 4.468

SIIE 3.480 3.929 7.567 4.169 2.738

SURR 4.843 3.496 5.155 4.767 4.551

Median recovery angular error

WP 3.839 1.869 5.837 3.567 4.577

GW 3.503 2.003 5.792 3.882 3.208

SoG 2.444 1.593 5.467 3.424 3.481

GGW 2.877 1.613 6.039 3.908 3.538

GE1 2.802 1.700 5.291 3.360 2.930

GE2 3.292 2.172 4.891 3.346 2.757

FC4 1.334 1.714 4.412 1.875 3.177

GI 2.235 1.256 5.197 2.364 2.134

PCA 2.323 1.487 5.624 2.882 2.952

QU 2.072 1.331 4.927 2.365 2.572

SIIE 1.939 1.472 6.599 2.340 1.503

SURR 2.403 1.378 3.853 2.406 2.351

Median reproduction angular error

WP 4.877 2.501 6.020 4.351 5.782

GW 4.626 2.742 6.238 4.944 4.444

(Continues)
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in Table 5. We point out that these values are determined
by automatic assessment: they are subject to error and
should be considered as indicative of the real distribu-
tions. In addition to the presented considerations relative

to the strengths and shortcomings of each individual
dataset, this overview could be used by researchers, and
users in general, to inform the decision on which dataset
to use when focusing on specific image categories.

TABLE 6 (Continued)

Method ColorChecker SimpleCube++ Gray Ball INTEL-TAU NUS

SoG 3.224 2.176 5.885 4.262 4.562

GGW 3.529 2.268 6.527 4.898 4.729

GE1 3.587 2.318 5.663 4.213 3.943

GE2 4.158 2.905 5.238 4.228 3.572

FC4 1.622 2.133 4.602 2.359 3.670

GI 2.798 1.755 5.616 3.049 2.826

PCA 3.052 2.029 5.959 3.683 3.929

QU 2.571 1.835 5.165 3.024 3.488

SIIE 2.265 1.855 6.725 2.959 2.018

SURR 2.951 1.856 4.175 3.021 3.129

99th percentile recovery angular error

WP 25.090 19.659 22.627 21.735 23.525

GW 17.343 13.633 22.106 18.089 15.807

SoG 18.780 17.248 19.870 18.602 18.557

GGW 18.913 16.698 21.865 19.174 16.904

GE1 15.306 16.460 19.798 18.279 14.891

GE2 14.424 14.642 17.489 15.455 16.202

FC4 8.434 9.764 19.623 11.772 11.631

GI 17.841 15.305 25.049 18.600 14.184

PCA 16.381 17.878 20.507 19.238 18.396

QU 14.602 13.575 21.709 15.789 14.495

SIIE 14.144 17.158 24.207 15.061 10.688

SURR 16.937 16.262 18.324 18.865 18.086

99th percentile angular error

WP 29.533 23.692 25.432 26.606 29.806

GW 18.451 17.165 22.633 21.635 19.133

SoG 24.126 19.556 21.328 22.716 24.544

GGW 21.606 19.407 22.859 23.505 19.736

GE1 16.923 19.654 20.927 22.110 19.077

GE2 17.152 16.875 18.903 18.774 20.412

FC4 13.224 12.533 21.932 15.396 17.340

GI 21.765 18.469 25.294 21.604 18.528

PCA 22.128 19.751 21.797 22.440 20.408

QU 19.117 16.422 24.019 18.602 17.667

SIIE 18.612 24.574 24.281 19.225 14.561

SURR 23.094 19.333 19.591 21.690 20.503
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4 | BIASES OF AWB METHODS
FOR SINGLE ILLUMINANT

In this section, we select several methods for Automatic
White Balance, and we analyze their performance in rela-
tionship to the content of the images. For this part of the
analysis, we focus on single-illuminant AWB methods on
single-illuminant AWB datasets.

4.1 | Analyzed methods

Our selection of AWB methods spans traditional solu-
tions based on handcrafted features, as well as more
recent approaches based on deep learning, in order to
cover a variety of different approaches. All analyzed
methods are sensor-independent. When training is neces-
sary, we rely on official pre-trained models to ensure the
best possible conditions.

In 2007, van de Weijer et al42 proposed a framework
to generalize multiple algorithms based on low-level
image statistics. By modifying the free parameters within
the framework, several known algorithms can be derived.
Specifically, we considered six AWB algorithms by vary-
ing the parameters' configurations (Minkowski norm p
and standard deviation σ) according to Reference 43:

Grey World GWð Þ : p¼ 1, σ¼ 0:

White Point WPð Þ : p¼∞, σ¼ 0:

Shades of Grey SoGð Þ : p¼ 4, σ¼ 0:

General Grey World GGWð Þ : p¼ 9, σ¼ 9:

1st order Grey Edge GE1ð Þ : p¼ 1, σ¼ 6:

2nd order Grey Edge GE2ð Þ : p¼ 1, σ¼ 1:

The Minkowski norm p could alternatively be com-
puted according to a dynamic approach as suggested by
Akbarinia et al.44 The standard deviation parameter σ,
defining the Gaussian filter applied by the underlying
algorithms, is tightly related to the size of the input
image. As such, we downscaled all images to have the
maximum side be 256 pixels long for this family of AWB
methods. An in-depth analysis of the relationship
between p and σ parameters and methods performance is
left for future developments.

Other approaches consider the entire color distribu-
tion. For example Cheng et al23 introduced an AWB algo-
rithm based on PCA. They observed that the information

provided by the PCA is comparable with more complex
spatial analysis algorithms. The approach selects a per-
centage of dark and bright pixels for the computation.
Here we select the percentage parameter to 3.5% follow-
ing the best results obtained by the authors.

More recently, Qian et al,45 proposed the Grayness
Index (GI), a learning-free metric designed to identify
neutral surfaces in an input image following the Dichro-
matic Reflection Model.46 The authors showed that this
index can be used to estimate a single illuminant as well
as multiple illuminants. In this work, we used the default
parameters from the implementation provided by the
authors.

Convolutional neural networks (CNNs) have been
successfully used in many application scenarios. Bianco
et al developed a CNN-based Quasi-Unsupervised color
constancy (QU) algorithm,47 to detect achromatic pixels
in color images. The network is trained without explicit
AWB annotation. The only weak assumption is that the
images are approximately balanced. The CNN model
used in this work was trained on images from the
ILSVRC2012 dataset of the ImageNet initiative.48

Another approach exploiting convolutional networks
is FC4 (Fully Convolutional Color Constancy with
Confidence-weighted Pooling) by Hu et al.49 An image is
divided into patches and a neural network architecture
assigns confidence weights to the patches according to
the level on information they carry. The confidence
values are then used to generate local estimates that are
then merged into a global solution for the AWB problem.
The official SqueezeNet-based implementation50 is sup-
plied with pre-trained models on each fold of the Color-
Checker dataset,19 which we appropriately selected when

FIGURE 8 Example image from the ColorChecker dataset19

(left), with corresponding selection of achromatic pixel weights

according to Quasi-Unsupervised Color Constancy method47 (right)
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testing on such datasets. For all other datasets, we used
the model pretrained on “fold 2 and 0.”

Afifi et al2 developed a learnable sensor-independent
pseudo-RAW space to map the RGB values of any given
camera, under the explicit assumption of input linear
RAW-RGB images. The method is called Sensor-
Independent Illumination Estimation (SIIE). We fol-
lowed the method's guidelines and used the “MATLAB
2018b” model pretrained on the NUS23 and Cube+51

datasets for testing on Gray Ball and INTEL-TAU data-
sets. We used the model pretrained on the NUS23 and
ColorChecker datasets for testing on the SimpleCube++.
We finally relied on officially-reported estimations for
testing on the ColorChecker and NUS datasets.

Akbarinia et al52 proposed Adaptive Surround Mod-
ulation (ASM): a solution inspired by the dynamic bio-
logical mechanism53,54 that correlates center-surround
computations of local contrast with the receptive field
size of visual neurons. Specifically, they use two over-
lapping asymmetric Gaussian kernels to model the
visual neurons, and they weight their individual contri-
butions according to the center-surround contrast. In
this work, we used the default parameters from the
implementation provided by the authors, and we used
the publicly available estimations for the Gray Ball
dataset.

Since several color constancy methods rely on the
assumption of linear sensors, the following procedure3

FIGURE 9 Average recovery angular error per class. Here are reported the average angular error of the considered method for each

class of each label considered. From left to right, top to bottom are reported Composition label, Environment Label, Light conditions label

and finally presence of people. Red bars represent the standard deviation of the errors done by the different methods, for each class on each

dataset
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has been specifically applied to non-linear images from
the Gray Ball dataset:

Linearize the image (gamma correction
with γ¼ 2:255)

1. Estimate the illuminant
2. De-linearize the estimated illuminant (γ¼ 1=2:2)

As noted in Reference 3, this linearization strategy
allows to process images that are closer to the RAW sen-
sor data (although no guarantee on the actual gamma
characterization is possible), while at the same time per-
forming error analysis without modifying neither the
AWB algorithms nor the official dataset ground truth.

4.2 | Performance per dataset

Error evaluation is here performed by resorting to the
popular angle-based recovery angular error8,56 and repro-
duction angular error57 between the estimated illuminant
V ¼ vR, vG, vBð Þ and the ground truth illumi-
nant U ¼ uR,uG, uBð Þ:

errrec ¼ arccos
U �V
Uj j Vj j

� �
¼ arccos

P
iuiviffiffiffiffiffiffiffiffiffiffiffiffiP

iu
2
i

p ffiffiffiffiffiffiffiffiffiffiffiP
iv
2
i

p
 !

ð4Þ

errrep ¼ arccos
U=V � 1, 1, 1ð Þ

U=Vj j ffiffiffi3p
� �

¼ arccos

P
i
ui=viffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

i
u2i=v2i

q ffiffiffi
3

p

0
B@

1
CA
ð5Þ

The practical impact on human perception of varia-
tions in angular errors has been often debated. According
to a survey by Gijsenij et al,8 a deviation of 1� in angular
error with the ground truth illuminant is considered
below the threshold of what human vision commonly
detects,9 while the 2��3� range is considered perceivable
but still acceptable.10,11 Hordley et al12 identify a 2�

recovery angular error as being acceptable in the context
of complex scenes. These ranges should also be evaluated
in the context of the data representation: when dealing
with illuminant information in RGB form, variations in
the RGB estimations are not linearly correlated with vari-
ations in angular errors, thus introducing a disconnect
between representation and target. To this end, chroma-
ticity diagrams such as the aforementioned Angle-
Retaining Chromaticity can reduce this issue by formu-
lating a data representation where Euclidean distances
are highly correlated with RGB angular distances.

Table 6 presents a general overview of how the
selected methods perform on the analyzed datasets for
single-illuminant AWB. The average and median of the
error distributions are reported, alongside the 99th per-
centile as a representative for the “worst-case” scenario.
It is possible to observe that, in terms of datasets, the
SimpleCube++ is on average the best handled across
most analyzed methods, although such behavior is less
noticeable when focusing on high error percentiles. Con-
versely, the hardest dataset appears to be Gray Ball
according to both statistics. In this case, the non-RAW
nature of the dataset is known to have a negative impact
on many AWB methods.2,3 From the point of view of
individual methods, FC449 reaches the best overall per-
formance across most datasets, followed by either SIIE2

or QU47 depending on the statistics of interest.

FIGURE 10 Illuminant chromaticity distribution of different “environment” cases for the INTEL-TAU dataset. Illuminants in the

outdoor category are more compact that illuminants in the indoor category. The close-up category encompass both types of scene
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Any additional consideration should take into account
the specific assumptions behind each method. The prob-
lem of Automatic White Balance, in fact, is known to be
ill-posed and as such it cannot be analytically solved with-
out additional assumptions on the imaged content. Among
the methods based on the Edge-based color constancy,42

for example, the grey-world hypothesis assumes that the
average reflectance in a scene is achromatic, the white
patch hypothesis is based on the assumption that the max-
imum reflectance achieved for each of the color channels
is equal, whereas the grey-edge hypothesis assumes that
the average of the reflectance differences in a scene is ach-
romatic. These simplistic low-level assumptions guarantee
the efficiency of such methods, at the cost of generally
lower performance: the grey-world hypothesis is easily
broken when the scene is dominated by the intrinsic chro-
maticities of the surfaces, the white patch explicitly
requires the presence of a bright neutral Lambertian sur-
face in the scene, and the grey-edge can pick up mislead-
ing chromatic information from generally abrupt light
intensity changes. The PCA method by Cheng et al23 refor-
mulates the assumption behind spatial domain methods,
such as the grey-edge itself and Adaptive Surround
Modulation,52 by postulating that most of the information
coming from image derivatives can be directly extracted
from the color distribution of the whole image, thus avoid-
ing over-reliance on image gradients. The Greyness
Index45 and the Quasi-Unsupervised47 methods are both
designed to identify intrinsically achromatic pixels in the
scene, whose RGB values are to be averaged for the pur-
pose of illuminant estimation. As such, these methods are
bound to work properly when such surfaces are indeed
present. Nonetheless, the Quasi-Unsupervised method has
been observed to exploit combinations of non-achromatic
pixels to determine a global white point, as visualized in
Figure 8, counteracting the intrinsic properties of the blue
trash bin and the brown stones. More recent data-driven
methods, such as FC449 and Sensor-Independent Illumi-
nant Estimation,2 implicitly rely on higher-level abstrac-
tions derived by the extraction of deep neural features.
This allows them to formulate associations with the
semantics of the depicted content, but also to exploit, and
possibly over-rely upon, the aforementioned biases in the
training data.

4.3 | Correlation between AWB
performance and image content

For each of the considered AWB methods, we analyzed
the recovery and reproduction angular error for different
classes of image content identified in Section 3. The dis-
tributions are reported in Figure 9.T
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On average, the Gray Ball dataset is the one exhibit-
ing the worst performance. As previously noted, this
dataset is the only one not providing RAW file images,
which may be the cause of such bad performance from
all of the methods. Additionally, the images of the Gray
Ball are of lower quality with respect to the other data-
sets, a property that may reduce the effectiveness of the
automatic tagging procedure as well.

For what concerns the Composition set, all datasets
show a consistent situation: we can observe that with
images classified as long-range (both cityscapes and land-
scapes) the methods tend to perform better with respect
to the medium range and short range images. This behav-
ior, at least for the short range class, can be related to the
fact that they have less context information, which would
help in the analysis of the scene. A more-detailed analysis
on image composition could potentially be performed by
resorting to models for pixel-precise distance
estimation,58 providing information about different sub-
jects depicted in a single image.

Regarding the Environment set, close-up images have
less context for proper illuminant estimation, similarly to
the short range class in the composition set, and as such
generally worse performance can be observed. Addition-
ally, the category of outdoor illuminants is in general rela-
tively compact (especially assuming a daylight scenario),
whereas indoor scenes can be illuminated by a wider vari-
ety of sources. This bias, experimentally observed on the
distribution of the INTEL-TAU dataset in Figure 10, pro-
vides a possible explanation for the overall better perfor-
mance of AWB methods on outdoor scenes.

Considering the light conditions of the images in the
datasets, overall worse results can be observed when per-
forming illuminant estimation on images identified as
low-light. Here, the higher error can be related to two
possible aspects. The first one can be the lack of ambient
light: the absence of a global light source, such as the sun
in overcast outdoor conditions, introduces the problem of
having parts of the scene illuminated by different light
sources with different chromaticity, thus breaking the
implicit assumption of single-illuminant AWB methods.
A second aspect which may cause the reduction in per-
formance can be the lower numerical precision related to
the dark pixels in the low light images.

Finally, for what concerns the presence of people in
images, the performance on the different datasets are bet-
ter when people are present in the scene. These results
are in line with the assumption from Bianco et al,15

whom in their work explicitly exploited the presence of
faces of people in images to estimate illuminant.

In Tables 7 and 8 are reported the average, median
and 99th percentile of the recovery and reproduction
error distributions respectively, of each methodT
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considered for each identified class. The number of
images per class is also reported in each table under the
“Cardinality” column. From these tables it is possible to
notice how two methods show the best performance on
most of the identified classes: FC4 and ASM. It is also
important to notice that the Gray Ball dataset have a
much higher number of images with respect to the rest of
the dataset: this fact explains the average better results of
ASM and the 99th percentile performance of 2nd order
Grey Edge, which show high performance on this dataset
as reported in Table 6. In general, it is possible to notice
the difference, in terms of performance, between tradi-
tional lower-level methods, and the more recent methods
like SIIE, FC4 and Quasi-Unsupervised. It is also possible
to confirm the same considerations that emerged by ana-
lyzing Figure 9.

5 | CONCLUSIONS

In this paper, we have compared the most popular datasets
for Automatic White Balance in terms of illuminant distri-
bution, image content, and shooting parameters. We have
provided a detailed analysis and highlighted the individual
shortcomings of each dataset. Deficiencies have been
found across all datasets, such as a lack of images illumi-
nated with artificial light sources and/or low-light images,
indicating a direction for future data collection.

A selection of AWB methods from the state of the art
has also been exploited to analyze the correlations
between methods performance and image content. This
analysis highlighted few classes for which the illuminant
estimation procedure is harder. In particular, pictures
taken in indoor scenarios or close-up shooting conditions
appear to be harder than landscape or wider field of view
ones. That happens also for pictures taken in low-light
conditions with respect to the ones taken in highlight
conditions. The presence of people in the images seems
to help the illuminant estimation process; however, the
number of images labeled with people presence for each
of the considered dataset is low, so this conclusion cannot
be considered definitive.

From these analysis, some suggestions to improve the
performance of the algorithms trained on a single dataset
can be made. For example, dividing the training and test
images not in a random way but in such a way as to have
in testing illuminations “never seen” in the training
phase, or vice versa balancing them in training set so as
not to give bias to the estimation method. Similar consid-
erations can be made on the shooting parameters. We
know, in fact, that semantic content is increasingly being
used by methods of Automatic White Balance. This is a
double-edged sword: on one hand, the algorithm can

leverage known information to better process the images
and improve the final output, but on the other hand, it
struggles in generalizing to different scenarios.

One possible way to tackle these problems is to con-
sider the opportunity to merge multiple datasets into a
more-complete set of images. For sensor-dependent AWB
methods, this type of fusion can only be exploited by
bringing the datasets into a common representation. To
this extent, a set of reference white points has been com-
piled for each involved sensor, and shared within this
manuscript. Also, merging different datasets can mitigate
the bias in image content, providing a larger set of appli-
cation scenarios to be addressed by the AWB algorithms.

The topic of multi-illuminant estimation in AWB is
capturing a growing interest, with the emergence of
appropriately annotated datasets as documented within
this paper. The field is currently in its infancy, but we
hypothesize a gradual shift toward more methods that
produce dense illuminant estimation maps59 and/or
intrinsic decomposition,60,61 as covered in the past by
methods inspired by the Retinex model.62 One of the
main obstacles to multi-illuminant estimation and intrin-
sic decomposition lies in the collection of appropriately-
annotated datasets. To this extent, the adoption of
synthetic dataset generation63,64 provides a possible solu-
tion, as here anticipated in the case of the MIST dataset.29
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