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Abstract
The first paper investigating the use of machine learning

to learn the relationship between an image of a scene and the
color of the scene illuminant was published by Funt et al. in
1996. Specifically, they investigated if such a relationship could
be learned by a neural network. During the last 30 years we have
witnessed a remarkable series of advancements in machine learn-
ing, and in particular deep learning approaches based on artifi-
cial neural networks. In this paper we want to update the method
by Funt et al. by including recent techniques introduced to train
deep neural networks. Experimental results on a standard dataset
show how the updated version can improve the median angular
error in illuminant estimation by almost 51% with respect to its
original formulation, even outperforming recent illuminant esti-
mation methods.

Introduction
The chromatic attributes of the objects we perceive in a vi-

sual scene are primarily influenced by three distinct elements: i)
the spectral reflectance characteristics of the object surfaces; ii)
the spectral power distribution of the illuminating light source;
iii) the relative spatial arrangement of the objects and the illumi-
nant. The primary objective of computational color constancy,
also known as automatic white balancing, is to render the objects
within the scene as if they were observed under a chosen neu-
tral illuminant. Consequently, it is evident why this process holds
significant importance in digital camera workflows and why nu-
merous computer vision problems employ color constancy as a
preliminary pre-processing step. Computational color constancy
is often addressed as a two-step procedure: the first step is illumi-
nant estimation, and it aims to estimate the color of the illuminant
or the lighting conditions present in the scene; the second step
is illuminant correction, that is typically done by applying a chro-
matic adaptation transform, which scales the color channels of the
image to compensate for the estimated illuminant color.

However, despite its apparent simplicity, color constancy is
an ill-posed problem. In order to solve it, additional assumptions
on the imaged content have to be made: common assumptions are
for example the gray-world hypothesis, which assumes that the
average reflectance in a scene is achromatic, or the white patch
hypothesis, based on the assumption that the maximum values
recorded for each color channel correspond to the color of the il-
luminant. Given an input image, if the assumptions are satisfied,
the image will be properly corrected. Since these assumptions
may be not always satisfied, Funt et al. in 1996 [1, 2] tested
a surprisingly simple hypothesis: that the relationship between
image content and the chromaticity of scene illuminant could be
learned by a neural network, paving the way for the development
of learning-based illuminant estimation algorithms. Nowadays,
about 30 years later, learning-based illuminant estimation meth-

ods are the state of the art and nearly all recently published meth-
ods belong to this category.

In this paper, starting from the work by Funt et al., we mod-
ernize it by incorporating state-of-the-art techniques introduced
for deep neural network training, to see how much its illuminant
estimations can be improved.

Related Works
Illuminant estimation methods can be divided into two cate-

gories: learning-free, and learning-based. In this paper we focus
on the learning-based group.

The first learning-based illuminant estimation algorithm is
by Funt et al. [1, 2], where a Fully Connected network (i.e.,
a Multi-Layer Perceptron) is used to map from the scene chro-
maticities to the color of the illuminant. Inspired by this work, in
the next years several different machine learning algorithms have
been employed with the aim of further improving illuminant esti-
mation accuracy. Bayesian approaches [3] are used to model the
variability of reflectance and of illuminant as random variables,
and then estimate illuminant from the posterior distribution con-
ditioned on image data. Random Forests are used to drive the
selection of the best algorithm (or the best combination of algo-
rithms) for a given image using as input low-level properties of
the images [4, 5].

Inspired by the success obtained by deep Convolutional Neu-
ral Networks (CNN) on several Computer Vision tasks, they have
also been successfully applied to the problem of illuminant esti-
mation. The first work using CNNs is by Bianco et al. [6], then
followed for example by [7, 8, 9]. Most recent approaches use
different deep neural architectures and training procedures, such
as Generative Adversarial Networks (GANs), e.g. [10, 11], or
change the learning paradigm from supervised learning to unsu-
pervised learning [12].

Proposed approach
The original work by Funt et al. [1, 2] uses a Multi-Layer

Perceptron (MLP) to map the chromaticities of the colors present
in the original scene into the illuminant chromaticity. The chro-
maticity space adopted is the rg = (R/(R+G+B),G = G/(R+
G+ B)) sampled in steps of 0.020. The input is encoded as a
1250-dimensional vector and its values are binary, indicating the
presence or absence of that particular chromaticity in the input
image. The input dimension 1250 derives from the fact that the rg
chromaticity space is actually a triangle, and therefore there is not
need to encode the remaining 1250 values. The architecture of
the MLP is 1250-200-40-2, thus consisting of two hidden layers,
with sigmoid activation functions for a total of about 260k train-
able parameters. The error function used for training the network
is the Euclidean distance between the target and the estimated il-
luminant in the rg-chromaticity space. This original formulation
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is referred to as LCC-v0 in this paper, and constitutes our starting
point to build upon.

The first modernization step, that we call LCC-v1, substi-
tutes the sigmoid activation functions with the Rectifying Linear
Unit (ReLU) [13], which has been shown to reach faster training
times. It also changes the number of outputs from two to three,
thus directly estimating the RGB color of the scene illuminant. It
also changes the used training loss, replacing the Euclidean dis-
tance in the chromaticity space with an angular distance in RGB
space, thus measuring training errors in the same way they are
used in test to compare the performance of different color con-
stancy algorithms.

The second modernization step, i.e., LCC-v2, introduces the
use of dropout [14, 15] after each fully connected layer during the
training phase. Dropout reduces overfitting preventing complex
co-adaptations on the training data, and therefore improves the
performance on new unseen data.

Starting from the third modernization step, we introduce a
change in the neural network type, moving from the shallow fully-
connected architecture of a MLP to a deep Convolutional Neural
Network (CNN). In particular a ResNet-18 [16] is used, which
accepts 224 × 224 inputs and has a total of about 11M train-
able parameters. For LCC-v3 the input now consists in the rg-
chromaticity histogram sampled in steps of 0.020 as in LCC-v0
to perform a fair comparison (see Figure 1). This results in a
50× 50 histogram that is then normalized to unitary maximum,
upsampled to 224× 224 pixels by bilinear interpolation, multi-
plied by 255, and saved as an 8-bit single-channel image. During
training, random erase augmentation is used, which randomly se-
lects a rectangle region in the input image and erases its pixels
setting them to zero.

Figure 1. rg-chromaticity space (top) and its occupation of the input image

fed to LCC-v3 (bottom).

The last two models, i.e., LCC-v4 and LCC-v5, stem from
the observation that the rg-chormaticity space is a triangle that
uses just half of the input image. We therefore include a second
chromaticity histogram in the remaining triangle, by respectively
rotating by 180 degrees the rb-chromaticity histogram from LCC-
v4 and the gb-chromaticity histogram for LCC-v5 (see Figure 2).

Table 1 summarizes the main characteristics of the original

Figure 2. rg-chromaticity space (top); gb-chromaticity space and its 180

degrees rotated version (middle); how rg- and gb-chromaticity spaces are

spatially combined to form the input image fed to LCC-v5 (bottom).

version of LCC and the different updated versions here intro-
duced.

Experimental setup
All the experiments are performed on the Gehler-Shi dataset

[3] also known as the ColorCheker dataset, using the REC
groudtruth [17, 18], and following the fair comparison procedure
defined in [19]. All the different LCC architectures are trained
in PyTorch on this dataset for a total of 1000 epochs, batch size
equal to 16, Adam optimizer [20] with a learning rate equal to
3e− 4, and a weight decay equal to 5e− 5. No other augmenta-
tions are used besides those described in the previous section. The
ResNet-18 architecture used by LCC-v3, v4, and v5 is initialized
with ImageNet weights; the first and last layers are then replaced
to match the input and output characteristics of our illuminant es-
timation problem (see Figure 3).

Experimental results
The performance in terms of recovery angular errors for the

different versions of LCC proposed in this paper are reported in
Table 2. Considering the median angular error, we observe that
the replica of the work by Funt et al. [1, 2], i.e. LCC-v0, is the
one having the largest error and is considered as the baseline for
the subsequent comparisons. Changing the activation function to
ReLU and using an angular loss (LCC-v1), improves the median
angular error over the baseline by 13.8%. On top of this, the use of
dropout regularization improves the median angular error over the
baseline by 22.5%. Changing the neural architecture to a CNN,



Table 1. Summary of the main characteristics of the original work by Funt et al. [1, 2] (LCC-v0) and the updates proposed in this
paper (LCC-v1 to LCC-v5). They are grouped on the basis of the architecture used: MLP (a), and CNN (b).

Method Architecture Input type Color space Activation Dropout Loss

LCC-v0 (replica [1, 2]) MLP Binarized histogram rg Sigmoid No (did not exist) MSE between chromaticities
LCC-v1 MLP Binarized histogram rg ReLU No Angle between RGB vectors
LCC-v2 MLP Binarized histogram rg ReLU Yes (0.5) Angle between RGB vectors

a)

Method Architecture Input type Color space Loss

LCC-v3 CNN (ResNet-18) Histogram (normalized) rg Angle between RGB vectors
LCC-v4 CNN (ResNet-18) Histogram (normalized) rg & rb Angle between RGB vectors
LCC-v5 CNN (ResNet-18) Histogram (normalized) rg & gb Angle between RGB vectors

b)

Figure 3. Schematic representation of the proposed LCC-v5 (LCC-v3 and v4 can be obtained with slight modifications: starting from an input RAW RGB

image, chromaticity histograms are computed (rg for LCC-v3, rg and rb for LCC-v4, rg and gb for LCC-v5); histograms are bilinearly interpolated to match the

ResNet-18 input size; the CNN estimates the RGB illuminant.

and changing also the input type to a bi-dimensional chromaticity
histogram (LCC-v3), improves the median angular error over the
baseline by 44.3%. Filling the empty area of the input with a
second chromaticity histogram improves the median angular error
over the baseline by 49.8% and 51.0% for LCC-v4 and LCC-v5
respectively.

From the previous analysis we can notice how the largest im-
provement is due to the change of the neural architecture used: the
use of a deep CNN in fact permits to exploit the spatial relation-
ship existing among the bins of the input chromaticity histogram.
We can also observe that LCC-v0 and v1 are those reaching the
lowest errors in terms of 99th percentile and maximum error. The
CNN-based solution able to limit this error increase in the high-
est percentiles is LCC-v5, with a 99th percentile and a maximum
error that are respectively 6.1% and 7.5% worse than the base-
line. We can therefore conclude that the overall best performing
version is LCC-v5.

In Table 3 we compare the performance of LCC-v5 with sev-
eral learning-based methods in the state of the art. Performance
of other methods in the state of the art can be found for example
in [12].

From the results reported in Table 3 we can see how the pro-
posed LCC-v5 outperforms the considered methods in the state

of the art in terms of the average, the median, the tri-mean, and
the best 25% angular errors. It obtains the second best statistics
in terms of the worst 25%, 95th and 99th percentile. Finally, it
obtains the third best maximum error.

Conclusion
The first learning-based color constancy algorithm was pub-

lished about 30 years ago, and was based on a Multi-Layer Per-
ceptron to map from the chromaticities present in the scene to
the illuminant chromaticity. Neural Networks were largely disre-
garded in the period known as AI winter, and learning-based color
constancy algorithms were proposed exploiting different machine
learning techniques. In the last ten years, with advancements
in computing resources, the accumulation of large-scale datasets,
and breakthroughs in training techniques, neural networks expe-
rienced a resurgence in popularity, leading to their current promi-
nence in the field of artificial intelligence and machine learning.
In this paper therefore, we have proposed different update steps
of the original work by Funt et al. including recent deep learning
techniques and architectures.

Experimental results on a standard dataset show how the up-
dated version can improve the median angular error in illuminant
estimation by almost 51% with respect to its original formulation,



Table 2. Performance comparison in terms of estimation angular error of the different versions of LCC proposed in this paper on
the ColorChecker dataset [3] following the fair comparison procedure [19]. The best result for each statistic is reported in blue,
the second one in red, and the third one in orange.

Method Mean Med. Tri-m. B-25 W-25 95-P 99-P Max

LCC-v0 (replica [1, 2]) 3.28 2.53 2.72 0.92 6.80 8.68 11.49 15.37
LCC-v1 2.96 2.18 2.32 0.66 6.66 8.99 12.12 14.62
LCC-v2 2.84 1.96 2.10 0.51 6.73 8.95 13.97 20.66
LCC-v3 2.38 1.41 1.60 0.35 6.07 8.35 13.35 19.12
LCC-v4 2.13 1.27 1.45 0.32 5.37 7.24 12.19 19.74
LCC-v5 2.12 1.24 1.46 0.33 5.39 7.14 12.19 16.52

Table 3. Performance comparison of LCC-v5 with several learning-based illuminant estimation algorithms in the state of the art in
terms of estimation angular error on the ColorChecker dataset [3] following the fair comparison procedure [19]. The best result for
each statistic is reported in blue, the second one in red, and the third one in orange.

Method Mean Med. Tri-m. B-25 W-25 95-P 99-P Max

Cheng et al. [21] 4.03 2.49 2.92 0.52 9.89 12.70 16.78 28.21
Corrected Moments (9 Edge Mom.)[22] 2.84 2.00 2.23 0.71 6.32 7.56 12.38 16.60
Cheng et al. [23] 2.56 1.66 1.83 0.36 6.36 8.14 13.17 20.36
FFCC (model j) [24] 2.23 1.45 1.59 0.35 5.46 7.33 10.85 17.27
FC4 [9] 2.14 1.44 1.57 0.40 5.08 6.50 12.75 15.28
Convolutional Mean [25] 2.50 1.73 1.90 0.51 5.81 7.93 12.42 16.13
QU [12] 3.26 2.07 2.38 0.44 7.98 10.78 14.32 21.68
QU+ft [12] 3.02 2.07 2.26 0.50 7.15 9.22 12.92 17.05
LCC-v5 (this paper) 2.12 1.24 1.46 0.33 5.39 7.14 12.19 16.52

even outperforming recent learning-based illuminant estimation
methods.
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