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Abstract
This study focuses on the segmentation of handwritten ink in historical documents using 
hyperspectral imaging in two spectral ranges (visible and near-infrared). Binarization is 
useful as a pre-processing step for material identification using the reflectance spectra. To 
showcase the challenges of using hyperspectral imaging, classical single-band (Howe and 
Sauvola) and deep learning-based algorithms (DeepLabv3, SAM, DINOv2) are compared. 
For algorithms that take a single image as input, a procedure is presented to select the 
optimal band for binarization. The deep learning-based semantic segmentation algorithm 
DeepLabv3 uses the full spectrum instead. A hyperspectral database encompassing 226 
samples is introduced as a benchmark to compare the performance of the algorithms. The 
study also introduces a novel semi-automatic method for generating ground truths, which 
are needed for computing performance metrics. DeepLabv3 performs on par with the best 
traditional algorithm in both ranges, but overall, it offers more consistent and reliable 
results. DINOv2 demonstrates good semantic understanding in separating foreground and 
background but suffers from limited spatial resolution. Conversely, SAM excels at cap-
turing fine details but lacks the ability to identify text regions. The binarization quality 
obtained with three-channel images is also assessed, generally resulting in lower average 
performance. Our findings contribute to the advancement of technologies for the analysis 
of text in documents of historical interest.

Keywords  Image binarization · Historical documents · Hyperspectral imaging

1  Introduction

Historical documents hold immense cultural and scientific significance. Serving as a testa-
ment to our legacy, manuscripts constitute a valuable source for knowledge retrieval, mak-
ing them crucial elements of cultural heritage worthy of preservation and study [1–4].

The main goal of this study is to develop and evaluate a methodology for the task of 
binarization in hyperspectral images (HSI) of handwritten documents. For this purpose, 
several algorithms will be tested to assess their performance, focusing in particular on the 
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challenges posed by the increased dimensionality and variability of spectral data. Besides, 
the intrinsic value of spectral information for document binarization will be highlighted 
by comparing the quality of binarization between spectral and conventional three-channel 
digital images. The following considerations will introduce in a general way both topics — 
hyperspectral imaging and binarization as a segmentation procedure to separate text from 
substrate. Then, the main contributions of the paper will be summarized.

Hyperspectral imaging as an analytical tool in the context of historical documents is a 
growing field that offers several advantages: it is non-destructive, portable, relatively fast 
and low-cost in comparison to other techniques, and has high spatial and spectral resolu-
tion [5, 6]. Access to spectral data enables the identification of materials in documents [7], 
providing crucial insights into the authenticity and age of the ink [8]. In addition, it can be 
used to recover degraded texts [9], and retrieve features not discernible by the human eye [1, 
10]. In the case of illuminated manuscripts, the technique can be used to extract information 
about the distribution of pigments, in a similar way as it is done in drawings and paintings 
[11–13].

Binarization is a critical preprocessing step in which a multi-tone image is converted 
into a binary image. The substrate pixels (parchment or paper in the case of documents) are 
usually labelled in black and the foreground pixels (text and illuminations) are labelled in 
white [14]. This binary image can then be used, in the case of historical documents, for fur-
ther processing, such as Optical Character Recognition (OCR), page layout analysis, image 
enhancement, or material classification [6]. Due to the state of conservation of some docu-
ments of historical interest, their binarization can be challenging [15]. Some of the problems 
that can occur are ink fading due to humidity and paper deterioration [16], bleed-through 
if both sides of the paper are written [17], and the presence of stains, smear, and creases, 
uneven illumination, varying font size and thin strokes [2, 14]. Despite numerous past 
attempts in this domain, the binarization of degraded documents using conventional images 
remains an open challenge [3]. In our work, both ink strokes and bleed-through text are 
treated as image foreground to ensure comprehensive analysis and accurate segmentation.

Thresholding is the most straightforward method for binarization, with two main 
approaches: global thresholding and local thresholding. Global thresholding defines a single 
threshold for the entire image, making it fast but less effective for documents with complex 
backgrounds [18]. In contrast, local thresholding adapts to image areas, providing a more 
flexible solution. A widely used local adaptive thresholding method was proposed by Sau-
vola et al. [19], based on the assumption that the local intensity distribution of text pixels 
is different from the local intensity distribution of background pixels. However, such algo-
rithms do not work well with background noise [20], and a fixed window is not optimal if 
different font sizes and stroke widths are present [14]. Additional drawbacks of traditional 
image segmentation algorithms are limited accuracy and non-uniformity [21].

A different binarization method, not based on local thresholding, was proposed by Howe 
et al. [22]. It is based on random Markov field classifiers and has also been used in different 
binarization contests, being one of the best performing algorithms, and serving as a basis for 
other robust algorithms [23, 24].

In order to solve the problems of traditional algorithms, deep learning models have 
recently become more popular for pixel-wise image inference [25], and specifically for 
binarizing document images [14]. Although these algorithms may exhibit slower process-
ing speeds, they are generally characterized by higher accuracy values [26]. In the field 
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of semantic segmentation, the DeepLab series [27] are classic models that have achieved 
impressive performance on a variety of datasets [28]. Recent foundation models [29, 30] in 
deep learning have also shown excellent performance in semantic understanding of natural 
images. However, the applicability of these models in separating text from background in 
historical documents has yet to be fully explored.

According to Ciortan et al. [1], using hyperspectral images can enhance ink separation from 
the substrate. They used a simple distance-based classification, without considering common 
binarization algorithms, and only performed tests in the VNIR (visible to near-infrared) range. 
Some previous studies have used multispectral images in the context of document binarization 
[5, 31–37] with promising results. However, none of them have explored the short-wavelength 
infrared (SWIR) range in historical documents, nor compared SWIR with visible range results. 
The SWIR range can be potentially useful if false color images are used to highlight the pres-
ence of inks that fade at these wavelengths, like those with metallo-gallate components.

The main contributions of this study are the following: first, a comparative analysis of 
the performance of two traditional algorithms – Sauvola and Howe – and three deep learn-
ing based models – DeepLab, SAM, and DINOv2 – in the context of historical document 
binarization with hyperspectral image data in both SWIR and visible ranges. Second, a 
new hyperspectral dataset containing 226 samples is used for benchmarking, extracted from 
the Hyperdoc project database [38]. This represents a relevant contribution to researchers 
interested in historical documents and mock-up samples made with historically documented 
recipes. Third, a new semi-automatic procedure to obtain the Ground Truths (GTs) images 
of the samples is proposed to facilitate performance assessment for binarization tasks. The 
analysis of results leads to new insights into the usefulness of spectral information in differ-
ent spectral ranges for binarization, and the limitations of current segmentation algorithms 
for this task in challenging cases.

2  Methods

In this section we present the methods underlying our research.
The approach includes three main steps, corresponding to the subsections: 

1.	 Hyperspectral data collection: hyperspectral fragments are captured across VNIR and 
SWIR spectral ranges using Resonon Ltd. cameras, and annotated. They are catego-
rized into a training set, and two test sets with different levels of difficulty.

2.	 Segmentation methods: five binarization approaches are implemented. The Howe and 
Sauvola methods depend on a small number of tunable parameters. DeepLab is a train-
able deep-learning model for semantic segmentation, SAM is a general-purpose model 
for prompt-based segmentation, and DINOv2 is a foundation model for semantic fea-
ture extraction.

3.	 Selection of hyperspectral image channel: to optimize the input for traditional algo-
rithms, the best-performing single channel from the hyperspectral data is selected using 
a Signal-to-Noise Ratio (SNR) ber-band metric.

Figure 1 illustrates the different steps followed in the methodology of this study, as devel-
oped in the following subsections.
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2.1  Hyperspectral data collection

2.1.1  Image fragments characteristics

The samples used in this study are fragments of spectral images of documents contain-
ing different types of inks of historical interest on different substrates. There are a total of 
111 fragments in the VNIR range and 115 fragments in the SWIR range (see Section 2.1.2 
for details of both ranges). The fragments have variable sizes of around 3cm2, and digital 
dimensions ranging from 45×30 to 150×150 pixels. The fragments were extracted from 
several types of documents, all containing only ink and substrate.

An overview of the primary characteristics of these samples is provided in Table 1.

Table 1  Primary characteristics of the samples, including fragment count, ink types, substrates, time period, 
and source locations
Category VNIR SWIR Inks Substrates Period Source

fragments fragments
Synthetic 50 55 Iron gall, sepia, 

lampblack, 
madder lake 
red dye

Somerset® paper, 
watercolor paper, 
modern parchment

Contempo-
rary (recipes 
from 13 
th-17 th 
centuries)

Synthesized

Alhambra 34 32 Chinese ink, 
red ink

Translucent paper Early 20 th 
century

Alhambra Mu-
seum Archive

Alamas 11 12 Iron gall, sepia/
carbon black)

Parchment (au-
thentic), cotton/
linseed paper 
(forgery)

1461 
(authen-
tic), 1487 
(forgery)

Archive of 
the Royal 
Chancellery of 
Granada

Selva 16 16 Pure/mixed 
iron gall

Linseed or hemp 
fiber paper

1682-1683 Historical 
Archive of the 
Town of Selva

Total 111 115 - - - -

Fig. 1  Steps followed in the methodology for this study on handwritten ink segmentation algorithms for 
hyperspectral images of historical Documents
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Modern synthetic samples contain inks and mixtures all bound with Arabic gum and 
elaborated according to traditional recipes from the 13 th to 17 th centuries [39]. Some of 
them were dyed with madder lake red (rubia tinctoria), a practice common in the Andalu-
sian region during the Arab domination [40], or with diluted lamp black ink. The substrates 
used for the synthetic samples are Somerset® paper with different treatments (gelatin, wheat 
starch, or gum Arabic), watercolor paper, and modern parchment.

“Alhambra” samples were extracted from spectral images of a collection of nineteen 
hand-made architectural plans or transfers depicting sculptures present in some of the 
Alhambra buildings. The type of ink is likely to be Chinese ink (carbon-based), but this is a 
hypothesis based on materials currently used for the same purpose in the period of the docu-
ments; the samples that we have used for this study have not been analyzed to determine the 
ink composition yet. They are preserved in the Alhambra Museum Archive [41].

“Alamas” samples were extracted from two instances of a set of official documents of the 
Islamic period called Alamas. One of the documents is of authentic Islamic origin, while the 
other has been proven to be a forgery commissioned by a Christian noble for the purpose of 
asserting his noble origins. Both documents are preserved at the Archive of the Royal Chan-
cellery of Granada, and were studied for preservation purposes during 2022 [42].

Finally, “Selva” samples were extracted from a small notebook documenting several 
commercial transactions found in the Historical Archive of the Town of Selva (Mallorca 
Island, Spain) [43]. The inks used in this document were determined by X-Ray Fluores-
cence (XRF) techniques through an internal investigation.

In Fig. 2 we show two instances of pages of documents used in the study, with the frag-
ments extracted from them highlighted in yellow. In the Selva page, the deterioration due to 
ink transfer from the back of the page can be observed.

The fragments were divided into three subsets for each spectral range: Train, Easy Test 
and Hard Test. Most of the samples approximately correspond across both ranges, but in 
some cases it was not possible to find exactly the same area of the documents in both ranges. 
For this reason, there are a different number of samples in some subsets in both ranges.

In Table 2, the subdivision of the samples among the subsets is presented, along with 
information about the source documents, number of fragments, number of pixels, inks, and 
substrates. As can be observed, the Easy Test subsets are formed by samples extracted from 
the same document set as the Train subset, while the Hard Test contains entirely different 
documents that are naturally aged, none of them dated after the 17 th century and showing 
clear deterioration due to time and preservation conditions (see Fig. 2 below). For some of 
the binarization algorithms used (see Subsections 2.2.1 and 2.2.2), the division between 
training and test subsets is not relevant because they are not learning-based. But it is very 
relevant for the deep-learning-based approach (see Subsection 2.2.3). In this case, the bias 
introduced by training data sources may have a significant impact on the measured test per-
formance. As such, it is particularly useful to present results on two test scenarios: one that 
simulates a use case more similar to the training knowledge base (Easy Test), and one that 
might be more representative of novel real-world applications (Hard Test).

2.1.2  Instrumentation specifications

We used two cameras from Resonon Ltd. coupled to a linear stage to capture the full cubes 
from where the mini-cube samples were extracted afterwards. The first image capture device 

1 3

39555



Multimedia Tools and Applications (2025) 84:39551–39575

(Pika L) covers the spectral range from 380 to 1080 nm (VNIR range) with 900 pixels per 
line and a field of view (FOV) of 13.5 cm at the working distance (60 cm approximately), 
resulting in a spatial resolution of 0.15 mm/pixel. [44]. The second (Pika IR+) covers the 
range from 888 to 1732 nm (SWIR range) with 640 pixels per line and a FOV of 14.5 cm at 
the working distance of 40 cm approximately, resulting in a spatial resolution of 0.227 mm/
pixel [45]. We cropped the extremes of the range, obtaining 121 bands in VNIR from 400 to 
1000 nm and 161 bands in SWIR from 900 to 1700 nm. The sampling interval was 5 nm for 
both ranges. In all cases, both dark and flat field correction with a white reference surface 
were applied. The light source was a set of four halogen lamps oriented to avoid specular 
reflection from the samples.

Fig. 2  False color image of a document within the synthetic sample set in the VNIR range (above) and 
from a page of the Selva manuscript in the SWIR range (below). The extracted fragment areas are marked 
in yellow. On the right side, one of the fragments extracted from each of the images with size 150×150 
pixels is shown. The false color bands are (645, 565 and 440) nm for VNIR and (1015, 1140 and 1220) 
nm for the SWIR range
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2.1.3  Ground truth (GT) data

For each fragment, a GT binary image was generated using a semi-automatic procedure 
(see steps in Fig. 3). The procedure involved first selecting the band with the highest con-
trast between ink and background (Fig. 3 (b)), as described in subsection 2.3. Then, fore-
ground skeleton was extracted using the bwskel function in Matlab R2023a, which applies 
the medial surface axis thinning algorithm [46] (see Fig.  3 (d)). The skeleton was then 
forced to increase its width until the intensity of surrounding pixels matched the average of 
the borders of a Canny edge detector. Figure 3 (c) shows the detected borders, while Fig. 3 
(e) presents the result after skeletal growth. This is a variation on the method proposed in 
[47], in which the skeleton was manually corrected and then forced to grow until it met 
those borders.

Once the automatic GT is obtained, it is manually reviewed and may be corrected using 
three different approaches. First, the intensity threshold at which growth stops can be modi-
fied to include or exclude lighter strokes based on human criteria. Secondly, several func-
tions included in Matlab R2023a version can be applied to process the original image. 
Functions like imadjust and locallapfilt, based on [48], help to increase contrast. For noise 
reduction, a flat-field correction (imflatfield) or median filtering (medfilt2) can be used. This 
image processing helps skeleton identification and therefore improves the quality of the 
automatic GT generation. Finally, once we have the best possible GT with the algorithm, 
GIMP software [49] can be used for the final check (see Fig. 3 (f) for the final result). We 
used partially transparent layers to superimpose the GT and the reference band images, and 
either expand or erode the automatic GT in the portions of the image that required it. The 
main limitations of this approach are that in this checking stage, the distinction between ink 
and background is made based on visual criteria, a matter which is addressed in the experi-
mental section with tests based on mathematical morphology. Also, the GT for the reference 

Table 2  Summary of subset features including names, documents used to build them (and number of frag-
ments from each document), total number of fragments, total number of pixels, and materials
Sample 
subset

Document of 
origin

Fragments Pixels Inks Substrates

Train 
VNIR

Synthetic (43),  
Alhambra (26)

69 798550 Iron gall, Sepia,  
Lamp black, Mixed

Somerset Watercolor,  
Parchment, Translucent 
paper

Easy Test 
VNIR

Synthetic (7), 
Alhambra (8)

15 86700 Iron gall, Sepia,  
Lamp black, Mixed

Somerset, Translucent 
paper

Hard Test 
VNIR

Alama (11),  
Selva (16)

27 582500 Iron gall or Mixed 
iron gall

Parchment, Linseed+cotton  
paper, Linseed or hemp 
paper

Train 
SWIR

Synthetic (42), 
Alhambra (26)

68 689875 Iron gall, Sepia,  
Lamp black, Mixed

Somerset, Watercolor, 
Parchment, Translucent 
paper

Easy Test 
SWIR

Synthetic (13), 
Alhambra (6)

19 77500 Iron gall, Sepia,  
Lamp black, Mixed

Somerset, Translucent 
paper

Hard Test 
SWIR

Alama (12),  
Selva (16)

28 571000 Iron gall or Mixed 
iron gall

Parchment, Linseed+cotton 
paper, Linseed or hemp 
paper

1 3

39557



Multimedia Tools and Applications (2025) 84:39551–39575

band is not necessarily valid for all bands, since iron gall and sepia inks tend to fade in the 
SWIR range [7].

Nevertheless, we are convinced that this is the best strategy compatible with time con-
straints for providing the GT to our data. Fully automatic methods are available for building 
GT images, but they can be described ultimately as binarization algorithms. So instead of 
testing our collection of algorithms against another particular algorithm, we preferred to test 
it against the performance of a human observer in the binarization task.

In Fig. 4 two instances of false color, reference bands, and GT images are shown, one in 
the VNIR and one in the SWIR range. The very small details in the ink traces in the image 
below are not exactly transferred into the GT because they are very difficult to reproduce 
manually. This is an example of systematic errors induced by the GT used for evaluation. 
We quantify in Section 3.2.5 the impact of these errors, by testing the sensitivity of seg-
mentation metrics to small imperfections in the annotation, and we show that they do not 
substantially affect the performance of the binarization methods in a significant way.

2.2  Segmentation methods and models

2.2.1  Sauvola method

The Sauvola method [19] is a local adaptive thresholding algorithm that is similar to the 
method proposed in [50]. However, the Sauvola method uses a different formula to calculate 
the local mean and standard deviation of pixel intensities. It is also less sensitive to noise 
than Bradley’s Local Image Thresholding [51]. The threshold for this method is calculated 
as

Fig. 3  Steps for GT creation for a fragment of the Alamas set: (a) VNIR false color image (bands 645, 
565, and 440 nm), (b) single-band image with highest contrast (420 nm), (c) foreground boundaries de-
tected using the Canny edge detector, (d) foreground skeleton, (e) skeletal growth result, and (f) final GT 
after manual correction in GIMP

 

1 3

39558



Multimedia Tools and Applications (2025) 84:39551–39575

	
T (x, y) = m (x, y) ×

[
1 + k ×

(
s (x, y)

R
− 1

)]
,� (1)

where T(x,y) represents the local threshold for pixel (x,y); m(x,y) and s(x,y) are the average 
and standard deviation of pixel intensities in the local neighborhood, k is an empirically 
chosen parameter, and R is the dynamic range of pixel values. The dynamic range factor is 
a measure of the relative intensity of a pixel compared to the maximum possible intensity. 
A higher value of R indicates that the pixel is brighter than most of the pixels in the local 
window and helps to preserve objects that are well-contrasted with the background. Empiri-
cally determined parameters, k and R, are critical for its performance. In this study, the 
value of k is set to 0.4, and R is the maximum standard deviation of the window used at the 
evaluated pixel. The local window size is set to 1/3 of the image width by 1/3 of the image 
height. To handle border pixels effectively, padding is applied by replicating the values of 
the border pixels.

2.2.2  Howe method

The binarization method by Howe et al. [22] is not based on local thresholding, but on a 
classifier that labels the pixels based on minimizing a random-field Markov energy function. 
This function uses the Laplacian of the image for separating the two classes, enhancing the 
uniformity of the background areas. It also incorporates edge detection into the energy func-
tion, aiming to align the classes boundaries with the detected edges. Since it is a parametric 

Fig. 4  (Left column) False color image of two of the fragment images in the Hard test VNIR (above, 
bands 645, 565, and 440 nm) and Train SWIR (below, bands 1000, 1200, and 1600 nm). (Center column) 
Reference band image used for building the GT (660 nm above and 1120 nm below). (Right column) GT 
image corresponding to the fragments
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method, it also proposes a way to automatically find the best performing parameters. The 
energy function for a given binarization B is computed according to this equation:

	

EI(B) =
∑p

x=0
∑q

y=0
[
L0

xy (1 − Bxy) + L1
xyBxy

]
+

∑p−1
x=0

∑q
y=0 Ch

xy (Bxy ̸= Bx+1,y)
+

∑p
x=0

∑q−1
y=0 Cv

xy (Bxy ̸= Bx,y+1) ,

� (2)

where L{0,1}
xy  are penalties for mismatch between the class and the appearance of the pixel 

(either text or background), while Ch
xy  and Cv

xy  are weights that try to prevent fast changes 
of classes among adjacent vertical or horizontal pixels (irregularities). Ch

xy  and Cv
xy  depend 

on a parameter that has an image-dependent optimal value. Besides, the Canny edge detec-
tor also needs an additional parameter. These two parameters can be set automatically. 
The original Howe’s implementation [52] for automatic parameterization aims to suppress 
bleed-through pixels and selecting only foreground text, while in our case the aim is to 
detect all pixels containing ink. So we have modified the Canny edge threshold parameter 
specifically for those images that have some bleed-through.

2.2.3  DeepLab model

We selected the DeepLabv3 [27] model as the first neural architecture for our deep-learn-
ing-based approach, based on its well-documented performance in semantic segmentation 
tasks. DeepLab has proven its ability to capture fine-grained details and accurately delineate 
object boundaries, leveraging the dilated convolution technique [53] to integrate multi-scale 
contextual information. These features make it potentially effective in handling complex 
and intricate patterns in historical documents. Nonetheless, we opted to increase the level 
of detail by feeding an upscaled version of the spectral image to the model, and subse-
quently downscaling the segmentation output. The annotated fragments used in training and 
validation, ranging from 30 pixels to 150 pixels per side, are upscaled to a fixed 512×512 
resolution. This process enables the model to adapt to various spatial scales, allowing it to 
learn to capture both fine-grained and larger structural information present in the historical 
documents.

The original DeepLab architecture is designed to work with RGB images, as opposed 
to hyperspectral images. Therefore, a primary modification entails replacing the first con-
volutional layer of DeepLab, originally designed to process 3-channel inputs, with a new 
convolutional layer that can accept N channels, corresponding to the number of spectral 
bands in our hyperspectral data. This adaptation allows us to seamlessly integrate hyper-
spectral information into the model while preserving the subsequent layers and their learned 
weights, a critical aspect of our adaptation process since we aim to leverage transfer learn-
ing [54].

Deep learning models are capable of learning some degree of normalization during train-
ing. Despite this, applying appropriate normalization techniques remains beneficial, as it 
can expedite convergence and enhance the model’s overall robustness. Taking inspiration 
from the inherent normalization in the Sauvola and Howe methods, we implemented an 
efficient neural local normalization. Specifically, we construct a convolutional filter of size 
f × f  with dilation factor l, using uniform weights that sum up to 1, and zero bias. This 
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filter is then convolved with the input image I, effectively producing a normalization matrix 
J having the same resolution. Finally, a local-dilated normalized image is obtained by per-
pixel division between I and J, and provided as input to DeepLab. This process enables the 
definition of an arbitrarily-wide receptive field for the computation of local normalization 
statistics, avoiding computationally-expensive dense statistics.

Preliminary experiments were conducted to accurately select a proper configuration of 
the DeepLab model, in terms of backbone, normalization, and data cleanup. Three back-
bone architectures have been considered for feature extraction, namely: ResNet101 [55], 
ResNet50 [55], and MobileNetV3 [56], with ResNet101 yielding the best performance. 
For the local normalization, a filter of size 5×5 with dilation parameter 8 has been found to 
strike the best balance between computational resources and segmentation quality. Bands 
at the extrema of the acquired spectrum are found to be of lower quality, as corroborated by 
the metrics described in Section 2.3; for this reason, we trim a number of trailing channels 
from both the beginning and end of the spectrum, with 4 channels from each end producing 
the best results.

2.2.4  Segment anything model

The Segment Anything Model (SAM) [30] is a general-purpose segmentation model devel-
oped with a prompt-based paradigm, allowing for both interactive and automatic segmen-
tation. Its architecture consists of an image encoder, a prompt encoder, and a lightweight 
mask decoder, enabling it to generalize across a wide variety of segmentation tasks without 
task-specific fine-tuning.

Since SAM was originally designed for natural RGB images, we assess its performance 
using both single-band images (selected as the most informative spectral band) and three-
channel false-color composites.

A key advantage of SAM is its ability to process various types of input prompts, includ-
ing sparse user-defined points and bounding boxes. However, SAM does not inherently 
assign semantic meaning to its dense segmentation results, meaning its automatic mode 
will indiscriminately segment different regions of the document. To address this limitation, 
we explore SAM in its “Language SAM” configuration [57], which enables segmentation 
through a multimodal approach. In this setup, the input image is processed with Ground-
ing DINO [58], an open-world object detector tasked with identifying text elements within 
the document. This allows for a more targeted segmentation, guiding SAM to focus on ink 
regions rather than extraneous features.

2.2.5  DINOv2 features

DINOv2 features [29] have demonstrated remarkable capability in distinguishing semantic 
content in open-world scenarios. As a self-supervised vision transformer model, DINOv2 
learns rich feature representations without the need for labeled data, making it particularly 
valuable for applications across a variety of domains. By leveraging learned feature embed-
dings, in fact, we anticipate it possible to highlight structural patterns within the document, 
including ink traces, while mitigating the influence of background textures and degradations.

A key limitation of DINOv2 features, however, is their relatively low spatial resolu-
tion. Since the model’s embeddings are derived from hierarchical transformer layers, the 
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resulting feature maps tend to be significantly downsampled compared to the input image. 
This can be problematic for ink segmentation, where fine details are important to detect. To 
address this, supersampling techniques are often employed to enhance spatial resolution 
while preserving the integrity of the learned features. One of the most recent and effec-
tive methods for feature supersampling is FeatUp [59], which reconstructs high-resolution 
representations by learning an upsampling function tailored to feature embeddings: unlike 
naive interpolation-based approaches, FeatUp instead adapts to the structure of the feature 
space. By applying FeatUp to DINOv2 features, we aim to recover finer spatial details 
in the segmentation maps while maintaining the robustness of the underlying semantic 
representations.

2.3  Selection of hyperspectral image channel

Before employing traditional segmentation algorithms, it is essential to determine the opti-
mal image channel for binarization, as these algorithms require a single-channel input. With 
a hyperspectral image at our disposal, there exists a multitude of channels to choose from 
within a broad spectral range. To identify the channel that best supports the task of bina-
rization, an image quality (IQ) metric is employed. Several image quality metrics, such as 
Gradient Magnitude [60], Sharpness Index [61], Entropy [62], and Signal-to-Noise Ratio 
(SNR) [63] were considered. Preliminary tests were carried out with these metrics, visu-
ally evaluating their results and noting that some exhibited limitations, either focusing on 
specific image characteristics like sharpness, or on general qualities such as the naturalness 
of the image.

These limitations, observed in both VNIR and SWIR ranges, led us to ultimately select 
the SNR-based metric. The SNR-based formula [63] is derived as follows:

	
SNR (λ) = 10 × log10

(
Iave

2

σ2

)
,� (3)

where Iave represents the mean intensity of pixels in the image, σ is the standard devia-
tion of pixel intensities, and λ denotes the channel index. In the context of this metric, Iave 
can be interpreted as the signal, while σ can be regarded as the noise in the SNR formula. 
The channel with the lowest SNR, as determined by this formula, is chosen for subsequent 
image segmentation with the traditional approaches, since it corresponds to the channel 
with the highest standard deviation, and therefore, the greatest contrast. Two examples with 
channels selected using this approach can be found in the central column of Fig. 4.

3  Experiments and results

3.1  Binarization quality evaluation metrics

To comprehensively assess the quality of the binarization results, we employ evaluation 
metrics that compare the algorithmic predictions to the semi-automatically created GT. The 
evaluation process involves binarized images, where the two primary classes are foreground 
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(indicating the presence of ink, labeled in white) and background (no ink presence, labeled 
in black). The following three metrics are used for this evaluation:

3.1.1  Peak signal-to-noise ratio (PSNR)

Peak Signal-to-Noise Ratio is a widely used metric for evaluating the quality of segmented 
or binarized images [64]. It quantifies the level of distortion between the ground truth and 
the segmented image. PSNR is calculated as:

	
PSNR = 10 × log10

(
Imax

2

MSE

)
,� (4)

where Imax is the maximum possible pixel value (255 in our case), and MSE is the Mean 
Squared Error between corresponding pixels in the ground truth and segmented images. A 
higher PSNR value indicates a lower level of distortion, implying a more accurate bina-
rization. PSNR values range from 0 to ∞, but an acceptable PSNR value in the context of 
segmentation is usually around 20 [65].

3.1.2  Pseudo-F measure

Given the subjectivity involved in creating ground truths, particularly around the edges, it 
was necessary to implement a weighted measure that takes into account the edges of the 
GT in order to enhance document-oriented evaluation outcomes. The Pseudo-F Measure 
offers an alternative approach to assessing performance, similar to the traditional F-Measure 
[66]. However, it employs the pseudo function with respect to recall and precision instead 
of their direct functions [67]. Pseudo-Recall (pREC) and pseudo-Precision (pPR) rely on a 
weighted penalization of pixels surrounding the borders of the ground truth characters, con-
sidering both the local stroke width and the distance from the contour of the ground truth. 
The Pseudo-F Measure is calculated as:

	
Pseudo−F = 2 × pPR × pREC

pPR + pREC
� (5)

In Pseudo-Recall (pREC), the weights assigned to the foreground of the ground truth 
are adjusted based on the local stroke width. Conversely, in pseudo-Precision (pPR), the 
weights are confined within a region that extends to the background of the ground truth, 
considering the stroke width of the nearest ground truth component. A higher Pseudo F 
Measure indicates a better balance between precision and recall. Pseudo-F Measure values 
range from 0 to 100.

3.1.3  Distance reciprocal distortion (DRD)

The Distance Reciprocal Distortion Metric (DRD) is a measure employed to assess the 
visual distortion in binary document images [68]. This metric considers the distortion for 
each flipped pixel and the number of non-uniform (not exclusively black or white pixels) 
8×8 blocks in the ground truth image. A “flipped pixel” refers to a change in the binary 
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value of a pixel in an image (from black to white or vice-versa) representing a distortion or 
alteration, and its visibility is influenced by factors such as the proximity of pixels and the 
observer’s focus. Even a subtle change in a single pixel can be noticeable, particularly when 
it occurs within the viewer’s field of vision, emphasizing the importance of pixel relation-
ships in visual perception. The DRD calculation is expressed as follows:

	
DRD =

∑
k DRDk

NUBN
,� (6)

where NUBN is the number of non-uniform 8×8 blocks in the GT image and DRDk is 
defined as the weighted sum of the pixels in the 5×5 block of the GT that differ from the 
centered kth flipped pixel at (x,y) in the binarization result image B:

	
DRDk =

2∑
i=−2

2∑
j=−2

|GTk (x + i, y + j) − Bk(x, y)| × WNM (i + iC , j + jC)� (7)

WNM  is a 5×5 normalized weighted matrix defined in [68], and (iC , jC) are the coor-
dinates of its central value, which in our case is equal to (3,3). The DRD metric offers a 
comprehensive evaluation of visual distortion in binary document images, considering both 
individual flipped pixels and non-uniform blocks in the ground truth. A lower DRD score 
indicates more effective binarization.

3.2  Results

In Table 3 the three quality metrics results are shown on both spectral ranges, for each of 
the two subsets using either single band images or three-channel images built as shown in 
Fig. 4. The results shown for DeepLabv3 correspond to either full spectral information or 
three-channel images.

In addition to the three tested algorithms, a practical bound on the metrics is also pro-
vided based on mathematical morphology: given the inherent inaccuracies that are present 
in ground truth annotations, it is useful to include a reference to gauge the sensitivity of the 
involved metrics to minor variations in the binarization maps. For this reason, we performed 
a stress test of the metrics by generating an artificial prediction via the application of math-
ematical morphology to the ground truth.

3.2.1  Comparison between test sets

Overall, with the exception of the Sauvola algorithm in the VNIR range for the DRD met-
ric, the binarization results for the Easy Test subset are better than for the Hard Test subset. 
Since neither Sauvola nor Howe algorithms rely on a training set, this means that at least 
some of the images in the Hard Test subset are intrinsically harder to binarize. This is also 
supported by the fact that the standard deviation is higher for the Hard Test subset in both 
spectral ranges across the three metrics. The Hard Test subset is then in principle an ade-
quate choice for the purpose of challenging the trainable model, and this is supported by the 
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Table 3  Binarization quality metrics for the three algorithms tested in the two spectral ranges (VNIR and 
SWIR) and for each of the test sets considered: Easy Test and Hard Test with single band for Sauvola, Howe, 
SAM, and DINOv2, and full spectral information for DeepLab
Method Range Easy Test Hard Test All Tests Three-channel
PSNR ↑
Sauvola VNIR 13.3 ± 2.4 13.4 ± 2.6 13.4 ± 2.5 13.2 ± 2.5

SWIR 13.2 ± 4.7 9.7 ± 3.6 11.3 ± 4.1 9.6 ± 4.2
Howe VNIR 12.6 ± 2.3 10.8 ± 3.6 11.4 ± 3.2 11.6 ± 2.8

SWIR 14.4 ± 2.8 9.9 ± 3.1 11.9 ± 3.7 10.6 ± 4.0
DeepLabv3 VNIR 15.7 ± 3.2 11.9 ± 3.6 13.3 ± 3.6 11.5 ± 3.4

SWIR 16.3 ± 4.0 9.6 ± 2.9 12.3 ± 4.7 12.6 ± 4.8
DINOv2 VNIR 12.6 ± 2.9 9.4 ± 2.1 10.6 ± 2.8 9.9 ± 2.9

SWIR 14.2 ± 3.3 8.5 ± 2.4 10.8 ± 3.9 10.7 ± 4.0
SAM VNIR 9.3 ± 6.9 1.8 ± 1.3 4.4 ± 5.5 3.8 ± 4.7

SWIR 10.6 ± 5.1 2.2 ± 3.4 5.6 ± 5.8 6.1 ± 6.0
(Morphology bound) VNIR 22.7 ± 6.3 20.4 ± 3.2 21.3 ± 4.7 21.3 ± 4.7

SWIR 17.9 ± 4.1 22.0 ± 5.5 19.5 ± 5.1 19.5 ± 5.1
Pseudo F-Measure (%) ↑
Sauvola VNIR 96.8 ± 2.4 96.4 ± 2.9 96.6 ± 2.7 96.4 ± 2.9

SWIR 94.6 ± 6.5 91.7 ± 4.8 93.0 ± 5.7 90.2 ± 7.7
Howe VNIR 96.5 ± 2.7 92.6 ± 6.6 94.0 ± 5.4 93.9 ± 6.7

SWIR 96.3 ± 6.2 92.1 ± 4.8 93.9 ± 5.8 91.7 ± 7.4
DeepLabv3 VNIR 97.1 ± 3.2 94.2 ± 3.6 95.2 ± 3.7 91.8 ± 5.8

SWIR 96.1 ± 6.4 91.7 ± 4.3 93.5 ± 5.6 93.2 ± 6.0
DINOv2 VNIR 93.6 ± 6.5 89.9 ± 6.0 91.3 ± 6.4 91.9 ± 5.0

SWIR 95.4 ± 6.5 89.8 ± 4.5 92.1 ± 6.0 90.4 ± 7.2
SAM VNIR 87.7 ± 28.0 27.7 ± 25.7 62.4 ± 40.2 61.8 ± 37.9

SWIR 82.7 ± 21.5 38.5 ± 38.0 66.9 ± 35.2 76.3 ± 29.4
(Morphology bound) VNIR 97.7 ± 2.8 98.4 ± 0.9 98.2 ± 1.8 98.2 ± 1.8

SWIR 97.3 ± 1.9 97.7 ± 4.5 97.5 ± 3.2 97.5 ± 3.2
DRD ↓
Sauvola VNIR 5.8 ± 4.4 4.3 ± 2.6 4.8 ± 3.4 5.3 ± 4.0

SWIR 6.0 ± 6.3 9.6 ± 4.5 8.0 ± 5.6 13.1 ± 8.6
Howe VNIR 5.8 ± 3.3 10.4 ± 7.8 8.8 ± 6.9 9.1 ± 9.2

SWIR 3.2 ± 2.3 9.3 ± 4.6 6.6 ± 4.8 10.4 ± 7.1
DeepLabv3 VNIR 3.4 ± 2.7 6.4 ± 3.9 5.3 ± 3.8 10.8 ± 13.4

SWIR 2.9 ± 4.7 10.0 ± 4.5 7.2± 5.8 7.3 ± 6.5
DINOv2 VNIR 7.6 ± 7.6 11.7 ± 5.5 10.2 ± 6.6 11.4 ± 6.0

SWIR 3.8 ± 3.4 13.1 ± 4.0 9.4 ± 5.9 10.5 ± 8.6
SAM VNIR 57.1 ± 83.5 91.7 ± 43.0 79.4 ± 61.9 82.2 ± 61.4

SWIR 18.4 ± 28.3 88.8 ± 58.8 60.3 ± 59.7 57.3 ± 60.3
(Morphology bound) VNIR 1.0 ± 1.2 0.7 ± 0.4 0.8 ± 0.8 0.8 ± 0.8

SWIR 1.3 ± 0.7 0.9 ± 1.5 1.1 ± 1.1 1.1 ± 1.1
“All Tests” is the weighted average of Easy and Hard test. The “Three-channel” set is composed of false 
color images

1 3

39565



Multimedia Tools and Applications (2025) 84:39551–39575

results obtained by DeepLabv3, which are considerably worsened for the Hard Test subset 
in both ranges and the three quality metrics shown in Table 3.

3.2.2  Comparison between VNIR and SWIR results

This comparison offers different results according to the algorithm. For Sauvola, the VNIR 
range has better binarization quality. While for the Howe algorithm, the SWIR range results 
are approximately equal or markedly better. One possible explanation is that Howe is less 
prone to introduce artifacts when an image has relatively little contrast between text and 
background, and the background is not uniform. This situation frequently occurs for the 
Hard Test subset. It is precisely for this subset that the differences between spectral ranges 
are more marked in general. For DeepLabv3, the SWIR range results tend to be worse, save 
for the PSNR and DRD metrics and the Easy Test subset. DINOv2 and SAM present an 
inverted behavior, with SWIR generally offering better results than VNIR. However, the 
relevance of this effect should be reconsidered in light of the overall worse performance, as 
discussed in Section 3.2.3.

As shown in previous studies [7, 69], pure iron gall ink becomes transparent in the SWIR 
range, particularly in spectral bands above approximately 1500 nm. For the single-band 
based algorithm, this is not a problem because the best channel selected according to the 
procedure explained in Subsection 2.3 is never above 1500 nm. But it is a potential problem 
for DeepLabv3 because the different bands of the input spectra have conflicting informa-
tion. In fact, if we look at the All tests column in Table 3 there is a noticeable effect of the 
spectral range in the DeepLabv3 results for all three quality metrics.

An alternative way to visualize the comparison between VNIR and SWIR results is to 
use the examples shown in Fig. 5 for the VNIR and in Fig. 6 for the SWIR range. In these 
two figures, the first, third, fourth, and fifth rows correspond to similar fragments from both 
ranges. By looking at these rows, it can generally be observed that the quality of the bina-
rization is worse in the SWIR range, with the differences being more noticeable for the first 
and fourth rows. The two fragments in these rows belong to the Hard Test subset.

3.2.3  Comparison between methods

For the VNIR range, the Sauvola method is slightly better than Howe (and markedly better 
according to the PSNR metric and DRD metric for the Hard Test subset). The results tend to 
be much more similar between the two single-band-based algorithms in this range, although 
in principle the DIBCO competition results [23, 24] indicate that for the datasets used in 
those competitions, Howe is able to outperform Sauvola. DeepLab outperforms Sauvola 
for the Easy Test subset, but not for the Hard Test subset. On average, the performance of 
Sauvola and DeepLab is similar, although Sauvola is the best in all three metrics.

For the SWIR range, the situation when comparing the two single-band approaches is 
reversed. The explanation for this result is similar to the one offered in the previous sub-
section: Howe is less prone to introduce artifacts when there are spurious blotches, high-
lights, or illumination-induced inhomogeneities in the page, especially when the contrast 
between background and foreground is less marked. DeepLab outperforms both single-band 
approaches in this spectral range for the PSNR metric, and performs better than Sauvola 
according to the three metrics. This means that DeepLab can offer more consistency and 
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reliability in the binarizations under relatively poor image quality conditions, and despite 
the inherent problems of the SWIR range for iron gall inks.

For “text”-prompt SAM the quality of the segmentation is extremely high for images 
where the text is prominent in the image, and semantically identified as such. However, 
in scenarios where denser writing is present, or where it is not easily identified as such, 
language-SAM fails to offer graceful degradation. This significantly impacts the overall 
performance and its usability for our task. For DINOv2+FeatUp, semantic identification 
of ink against substrate is significantly improved compared to SAM. However, the model 
struggles with providing sufficient detail in the segmentation, despite the FeatUp-based 
augmentation.

In Fig. 5, it can be observed how Sauvola is able to deal better than the other two algo-
rithms in general with dark substrate and faint traces conditions (rows 1 and 2). However, 
very thick traces pose a clear problem (see row 5). In this fragment, the thickness of the trace 

Fig. 5  Binarization examples in the VNIR range. The best and worst fragments according to either Pseu-
do-F or DRD metrics are highlighted
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is higher or of the same order as the window size (one third of the image). For central pixels 
in the trace, the standard deviation is very low, and this results in a local threshold value that 
is similar to the one found for the background pixels. Lowering the value of the k parameter 
in (1) from 0.4 to 0.1 can improve this situation, although it does not solve it completely, 
and this change worsens the average results of Sauvola, so in the end we chose to keep the k 
value unchanged. Lowering the value of k results in a higher local threshold for images that 
have less contrast with the background and relatively thin traces, which is more common 
in the fragments belonging to the test sets. Howe, on the other hand, is almost not able to 
find any foreground pixels for the fragments in rows 2 and 4. This is related to the image 
dependency of the optimal parameters related to Canny edge detection. We used the values 
recommended in [22] (algorithm version 3), but these parameters are clearly not optimal for 
our particular set of images. Again, changing these parameters will improve results for some 
instances, but may cause an overall decrease in performance. Another reason that explains 

Fig. 6  Binarization examples in the SWIR range. The best and worst fragments according to either Pseu-
do-F or DRD metrics are highlighted
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the lower quality of Howe’s binarization in the VNIR range is the fact that this algorithm 
is designed to mark bleed-through pixels as background. But in our GT images, the bleed-
through pixels are marked as foreground, because we are interested in them for material 
identification in the document.

As commented before, DeepLab offers a slightly worse overall performance than Sau-
vola in the VNIR range, but on the other hand it is less affected by the image dependency 
of optimal parameter settings, which in the end makes its results more reliable and general.

Looking at the examples shown in Fig. 6, the opposite trend from the one found in the 
VNIR range is observed for Howe, in the sense that it tends to find more foreground pixels 
than the other algorithms (see rows 1 and 2, for instance). For the third row, the central 
hole in the character is also narrower with Howe, and too wide for Sauvola. This is due to 
the effect of the k parameter setting commented above. Again, the global performance of 
DeepLab is more consistent, even if it is not able to find acceptable results for the fragments 
in the first two rows.

3.2.4  Three-channel vs single band images

This comparison is done to see in which cases it is worth performing the best 
band search. In Table  3, the average results for the two test subsets obtained using 
an RGB or three-band image transformed into grayscale by a standard transform 
(Imgrs = 0.2989 × R + 0.5870 × G + 0.1140 × B) as input for the binarization are pre-
sented in the column labelled three-channel. The initial three-channel image was obtained 
as a pseudo-color image using the bands mentioned in Fig.  4 caption. Since there is no 
standard for the selection of these bands in the SWIR range, our choice of 1600, 1200, and 
1000 nm is based on findings from previous experiments [70].

The results suggest that the difference between the optimal band and the three-channel 
image is negligible in the VNIR range for the classical algorithms, with a trend to a higher 
standard deviation in all metrics when the three-channel images are used as input. For Deep-
Lab, the results are consistently worse for the three-channel images. For SAM and DINOv2, 
single channel images appear to be consistently better than three-channel images, as they 
better represent the natural-looking inputs that the underlying foundation models have been 
exposed to.

In the SWIR range, the three-channel image offers clearly worse results than the best 
band. This can very likely be explained by the fact that one of the bands used to form the 
pseudo-color image in the SWIR range is 1600 nm, which is over the fading limit for iron 
gall inks. Then, using several bands in the SWIR range can result in a comprehensive loss 
of information for certain materials, but not for others, as can be appreciated in Fig. 6, which 
shows examples of SWIR fragments that contain iron gall inks in rows 1 and 4. Moreover, 
the higher penetration depth of SWIR radiation tends to make the SWIR images slightly 
more blurred, and this blurriness is also dependent on wavelength, which makes it more 
noticeable for the three-channel than for the single-channel images.

3.2.5  Morphology bound

Among the adopted metrics for evaluation, PSNR is theoretically unbounded (upper limit 
is infinity), Pseudo F-Measure is upper-bounded at 100%, and DRD is lower-bounded at 0. 
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In practice, it is potentially interesting to evaluate the sensitivity of such metrics to minor 
inaccuracies that are unavoidably present in the ground truth annotations, due for example 
to ambiguous pixels lying on the threshold between ink and substrate. To this extent, binary 
opening and binary closing with a square 3 × 3 structural element have been applied to the 
ground truth, providing three fake binarizations, whose results are averaged and reported in 
Table 3 as “(Morphology bound)”.

PSNR, despite being potentially infinite, in practice settles around 20 units, which 
remains distant from all reported configurations, with the exception of DeepLab on SWIR 
Easy Test coming closer to its bound. Pseudo F-Measure is, on the other hand, close to the 
actual predictions, bringing the practical upper bound from 100% down to roughly 97%. 
Finally, DRD’s lower bound is only raised by 1% on average, so the general observations on 
the algorithms’ performance remain unchanged.

3.2.6  Computational complexity comparison

The computational complexity of each binarization algorithm was evaluated based on the 
number of parameters, tuning method, and processing time on both VNIR and SWIR test 
sets. The results are reported in Table 4. Howe’s method, while effective and depending on 
a low number of auto-tuned parameters, is the most time-consuming. The Sauvola method, 
with two empirically determined parameters, processes the images significantly faster. Dee-
pLab, with 61,336,022 trainable parameters, demonstrates substantial computational effi-
ciency on GPU, though it is relatively slower on CPU.

All experiments were conducted on a personal computer with the following hardware 
configuration for the traditional algorithms:

	● Processor (CPU): Intel(R) Core(TM) i5-11400 F @ 2.60GHz (12 CPUs), 2.59 GHz
	● Memory (RAM): 16 GB
	● Storage: 512 GB NTFS SSD
	● Operating System: Windows 10 Pro, v. 22H2, 64-bit

Algorithm Parameters Tuning VNIR 
(ms)

SWIR 
(ms)

De-
vice

Howe 4/4 Auto-
tuned

6691.428 6530.084 CPU

Sauvola 2/2 Empirical 370.804 351.227 CPU
DeepLabv3 
(CPU)

61.3M/61.3M Trainable 2005.100 2093.133 CPU

DeepLabv3 
(GPU)

61.3M/61.3M Trainable 97.761 101.289 GPU

SAM (CPU) 0/636.0M None 3263.842 3183.056 CPU
SAM (GPU) 0/636.0M None 1280.690 1286.715 GPU
DINOv2 
(CPU)

770/22.2M Train-
able 
head

N/A N/A CPU

DINOv2 
(GPU)

770/22.2M Train-
able 
head

248.709 245.710 GPU

Table 4  Computational complex-
ity comparison of binarization 
algorithms

Number of parameters is 
reported as trainable parameters 
over total ones
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The DL-based method required a specialized hardware (GPU), run on a machine with the 
following configuration:

	● Processor (CPU): Intel(R) Core(TM) i7-7700 CPU @ 3.60GHz (8 CPUs)
	● Memory (RAM): 32 GB
	● Graphics Card (GPU): NVIDIA Titan X, 12 GB
	● Storage: 3 TB ext4 SSD
	● Operating System: Ubuntu 22.04.3 LTS, 64-bit

4  Conclusions

This paper explores the use of hyperspectral imaging (HSI) for segmenting handwritten ink 
in historical documents, comparing traditional binarization methods (Sauvola and Howe) 
with the DeepLab deep learning model across VNIR and SWIR spectral ranges.

Results show that the “Easy Test” subset (with test samples from the same documents as 
training ones) yields better binarization outcomes than the “Hard Test” subset. Specifically, 
DeepLab demonstrates greater adaptability to complex samples, highlighting the value of 
the Hard Test subset as a benchmark for learning-based models. Between VNIR and SWIR 
ranges, Sauvola performs best in VNIR, while Howe is equally effective or better in SWIR. 
DeepLab’s results, although generally reliable, are less consistent in SWIR due to conflicts 
in spectral bands, particularly where fading of iron gall inks above certain wavelengths 
impacts segmentation.

Comparing algorithms, Sauvola slightly outperforms DeepLab in VNIR, while DeepLab 
achieves superior results in SWIR, suggesting it offers broader adaptability in challeng-
ing imaging conditions. In comparing three-channel pseudo-color images to single optimal 
bands, results in VNIR are similar for traditional methods, but in SWIR, the three-channel 
approach significantly underperforms due to fading in the higher wavelengths, suggesting 
the need for a different band selection. For DeepLab, the transition to a three-channel input 
introduces a significant performance drop.

These findings highlight the potential of HSI for improving ink segmentation accuracy, 
especially where traditional imaging is insufficient. However, challenges remain, particu-
larly in the SWIR range, where ink fading and data complexity affect performance.

Future research should focus on enhancing binarization methods by enabling Sauvola 
and Howe algorithms to process multiple bands simultaneously and produce results by 
consensus, potentially increasing segmentation reliability. For the DeepLab model, further 
developments could focus on enhancing the model’s interpretability and performance.
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