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bstract. A method for contrast enhancement is proposed. The
lgorithm is based on a local and image-dependent exponential cor-
ection. The technique aims to correct images that simultaneously
resent overexposed and underexposed regions. To prevent halo
rtifacts, the bilateral filter is used as the mask of the exponential
orrection. Depending on the characteristics of the image (piloted by
istogram analysis), an automated parameter-tuning step is intro-
uced, followed by stretching, clipping, and saturation preserving
reatments. Comparisons with other contrast enhancement tech-
iques are presented. The Mean Opinion Score (MOS) experiment
n grayscale images gives the greatest preference score for our
lgorithm. © 2010 SPIE and IS&T. �DOI: 10.1117/1.3386681�

Introduction
et us consider a scene of a room illuminated by a window

hat looks out on a sunlit landscape. A human observer
nside the room can easily see individual objects in the
oom, as well as features in the outdoor landscape. This is
ecause the eye adapts locally as we scan the different re-
ions of the scene. If we attempt to photograph our view,
he result could be disappointing: either the window is
verexposed and we cannot see outside, or the interior of
he room is underexposed and looks black.

Several methods for adjusting image contrast have been
eveloped in the field of image processing. In general, we
an discriminate between two classes of contrast correc-
ions: global corrections and local corrections. Global con-
rast corrections can produce disappointing results when
oth shadow and highlight details have to be adjusted si-
ultaneously. On the other hand, the advantage of the local

ontrast corrections is that they provide a method to map
ne input value to many different output values, depending
n the values of the neighboring pixels and allowing in this
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way for simultaneous shadow and highlight adjustments.
Of the global contrast enhancement techniques, we found
gamma correction and histogram equalization to be the
most common. Gamma correction is a simple exponential
correction and is common in most codes for image process-
ing. Histogram equalization techniques have also been used
by different authors. Based on the image’s original gray-
level distribution, the image’s histogram is reshaped into a
different one with uniform distribution property in order to
increase the contrast. Numerous improvements have also
been made to simple equalization by incorporating models
of perception.1–3

Different algorithms for local contrast correction have
also been proposed. Moroney4 uses nonlinear masking in
order to perform local contrast correction. This correction
can simultaneously lighten shadows and darken highlights,
and it is based on a simple pixel-wise gamma correction of
the input data. However, one of the limitations of the Mo-
roney’s algorithm �common also to other local corrections�
is the introduction of “halo” artifacts �due to the smoothing
across scene boundaries� and also the shrinking of the dy-
namic range of the scene. The adaptive histogram equaliza-
tion �AHE� methods use local image information to en-
hance the image. In Ref. 5, several adaptive �AHE�
techniques are reviewed and compared. The author also
proposed a new AHE method based on a “modified cumu-
lation function” that introduces two parameters. Arici et al.6

presented a general framework based on histogram equal-
ization where contrast enhancement is posed as an optimi-
zation problem that minimizes a cost function. The authors
also introduce penalty terms into the optimization problem
in order to handle noise robustness and black/white stretch-
ing. Both these methods can achieve different levels of con-
trast enhancement, from histogram equalization to no con-
trast enhancement, through the use of different adaptive
parameters. Depending on the image content, these param-
eters have to be manually set.
Apr–Jun 2010/Vol. 19(2)1
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The retinex model introduced by Land and McCann7 has
een applied for many image processing tasks and in par-
icular for image enhancement. This model aims to predict
he sensory response of lightness. The fundamental concept
ehind retinex computation of lightness at a given image
ixel is the comparison of the pixel’s value to that of other
ixels, and the main difference between the different ret-
nex algorithms is the way in which the other comparison
ixels are chosen, including the order in which they are
hosen. The original way of defining comparisons is by
ollowing a path, or set of paths, from pixel to neighboring
ixel through the image. Jobson et al.8 and Rahman et
l.9–11 developed the retinex concept into a full-scale auto-
atic image enhancement algorithm. Their method, called
ultiscale retinex with color restoration �MSRCR�, com-

ines color constancy with local contrast/lightness enhance-
ent to transform digital images into renditions that ap-

roach the realism of direct scene observation. A different
ultiresolution approach for contrast enhancement is pre-

ented by Starck et al.12 Using curvelet transform, the au-
hors address the multiscale enhancement problem and ap-
ly their curvelet-based enhancement technique to edge
etection and segmentation.

Rizzi et al.13 presented an algorithm for unsupervised
nhancement of digital images with simultaneous global
nd local effects, called automatic color equalization
ACE�. Inspired by some adaptation mechanisms of human
ision, ACE realizes a local filtering effect by taking into
ccount the color spatial distribution in the image. ACE has
roven to achieve an effective color constant correction and
satisfactory tone equalization performing simultaneously

lobal and local image corrections. However, the computa-
ional cost of the algorithm is very high. Fairchild and
ohnson14 formulated a model called the image color ap-
earance model �iCAM�. The objective in formulating
CAM was to provide traditional color appearance capabili-
ies, spatial vision attributes and color difference metrics in

simple model for practical applications such as high-
ynamic-range tone mapping.

Rendering high-dynamic-range images �HDRIs� on low-
ontrast media, a process known as tone mapping, is also
elated to the problem of contrast enhancement.

Photographers use dodging and burning to locally adjust
rint exposure in a dark room, inspiring an early paper by
hiu et al.15 that constructs a locally varying attenuation

actor by repeatedly clipping and low-pass filtering the
cene. Their method works well in smoothly shaded re-
ions. Larson et al.16 presented a tone reproduction opera-
or that preserves visibility in high-dynamic-range scenes.
hey introduced a new histogram adjustment technique,
ased on the population of local adaptation luminance in a
cene. Tumblin and Turk17 devised a hierarchy that closely
ollows artistic methods for scene renderings. Each level of
ierarchy is made from a simplified version of the original
cene consisting of sharp boundaries and smooth shadings.
hey named the sharpening and smoothing method low-
urvature image simplifiers �LCIS�. The technique was
hown to be effective to convert high-contrast scenes to
ow-contrast, highly detailed display images. A survey of
arly methods and algorithms able to deal with high-
ynamic-range images is presented in Battiato et al.18 More
ecently, other authors have explored similar ideas—for ex-
ournal of Electronic Imaging 023005-
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ample, Meylan and Süsstrunk19 proposed a method to ren-
der high-dynamic-range images based on the center-
surround retinex model. Their method uses an adaptive
filter, whose shape follows the image’s high-contrast edges,
thus reducing halo artifacts common to other methods. An-
other well-known tone mapping approach is the fast bilat-
eral filtering of Durand and Dorsey.20 Their method is
based on anisotropic diffusion to enhance boundaries while
smoothing nonsignificant intensity variations. This strategy
is similar to the one of Tumblin and Turk,17 but the use of
the bilateral filter enables a speed-up compared to the par-
tial derivative filter proposed by Tumblin and Turk, as well
as enhanced stability. Pattanik and colleagues21 developed a
computational model of adaptation spatial vision for tone
reproduction. Their model is based on a multiscale repre-
sentation of pattern, luminance, and color processing in the
human visual system.

In our work, a local contrast correction is developed
starting from Moroney’s technique, where instead of the
Gaussian filter, which produces the halo artifacts, the bilat-
eral filter of Tomasi and Manduchi22 is used. Bilateral fil-
tering smoothes images while preserving edges by means
of a nonlinear combination of nearby image values. The
bilateral filter combines gray levels or colors based on both
their geometric closeness and their photometric similarity
and prefers near values to distant values in both spatial and
intensity domains. We also introduce here an image depen-
dency to tune the strength of the correction with a param-
eter automatically evaluated from the global statistics of the
image. Last, in order to improve the overall image enhance-
ment, we introduce a histogram clipping procedure, also
based on the image properties, automatically piloted by the
histogram analysis, and an algorithm for color saturation
gain. Preliminary results of this work have been presented
in Ref. 23.

The paper is organized as follows. In Sec. 2, our algo-
rithm is presented. In Sec. 3, we compare and discuss its
performance with respect to other image enhancement
methods available in the literature. A reliable way of assess-
ing the quality of an image is by subjective evaluation.
Therefore, a psychovisual test �Mean Opinion Score, or
MOS� is performed to evaluate the quality of the correc-
tion. Last, Sec. 4 summarizes the conclusions.

2 Local Contrast Correction „LCC… Method

2.1 Local Exponential Correction in LCC
The method we propose for contrast enhancement is based
on a local and image-dependent exponential correction. The
simpler exponential correction, better known as gamma
correction, is common in most codes for image processing
and consists of elaborating the input image through a con-
stant power function, with exponent �. Let us assume for
simplicity a gray image I�i , j�, of 8-bit range. The gamma
correction transforms each pixel I�i , j� of the input image
into the output O�i , j�, according to the following rule:

O�i, j� = 255� I�i, j�
255

��

, �1�

where � is a positive number that usually varies between 0
and 3. This correction gives good results for totally under-
exposed or overexposed images. However, when both un-
Apr–Jun 2010/Vol. 19(2)2
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erexposed and overexposed regions are simultaneously
resent in an image, this correction is not satisfactory. In
he image presented in Fig. 1 �left�, the region of the win-
ow is well illuminated, whereas the rest of the photo is too
ark to see the details. Applying gamma correction �with
=0.35�, the underexposed regions will become lighter as
esired �making noticeable the details�, but the central re-
ion of the photo will be overexposed, as seen in Fig. 1
right�.

The extension of Eq. �1� to a color image is straightfor-
ard, applying the rule to each of the components in the
GB space or only to the luminance Y in the YCbCr space.

n what follows, we continue considering the case of a gray
mage. For the case of an image that has only certain re-
ions with the correct illumination and other regions that
re not well exposed, a local correction will be needed that
llows for simultaneous shadow and highlight adjustments.
s we are interested in a local correction, the exponent of

he gamma correction will not be a constant but instead will
e chosen as a function that depends on the point �i , j� to be
orrected and on its neighboring pixels N�i , j�. Equation �1�
hus becomes:

�i, j� = 255� I�i, j�
255

���i,j,N�i,j��

. �2�

oroney4 suggested the following expression for the expo-
ent:

�i, j,N�i, j�� = 2�128−mask�i,j�/128�, �3�

here mask�i , j� is an inverted Gaussian low-pass filtered
ersion of the intensity of the input image. Mask values
reater than 128, corresponding to dark pixels with dark
eighbors in the original image, will give rise to exponents
smaller than 1, and therefore, from Eq. �2�, an increase of

he luminance will be observed. Values smaller than 128,
orresponding to bright pixels with bright neighbors in the
riginal image, will result in exponents � greater than 1 and
decrease of the luminance. Mask values equal to 128 will
roduce an exponent equal to one, and no modification of
he original input is obtained. The greater the distance from
he mean value 128, the stronger the correction. We note
hat white and black pixels, as in the gamma correction,
emain unaltered independently of the value of the expo-
ent. In this work, Eq. �3� becomes:

ig. 1 �a� Original image with simultaneous underexposed and
verexposed regions. �b� Gamma correction with �=0.35.
ournal of Electronic Imaging 023005-
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��i, j,N�i, j�� = ��128−BFmask�i,j�/128�, �4�

where BFmask�i , j� is an inverted low-pass version of the
intensity of the input image, filtered with a bilateral filter,22

and � is a parameter depending on the image properties.
The creation of the mask and the choice of the parameter
are extensively reported in the following sections.

2.2 Bilateral Filter in LCC
The Gaussian low-pass filtering computes a weighted aver-
age of pixel values in the neighborhood, in which the
weights decrease with distance from the center. The as-
sumption is that near pixels are likely to have similar val-
ues, and it is therefore appropriate to average them to-
gether. However, the assumption of slow spatial variations
fails at edges, which are consequently blurred by low-pass
filtering. In order to avoid averaging across edges, while
still averaging within smooth regions, Tomasi and
Manduchi22 presented the bilateral filter. Their idea was to
do in the intensity range of an image what traditional filters
do in its spatial domain. Two pixels can be close to one
another—that is, occupy nearby spatial location—or they
can be similar to one another—that is, have nearby values.
The goal of using the bilateral filter to calculate the mask in
Eq. �4� instead of the Gaussian filter proposed by Moroney
is to decrease the halo effects that appear on certain images
when only the spatial Gaussian filter is used. In particular,
regions with high-intensity gradients are candidates to
show the halo effect. One of the principal characteristics of
the bilateral filter is to smooth images while preserving
edges. Therefore, we expect the halo effect to decrease. The
LCC algorithm we propose is a local exponential correc-
tion, applied to the intensity, as follows:

O�i, j� = 255� I�i, j�
255

���128−BFmask�i,j�/128�

. �5�

The BFmask�i , j� is defined over a window of size �2K
+1�� �2K+1� and is given by the bifiltered image of the
inverted version of the input Iinv�i , j�=255− I�i , j�:

BFmask�i, j� =
1

k�i, j� �
p=i−K

i+K

�
q=j−K

j+K

�exp�−
1

2�1
2 ��i − p�2 + �j − q�2�	

�exp�−
1

2�2
2 �Iinv�i, j� − Iinv�p,q��2	

�Iinv�p,q� , �6�

where k�i , j� is the normalization factor given by:

k�i, j� = �
p=i−K

i+K

�
q=j−K

j+K

exp�−
1

2�1
2 ��i − p�2 + �j − q�2�	

�exp�−
1

2�2
2 �Iinv�i, j� − Iinv�p,q��2	 . �7�

In Eqs. �6� and �7�, �1 is the standard deviation of the
Gaussian function in the spatial domain, and � is the stan-
2
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ard deviation of the Gaussian function in the intensity do-
ain. The parameter �1 is based on the desired amount of

ow-pass filtering. A large �1 blurs more—that is, combines
alues from more distant image locations. Similarly, �2 is
et to achieve the desired amount of combination of pixel
alues. As �2 increases, the bilateral filter approaches the
aussian low-pass filter. The dimension K of the window
epends on the shape of the spatial Gaussian, through the
ollowing relation:

= �2.5 � �1� , �8�

here � � indicates “the integer part of.” If �1 is too high,
he image results are too blurred, the exponent tends to a
onstant, and Eq. �5� tends to the simple gamma correction
f Eq. �1�. Otherwise, if the window is too small, the image
s not blurred, and the correction does not take into account
he local properties of the image.

In Fig. 2, an image is presented that shows a high-
ntensity gradient and thus is a candidate to represent the
alo effect. The LCC output �with �=2� and the corre-
ponding bifilter mask are shown in Fig. 3 �left and right,
espectively�. The Moroney correction and the correspond-
ng spatial Gaussian mask are shown in Fig. 4 �left and
ight, respectively�. Comparing these two figures, we ob-
erve that the halo artifacts present in Fig. 4 are signifi-
antly reduced in Fig. 3. Different authors have followed
he ideas of Tomasi and Manduchi, and in particular, Du-
and and Dorsey20 provided a theoretical framework for
ilateral filtering and also accelerated the method using a
iecewise-linear approximation in the intensity domain and
ubsampling in the spatial domain. A fast approximation of
he bilateral filter using a signal processing approach has

Fig. 2 Original image to be elaborated. Dimension: 511�341.

Fig. 3 �a� LCC output of Fig. 2. �b� Bilateral filtered mask used.
ournal of Electronic Imaging 023005-
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been presented by Paris and Durand.24 In our work, in order
to make the bilinear filter algorithm faster, the spatial
Gaussian in Eq. �6� is simply replaced by a box filter of
dimension 3*�1. The elaborated images do not show im-
portant differences, and the times are greatly reduced �by a
factor of 7 in the case of Fig. 2�.

2.3 � Parameter Optimization
In this section, we evaluate the more convenient value for �
in Eq. �5� in the elaboration of a given image. In fact, it
would be preferable to perform different contrast correc-
tions depending on the characteristics of the single shot.
For low-contrast images, where a stronger correction is
needed, � should be high, say between 2 and 3, while for
better contrasted images, � should diminish toward 1,
which corresponds to no correction.

In order to develop an automatic tool to be applied to
every image, a formulation of an estimated value of � is
needed. Let us rewrite Eq. �5� in terms of expected values:

E�O�i, j�� = 255 � E�� I�i, j�
255

���128−BFmask�i,j�/128�	 , �9�

where E indicates expected value.
Starting from the Moroney formula �Eq. �3��, where the

threshold for the mask inversion was set equal to 128, we
set the mean value of a gray image equal to 128. Within
this assumption, Eq. �9� becomes:

E�O�i, j�� = 255 � E�� I�i, j�
255

���128−BFmask�i,j�/128�	 ,

=128. �10�

As we know that 0�mask�255, we can consider the two
extreme conditions, and from Eq. �10�, we will have the
following two estimated values of �:

� 

ln�Ī/255�
ln�0.5�

when BFmask = 255, �11�

� 

ln�0.5�

ln�I/255�
when BFmask = 0, �12�

where Ī is the estimated value or mean value of the inten-

sity of the input image. If Ī�128, that means a dark image,
mask values are toward 255, because it is associated with
the negative of the intensity image, and thus Eq. �11� can be

Fig. 4 �a� Moroney correction of Fig. 2. �b� Gaussian mask used.
Apr–Jun 2010/Vol. 19(2)4
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sed for the estimation of �. Otherwise, if Ī�128—that is,
bright image—� can be estimated with Eq. �12�. The

arameter � given by Eqs. �11� and �12� could be consid-
red as a criterion to decide whether it is valid to apply the
ontrast enhancement method to the original image. That is,
f � is close to one ���1.2�, we could argue that the origi-
al image does not need to be elaborated. As an example,
e show in Fig. 5 an original dark photo and the corre-

ponding elaborated LCC images for different values of the
parameter. The corresponding value of � in this case is

valuated from Eq. �11�, and is equal to 2.6.
The entire enhancement procedure of our method is or-

anized as a chain of algorithms, as indicated in Fig. 6. In
he following sections, we explain the remaining modules
orresponding to stretching, clipping, and color saturation.

.4 Contrast Enhancement Chain: Stretching,
Clipping, and Saturation Gain in LCC

.4.1 Stretching and clipping
rom a deeper analysis of the intensity histogram before
nd after the local correction proposed, we find that despite
better occupation of the gray levels, the overall contrast

nhancement is not satisfying. Also, especially for low-
uality images with compression artifacts, the noise in the
arker zones is enhanced. These effects that make the pro-
essed image grayish are intrinsic in the mathematic formu-
ation of Eq. �5� adopted for the local correction. To over-
ome this undesirable loss in the image quality, a further
tep of contrast enhancement, consisting of a stretching and
lipping procedure, and an algorithm to increase the satu-
ation are introduced in this section. The main characteristic
f the contrast procedure we propose is that it is image
ependent: stretching and thus clipping are piloted by the
mage histogram properties and are not fixed a priori. To
etermine the strength of the stretching and thus the num-
er of bins to be clipped, it is considered how the darker
egions occupy the intensity histogram before and after the
CC algorithm. The idea is that pixels belonging to a dark

ig. 5 �a� Original image; dimension 320�240. �b� LCC output with
=1.5. �c� LCC output with �=2. �d� LCC output with �=2.6.
ournal of Electronic Imaging 023005-
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area, such as a dark object, that usually occupy a narrow
and peaked group of bins at the beginning of the intensity
histogram will populate more or less the same bins after a
contrast enhancement algorithm. On the other hand, pixels
of an underexposed background that create a more spread
histogram peak after the same algorithm must populate an
even more widespread region of the histogram. To evaluate
how these dark pixels are distributed, the algorithm pro-
ceeds as follows:

1. The RGB input image is converted to the YCbCr
space. �This space is chosen because it is common in
the case of JPEG compression, but other spaces
where the luminance and the chrominance compo-
nents are separated can be adopted.�

2. The percentage of the dark pixels in the image is
computed. �A pixel is considered dark if its lumi-
nance Y is less than 35 and its chroma radius ��Cb
−128�2+ �Cr−128� 2� 1 /2 is less than 20.�

3. If there are dark pixels, the number of stretched bins,
bstr, is evaluated as the difference between the bin
corresponding to the 30% of dark pixels in the cumu-
lative histogram of the LCC output intensity, b_out-
put30%, and the bin, b_input30%, corresponding to
the same percentage in the cumulative histogram of
the input intensity: bstr=b_output30%−b_input30%.
In the case of dark regions that must be recovered,
this percentage of pixels, which experience has sug-
gested be set at 30%, generally falls in the first bins,
under a narrow peak of the histogram, together with
the rest of the dark pixels, and thus most of these

Fig. 6 Flowchart of the local contrast correction method proposed
here.
Apr–Jun 2010/Vol. 19(2)5

se: http://spiedl.org/terms



c

2
T
i
a
a
f



w
�
v

3
I
a
a
a
t
t
t
i

h
s
t
t
i
a
c
t
i
r
7
i
t
t
b
�
g
i
b

Schettini et al.: Contrast image correction method

J

Downloaded Fro
pixels are repositioned at almost the initial values. In
the case of underexposed regions, however, the same
percentage generally falls under a more widespread
peak, and thus only part of the dark pixels are recov-
ered.

4. If there are no dark pixels, the stretching is done to
obtain a clipping of 0.2% of the darker pixels.

5. In any case, the maximum number of bins to be
clipped is set to 50.

For the brighter pixels, the stretching is done to obtain a
lipping of the 0.2%, with a maximum of 50 bins.

.4.2 Color saturation
o minimize the change of the color saturation between the

nput and the output images, the following formulation is
pplied to the RGB channels, as suggested by Sakaue et
l.25 The transformed values R�, G�, B� are obtained as
ollows:

R� =
1

2
�Y�

Y
�R + Y� + R − Y�

G� =
1

2
�Y�

Y
�G + Y� + G − Y�

B� =
1

2
�Y�

Y
�B + Y� + B − Y� � , �13�

here Y’ is the corrected luminance obtained after the
LCC+clipping� correction module, as indicated in the pre-
ious section.

Results and Discussion
n this section, we first present the results obtained when
pplying the LCC algorithm to two different kinds of im-
ges, and we show how the modules of stretching, clipping,
nd saturation further improve the correction depending on
he image characteristics. In the second part of the results,
he whole algorithm �LCC+clipping+saturation� is applied
o different images and the results are compared with other
mage enhancement techniques.

In Fig. 7, a photo is shown where the darker part of the
istogram �first 50 bins� corresponds to a dark region of the
cene that we want to enhance. On the other hand, in Fig. 8,
he dark areas �first 30 bins� are black regions of the image
hat we want to preserve �The black clothing�. After apply-
ng the LCC module to Figs. 7 and 8, the new histograms
re more widespread than the original but are moved and
oncentrated around the middle values of the range. Equa-
ion �5� applied to both images has the same effect of mak-
ng these dark regions too bright. Moreover, the LCC cor-
ected images show desaturated colors �middle row of Figs.
and 8�. The next step of histogram stretching and clipping

s different for these two figures. For Fig. 7, it is necessary
o recover only partially the dark pixels, while for Fig. 8, all
he dark pixels of the clothing must be recovered. In the
ottom row of Figs. 7 and 8, the final elaborated images
LCC+clipping+saturation� and their corresponding histo-
rams are shown. A correct redistribution of the histogram
s obtained, and a good contrast correction is observed in
oth images �bottom row of Figs. 7 and 8�.
ournal of Electronic Imaging 023005-
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As already mentioned, a great variety of algorithms for
image enhancement are available in the literature. We recall
that our method is essentially a contrast correction one, and
we have considered only a module for color saturation at
the end of the chain �as indicated in Sec. 2.4.2�. In order to
compare our algorithm’s performance with some other
methods, we first concentrate on the case of grayscale im-
ages. Figures 9 and 10 show two example input images and
the results applying our method, the Moroney correction
and the retinex method. This last one has been evaluated
within its Frankle-McCann version, where four iterations
have been used for the calculations.26 Retinex and our
method increase very well both the global and local con-
trasts, highlighting details that were hidden in the original
image. However, we observe that the retinex results present
an overenhancement effect, and we could consider our cor-
rection as a more natural one. The Moroney correction is
globally darker with respect to the other results. Experi-
mental results for other test grayscale images have shown
similar tendencies.

3.1 Quality Assessment
The improvement in images after enhancement is often
very difficult to measure. To date, no objective criteria to
assess image enhancement capable of giving a meaningful
result for every image exist in the literature. Full reference-
quality assessment metrics cannot be applied, since these
methods evaluate the departure of the output image with
respect to an original one that is supposed to be free of
distortions. In our present case of contrast enhancement, no
such original “distortion-free” images exist, and the elabo-
rated images should be an enhanced version of the input.

There exist some objective metrics in the literature that
aim to estimate brightness and contrast in the image, such
as entropy �H�, absolute mean brightness error �AMBE�,
and measure of enhancement �EME�.27–29 AMBE is the ab-
solute difference between input and output mean, and EME
approximates an average contrast in the image by dividing
the image into nonoverlapping blocks, defining a measure
based on minimum and maximum intensity values in each
block and averaging them.

Absolute values of these metrics �H, AMBE, and EME�
should be carefully analyzed, since they do not necessarily
correlate with an improvement of image quality in terms of
contrast enhancement. Let us note that, within this context,
we are implicitly associating the image quality concept to
the naturalness of the image. For example, with respect to
the use of the EME metric, high values of EME should
indicate regions with high local contrast, while EME values
of nearly zero should correspond to homogenous regions. If
an algorithm introduces noise in such homogenous regions,
a higher EME value will be obtained, and this is certainly
not in correspondence with an image quality improvement,
as can be seen in the example shown in Fig. 11, where for
the retinex processing, noise is amplified and the corre-
sponding EME value equals 31.70. This value is higher
than that corresponding to the other two algorithms com-
pared here �EME_Identity=25.09, EME_LCC=18.09,
EME_Moroney=23.76�.

AMBE represents the distance from mean brightness of
the original. In an enhancement procedure, we do not al-
ways want to preserve the original brightness. In fact, pre-
Apr–Jun 2010/Vol. 19(2)6
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erving the original brightness does not always mean pre-
erving the natural look of the image. If the original images
re strongly underexposed and/or overexposed, we expect a
igh AMBE value, indicating that the quality could have
een improved. For example, our LCC correction applied
o the image shown in Fig. 7 gives an AMBE value of
1.22. On the other hand, in the case of correctly exposed
mages or night photos, we expect our algorithm not to
ignificantly modify the mean brightness. �See values of the
etric for Fig. 11: AMBE_LCC=18.89, AMBE_Moroney
23.86, AMBE_Retinex=48.58.�

Fig. 7 �a� Original image. �b� Histogram of or
beginning of the histogram corresponds to the
Histogram of LCC output with �=2.5. �e� Final e
gram of final elaborated image.
ournal of Electronic Imaging 023005-
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With respect to the entropy values, high values of H
indicate a better occupation of all intensity levels. This will
be associated with a visually pleasing image if the acquisi-
tion conditions were reasonably well balanced. Starting
from images with sharply peaked histograms �underex-
posed and/or overexposed or night images�, obtaining a flat
histogram could increase noise. �See values of the metric
for Fig. 11: H_identity=5.86, H_LCC=6.01, H_Moroney
=6.58, H_Retinex=7.61.� Thus, the higher value of H
�ideal flat histogram� does not always represent a visually
pleasing image.

age. In this case, the wide dark peak at the
ound �see text�. �c� LCC output with �=2.5. �d�
ted image; LCC+clipping+saturation. �f� Histo-
iginal im
backgr
labora
Apr–Jun 2010/Vol. 19(2)7
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Similar conclusions have been pointed out by Arici et
l.,6 while evaluating the performance of their method with
he same metrics.

Given all the considerations cited earlier about the ob-
ective metrics, we note that a reliable way of assessing the
uality of an image is by subjective evaluation. Therefore,
e have implemented the Mean Opinion Score �MOS� test

o evaluate the performance of our algorithm and compare
t with Moroney and retinex.

The MOS test, using paired comparison, was imple-
ented for 10 images �indoor, outdoor, daylight, night, por-

Fig. 8 �a� Original image. �b� Histogram of orig
beginning of the histogram is due to the black s
Histogram of LCC output. �e� Final elaborated im
elaborated image.
ournal of Electronic Imaging 023005-
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trait� presenting underexposed and/or overexposed regions
and 12 viewers. The preference score index is calculated
for each of the preceding methods, and the greatest one
�0.79� is obtained for our approach, agreeing with our vi-
sual inspection observations of Figs. 9 and 10. In respect to
the other two methods, the Moroney technique is posi-
tioned second for the preference score �0.62�, and the ret-
inex model �0.46� is third. The psychovisual test and results
are detailed in Sec. 5.

Let us now elaborate one of these images �for example,
the one in Fig. 9� in their color version. In Fig. 12, we

age. In this case, the narrow dark peak at the
sent in the photo �see text�. �c� LCC output. �d�
LCC+clipping+saturation. �f� Histogram of final
inal im
uits pre
ages;
Apr–Jun 2010/Vol. 19(2)8

se: http://spiedl.org/terms



c
t
w
T
e
m
r
a
p
t
o
i
o
t
r

4
I
r

F
c

F
c

Schettini et al.: Contrast image correction method

J

Downloaded Fro
ompare our results �we now take into account the satura-
ion module of Sec. 2.4.2� with the Moroney correction and
ith the retinex approach in its Frankle-McCann26 version.
he strength of detail enhancement is observed in all three
laborated images. The retinex shows a color change that
akes the result overenhanced and unnatural. Our algo-

ithm achieves a good contrast enhancement �at both local
nd global scales� while affecting the colors in a more
leasing way. The Moroney correction is darker compared
o the other two methods. This shows the effectiveness of
ur automated � parameter tuning and saturation preserv-
ng treatment. Comparisons have been also made between
ur method and the MSRC of Jobson et al.8 �not shown in
his paper�, and similar conclusions to the comparison with
etinex results presented here can be drawn.

Conclusions
n this work, we presented a local contrast correction algo-
ithm that allows for simultaneous shadow and highlight

ig. 9 �a� Original image. �b� Our proposed method. �c� Moroney
orrection. �d� Retinex.

ig. 10 �a� Original image. �b� Our proposed method. �c� Moroney
orrection. �d� Retinex.
ournal of Electronic Imaging 023005-
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adjustments, starting from a simple pixel-wise gamma cor-
rection, automatically piloted by image statistics analysis.
In order to prevent introduction of halo artifacts, an edge
preserving filter, based on bilateral low-pass techniques,
has been adopted. The proposed method, compared with
other solutions well known in the literature, properly en-
hances the dynamic range in both low-light and high-light
regions of an image while avoiding common quality loss
due to halo artifacts, desaturation, and grayish appearance.
The Mean Opinion Score test has been carried out to evalu-
ate the performance of different contrast correction meth-
ods for the case of grayscale images. The highest score was
obtained for our proposed algorithm. Our method has
shown to be robust with respect to a heuristic choice of
parameters. However, a further improvement could be
achieved with an optimization procedure to estimate their
values starting from a proper image database.

Fig. 11 �a� Original image �EME=25.09, H=5.86�. �b� Our proposed
method �EME=18.09, AMBE=18.89, H=6.01�. �c� Moroney correc-
tion �EME=23.76, AMBE=23.86, H=6.58�. �d� Retinex �EME
=31.70, AMBE=48.58, H=7.61�.

Fig. 12 �a� Original image. �b� Our proposed method. �c� Moroney
correction. �d� Retinex.
Apr–Jun 2010/Vol. 19(2)9
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ppendix
psychovisual experiment �Mean Opinion Score� was per-

ormed using a paired comparison in which viewers were
sked to select an image from a pair, based on their
reference.30 During the tests, the following algorithms
ere compared:

• Identity algorithm �the original scene�
• Our algorithm �LCC+clipping+saturation�
• Moroney4

• Retinex26

Test Method
en badly exposed scenes �grayscale images� were used for

he test. We used four different versions of each scene, one
or each algorithm. On each trial of the experiment, sub-
ects viewed a pair of images. A pair was formed by two
ersions of the same scene, and the subject was asked to
ndicate which image was the preferred one. Each version
f a scene was compared with all the other versions of the
ame scene, for a total of 60 pairs �10 scenes�6 combina-
ions�. In all the experiments, the images were shown in a
andom order, different for each subject. During a prelimi-
ary test, each subject was implicitly trained about the kind
f images he/she was going to evaluate.

Test Condition
o perform the psychovisual test, the images to be judged
ere shown on a web-based interface. We have adopted
ve 19-in CRT COMPAQ S9500 display monitors. All the
onitors were calibrated �D65, gamma 2.2, luminance

00 cd /m2�. Their resolution was 1600�1200 pixels that
orrespond to 110 dpi �using 18 in as the physical diagonal
f the screen, as indicated by the manufacturer�. The re-
resh rate was 75 Hz. The ambient light levels �typical of-
ce illumination� were maintained constant between the
ifferent sessions. The distance between the observer and
he monitors was about 60 cm �corresponding to about
6 pixels per deg of visual angle�. All the original scenes
tilized for the psychovisual tests were cropped and under-
ampled to fit a 600�600 pixel box.

Viewers
he panel of subjects involved in this study was recruited

rom the Computer Science Department. The subject pool
onsisted of 12 students inexperienced with image quality
ssessment. Subjects had normal or corrected-to-normal vi-
ual acuity. Each subject was individually briefed about the
odality of the experiment in which he/she was involved.
uring the test, we evaluated a total of 720 pairs �12
iewers�10 scenes�6 combinations�. The preference
core is defined as the percentage of times an algorithm was
referred on the total number of �evaluated� pairs where it
as present �10 scenes�12 viewers�3 combinations�.
he standard error of the mean �SEM� along the algorithm
imension was also estimated. The preference scores for
ach algorithm and the corresponding SEM are shown in
able 1.
ournal of Electronic Imaging 023005-1
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