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A B S T R A C T

Image cropping aims at the selection of the relevant part of an image maximizing its aesthetic quality and
composition. The part of the image that needs to be removed is highly dependent on user preferences and can
be related to image aesthetics, composition, informativeness, or other criteria. Since the concept of the perfect
crop does not exist, but there are several cropping possibilities, recent cropping algorithms are trained to rank
a set of crop candidates based on their compositional quality. To this end, several benchmark databases have
been released that provide for each image a series of human-annotated crop candidates with corresponding
scores. Many of the image cropping methods rely on a single criterion to define the best crop or crops in
an image. However, a single criterion misses the complexity of human opinions which can differ in personal
preferences and backgrounds. Motivated by this, we formulate the cropping problem as a ranking problem of
candidate crop regions using a grid anchor based approach and multiple criteria. To evaluate the goodness
of a crop region, we design a cropping method by combining three efficient and lightweight neural networks
specifically designed to evaluate the quality of a crop in terms of aesthetics, composition, and semantics. Our
results on standard datasets show that using more criteria yields better crops than state-of-the-art approaches.
This result is also confirmed by a subjective study on user preferences that involved a panel of users.
1. Introduction

The aims of image cropping is to re-framing an image by excluding
portions of it. Depending on the task, the re-framing is intended to
exclude unwanted or non-informative regions, and, in general, to have
an image with a better overall photographic composition. Automatic
image cropping can be leveraged in different applications comprising
digital photography, data visualization, and computer vision.

Similar to image cropping are image thumbnailing, and image retar-
geting (Cho et al., 2017; Esmaeili et al., 2017). Cropping, thumbnailing,
and retargeting are three similar approaches to image re-framing with
subtle differences. Image thumbnailing aims at defining a region in the
image to be used as a preview of the whole image (Esmaeili et al.,
2017; Wang et al., 2016). Thus the thumbnail image should represent
the original contents as best as it could. In general, no photographic
or compositional constraints are required. Image retargeting is a more
complex resizing strategy where the image is restructured in order to fit
as much information as possible in a target region (Cho et al., 2017).
Different from the previous two image re-framing strategies, image
cropping often leverage photographic, and compositional rules in order
to select the best region in the image. Moreover, depending on the
application, the cropped region is usually not constrained with respect
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to the resolution or aspect ratio (see Fig. 1 for a qualitative comparison
among the three different approaches). Many early works in image
cropping relied on handcrafted features based on cues borrowed from
human’s perception or photographic rules (Liu et al., 2010; Nishiyama
et al., 2009). More recently, with the development of efficient and
effective deep learning techniques, there are many works that exploits
them in the context of image cropping using convolutional neural
networks.

Most of the recent works in image cropping can be categorized
according to the underlying strategy and the cues used in determining
the best crop or crops. With respect to the strategy, there are methods
that try to find a single best crop in the image (Fang et al., 2014; Li
et al., 2018). These methods usually exploits optimization techniques
to maximize a given target function that embeds criteria defining what
an ideal crop should be (see Fig. 2(a)).

Other approaches use a two step strategy (Liu et al., 2010; Wang &
Shen, 2017; Wang et al., 2018). In the first step, a number of candidate
regions are selected either via sliding windows or using a set of pre-
defined constrained regions (i.e anchor boxes). In the second step, using
suitable criteria, the candidate crops are ranked. The problem thus
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Fig. 1. Comparison between different manipulation techniques for presenting and browsing images. In (a) the original image is presented; (b) shows the result of the proposed
cropping method; (c) reports the image produced by the thumbnailing method in Esmaeili et al. (2017); finally, (d) exhibits the original image retargeted to half the width size
obtained thanks to Cho et al. (2017).
Fig. 2. Cropping paradigms. (a) The goal of this class of cropping methods is to estimate a set of cropping coordinates (x,y,w,h) given an input image. (b) Given an input image,
these cropping methods predict a score list by evaluating each anchor box contained in a set of pre-defined anchor boxes.
is reformulated from finding the best crop to determining the most
suitable ranking of a set of crops (see Fig. 2(b)).

Regardless of the cropping strategy exploited, cropping algorithms
mostly leverage very few criteria in evaluating the goodness of a crop.
Most of the cropping algorithms exploits either some notion of saliency
or image aesthetic (Ciocca et al., 2007; Kao et al., 2017; Nishiyama
et al., 2009; Stentiford, 2007). Few consider these two characteristics
together (Lu et al., 2019b; Wang et al., 2018).

Most of the methods in the literature consider either saliency or
aesthetic as the most important quality aspect in a crop. We argue
that there are other criteria that can be leveraged in image cropping
strategies. Moreover, a good cropping strategy should be defined in
terms of different attributes that should be simultaneously exploited
and that may contribute at different levels.

For these reason, we propose a cropping method that takes into ac-
count this rationale. Starting from the available literature, we designed
a cropping method where different cropping criteria can be plugged-in
in a seamless manner, and that is able to select more meaningful crops
with respect to the standard approaches.

Given an image and a set of candidate crop regions as input, our
cropping method estimates a score for each crop of the set to pick the
best crop region. This is done by considering an ensemble of cropping
models each of which is designed to score the candidate crops in terms
of a different criterion. The scores are then aggregated and the best
crop region is selected.

With respect to the criteria, we currently developed three cropping
models that evaluate the aesthetics, geometric composition, and the
semantic contents of the crop. The aesthetics and geometry composition
are visual criteria that are useful to select the most visually appealing
crop region. These criteria are often exploited in works the literature of
cropping algorithms. In this work, we introduce the semantic criterion
because we want to preserve in the cropped image as much as possible
the main content of the original image. This criterion has not been
2

previously considered in designing cropping strategies. We use these
three criteria in our experimentation but the cropping models can be
easily changed and extended adding other general or user-specific crite-
ria. Our cropping method is fully based on Deep Convolutional Neural
Networks. Each cropping model is based on the MobileNet-v2 (Sandler
et al., 2018) as a backbone making it efficient and lightweight.

We evaluate our cropping method on four standard cropping
datasets: GAICD (Zeng et al., 2019), ICDB (Yan et al., 2013), FLMS (Fang
et al., 2014), and FCDB (Chen et al., 2017a). We quantitatively and
qualitatively compared different state-of-the-art approaches on these
datasets using several reference metrics to assess the methods from dif-
ferent perspectives: Pearson Linear Correlation Coefficient, Spearman
Rank-Order Correlation Coefficient, Return K of Top N accuracy, Rank
Weighted Return K of top-N accuracy, Intersection-Over-Union, and
Boundary Displacement Error. Since the final result of an image crop-
ping algorithm is judged by users, we also conducted a subjective eval-
uation of the different cropping strategies. The evaluation is performed
via a user preference study where the subjects are asked to choose the
preferred results among the displayed ones. The experimental results
demonstrate the effectiveness of the proposed method.

The main contributions of this paper are:

1. we define the image cropping problem as a ranking problem of
candidate crop regions;

2. we design a new cropping method that rank regions by simulta-
neously leveraging different quality criteria;

3. we develop the cropping method by combining different, ef-
ficient and light-weighted, neural networks each of which is
specifically designed to evaluate the candidate crops with re-
spect to a specific criterion;

4. we perform an extensive evaluation using several benchmark
datasets and quality metrics.
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The remainder of this paper is organized as follows. Section 2
gives an overview of related works with particular focus on supervised
methods. Section 3 describes our proposed cropping method. Section 4
illustrates the experimental setup. Section 5 presents the results of the
experiments. Section 6 concludes this paper.

2. Related work

In this section we summarize the existing image cropping datasets,
and the representative image cropping methods.

2.1. Image cropping datasets

In the literature there are datasets with different peculiarities for the
training and evaluation of autocropping methods. Over the years, the
cardinality of the proposed datasets has increased, also allowing the
design of deep learning methods. In addition, the process of creating
and acquiring the annotations has changed.

Yan et al. (2013) proposed the CUHK Image Cropping DataBase
(ICDB), the first cropping dataset, which consists of 950 images gath-
ered from the CUHKPQ dataset. Images present seven different content
types (i.e. animal, architecture, human, landscape, night, plant, and
static), and each image was manually cropped by three different pro-
fessional photographers. Fang et al. (2014) collected a similar cropping
dataset, which consists of 500 images crawled from Flickr. Images of
the FLMS dataset have been cropped by ten professional photographers
on Amazon Mechanical Turk (AMT). The ten annotated bounding boxes
only have small overlaps meaning that there is little correlation among
the ten photographers’ knowledge or preference. Chen et al. (2017a)
introduced the Flickr Cropping DataBase (FCDB) annotated using a
new strategy that is to compare pairs of crops. This strategy allows to
enormously increase the number of annotated crops in fact: for 1743
images collected by Flickr, 34,130 pairs of sub-views on AMT were
annotated.

Previous datasets present problems regarding (i) the evaluation
criterion, and (ii) the generation of candidate crops (Celona et al.,
2019; Wei et al., 2018). Therefore, the new datasets were collected with
new protocols for candidate crops selection and annotation to provide
more reliable and effective evaluation metrics for cropping images. Wei
et al. (2018) constructed the Comparative Photo Composition (CPC)
dataset. It is a large dataset of 10,797 images. For each image, 24
candidate crops with four standard aspect-ratios have been pooled
among candidates automatically generated by exploiting existing re-
composition and cropping algorithms. Annotations were collected using
a two-stage annotation protocol, which allows to obtain more than 1
million view pairs on AMT. Following the previous protocol, the same
authors introduced the eXPert View dataset (XPView), which consists
of 992 images annotated by three experts. Zeng et al. (2019) proposed
to reduce the searching space of image cropping by defining crops on
image grid anchor rather than dense pixels. Thanks to this formula-
tion they constructed the Grid Anchor based Image Cropping dataset
(GAICD). It contains a total of 106,860 annotated candidate crops
from 1236 source images. The 19 experienced human annotators were
required to rate the candidates at five scores. The Mean Opinion Score
(MOS) was finally calculated for each candidate crop as ground-truth
quality score.

2.2. Image cropping methods

The existing image cropping methods can be divided, according
to the taxonomy reported in Fig. 3, in two main categories: weakly
supervised methods and supervised methods.

Weakly supervised methods are not trained on annotated bounding
boxes but exploit exogenous knowledge to estimate the most salient
sub-region on the basis of attention, aesthetics or a combination of
both.
3

In contrast, supervised methods are trained on annotated bounding
boxes and in some cases exploit exogenous knowledge in combination
with endogenous knowledge to estimate the best sub-region to crop.

The first category of methods generally performs poorly over the
second because it does not learn the nature of the problem directly
from the data. The second category on the other hand requires a huge
amount of data to avoid poor generalization.

These methods can be further categorized on the basis of the infor-
mation exploited to select the best crop.

2.2.1. Attention-driven methods
Attention-driven methods select the sub-region that contains the

most salient subject or the most informative region of an image.

Single-stage. An image cropping method exploiting a generic and ex-
tensible image attention model based on three attributes (region of
interest, attention value, and minimal perceptible size) has been pro-
posed in Chen et al. (2003). In (Ciocca et al., 2007), Ciocca et al.
presented a self-adaptive image cropping algorithm exploiting both
visual and semantic information. This algorithm is capable of building
a cropping strategy based on the use of a visual attention model
specific for different genres of images. Stentiford (2007) presented
a method based on the application of different rules to the region
identified by the visual attention to cut out the best image sub-region.
An approach involving visual composition, boundary simplicity and
content preservation has been presented in Fang et al. (2014). The
visual composition component consists of a Support Vector Regressor
(SVR) to learn a mapping from composition features (saliency maps
of original images obtained by using the Spatial Pyramid of Saliency
Map) to composition scores. The boundary simplicity encourage crop
boundaries to pass through visually simpler regions, in order to reduce
the chance of cutting through objects. Finally, content preservation is
obtained by exploiting visual saliency. The goodness of the produced
crops have been evaluated on the proposed FLMS dataset. Several
practical formulations of the optimum rectangle search problem and a
new approach describing the relationship between attention preserving
and region cropping have been proposed in Chen et al. (2016).

Two-step. Nishiyama et al. (2009) proposed a novel attention-driven
technique for image cropping that uses a quality score to choose the
best crop among a set of proposals. Given an image, multiple cropping
proposals are produced using Itti et al. (1998) in conjunction with
the k-Means clustering algorithm. The best of the proposals is chosen
considering several basic techniques for photographic (e.g. no camera
shakes and adequate exposure).

Iterative. Recently, an automatic photo composition method based on
collaborative deep reinforcement learning (called CDRL-RC) has been
presented in Li and Zhang (2019). It follows an iterative process where
the agent looks at the current cropping window and then sequentially
transforms the image windows within the entire image by performing
one of the predefined actions until termination. More specifically, two
agents, the agent of emotional attention and the agent of the image
context, jointly determine the action to be selected from a set of moving
and zooming actions. The reward function considers the crop quality
and consists of a weighted IoU that takes into account the emotional
attention map.

2.2.2. Aesthetic-driven methods
The aesthetics oriented method aims at maximizing the visual at-

tractiveness of the cropped images. Although the visual aesthetics
obeys certain general principles, it is also known to be influenced by
subjective factors such as the culture, personal experiences, education
level, or even the psychological state.
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Fig. 3. Taxonomy of image cropping methods.
Single-step. Cheng et al. (2010) proposed a model for encoding profes-
sional photographers’ knowledge and composition rules, mined from
massive crawled professional photos from online sharing website. A
photo quality evaluation metric based on a Bayesian algorithm is then
used for finding the best image sub-region. EnhanceGAN (Deng et al.,
2018) is the first method which adopts adversarial learning to perform
color enhancement and image cropping. The latter is performed by
using the proposed attentive convolution which outputs 5 feature maps
corresponding to the cropping coordinates (x,y,w,h) and a probability
map, respectively. Finally Top-K average pooling is used to produce the
final crop window.

A deep model has been trained for ranking candidate crops gath-
ered with sliding window strategy by jointly learning attributes and
composition (Kong et al., 2016). Chen et al. (2017b) introduced the
View Finding Network (VFN) which compares pairs of views to estimate
the most aesthetically pleasing one. It is composed of a CNN with
a ranking layer taking two views as input and predicting the more
visually pleasing. The method has been trained on images gathered on
Flickr and evaluated on ICDB and FCDB.

Two-step. Zhang et al. (2013, 2012) presented a cropping method in
which a Region Adjacency Graph (RAG) is obtained by segmenting
the entire image into small regions. Next, a region adjacency graph
(graphlets) capturing training photo aesthetics has been constructed.
Finally, a candidate search procedure based on probabilistic graphical
models is performed and the inference of the cropping parameter is
made through Gibbs sampling.

Iterative. The Aesthetic Aware Reinforcement Learning (A2-RL) frame-
work avoids evaluating a large amount of proposals (typical of sliding
window approaches) and reduces the search iterations for the best
crop to a few dozen. It uses actor–critic (A3C) based reinforcement
learning method to search the best cropping windows sequentially with
only several candidate windows (Li et al., 2018). A2-RL includes an
aesthetics aware reward and LSTM-based state representation which
includes both the current and historical experience. The agent can
choose among a set of 14 pre-defined actions, which can be divided into
four groups: scaling actions, position translation actions, aspect ratio
translation actions and termination action. The model is trained on a
subset of ∼9000 images from the AVA dataset belonging to one of three
aesthetic quality levels (i.e. low, middle, or high quality). Extensive
experiments have been conducted on three of the most used datasets
in the state-of-the-art.
4

2.2.3. Hybrid methods
Another family of cropping methods is based on a two-step strategy

through determining-adjusting. This family of methods avoids greedily
searching against all possible sub-windows of an image as the sliding
window-based methods do.

in Liu et al. (2010), the authors adopted a compound crop-and-
retarget operator, which selects a subset of the image objects, whose
relative positions are then adjusted by the retargeting operator. Image
objects are first detected by using a saliency algorithm. Given the image
objects, image prominent lines, the computed saliency map, and three
aesthetics metrics (i.e. RoT, diagonal dominance, visual balance), a
score evaluating the composition quality of several image regions is
then predicted. Wang et al. implemented such strategy by designing
a two-branch CNN for Attention Box Prediction and Aesthetics As-
sessment (ABP-AA) (Wang & Shen, 2017; Wang et al., 2018). First a
bounding box covering the most visually important area is estimated,
and then the best cropping with highest aesthetic quality is selected.
The cropping algorithm is split into two cascaded stages, namely,
attention-aware cropping candidates generation and aesthetic-based
selection. It has been trained in parallel on two databases (i.e. SALI-
CON (Jiang et al., 2015) and AVA (Murray et al., 2012)), then it works
in a cascaded way in inference.

Kao et al. (2017) presented a two-step cropping method. In the
first step, the aesthetic preservation module samples crop candidates
with aesthetic score higher than a threshold from the input image. The
candidate crops are then ranked by the composition module consisting
of a Support Vector Machine (SVM) trained for discriminating well-
composed (AVA images) and ill-composed images (random crops of
the well-composed images). The cropping method returns the first 5
crops as output. The CNN-based Cascaded Cropping Regression (CCR)
method (Guo et al., 2018) consists in a two-step learning approach. In
the first phase, a CNN is trained for binary aesthetic quality classifi-
cation using the combined AVA and CUHKPQ dataset. Secondly, the
CNN features extracted from the pre-trained model are used as input
for a cascaded cropping regression method, which is able to fit the
image cropping information annotated by professional photographers
by combining a set of weak random-ferns regressors (Dollár et al.,
2010). Experimental results are reported on the ICDB. Recently, in Lu
et al. (2019b) it has proposed a CNN-based method to learn the
relationship between interested objects along with the corresponding
visual saliency and high aesthetic quality image. An initial rectangle is
first estimated by using a U-Net trained to extract visual saliency, Then,
a regression neural network adapts the rectangle in order to improve
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its aesthetic quality. An end-to-end automatic image cropping system
learning the relationship between the interest objects and the areas
with high aesthetic scores through a DNN has been presented in Lu
et al. (2020). A saliency map is first predicted by a U-Net, which is
then passed to a soft binarization layer to separate objects from the
background. The proposed Interest Object Region (IOR) layer and the
ROI warping pooling layer extract the interest object, which are finally
evaluated to predict the optimal cropping region.

2.2.4. Supervised BBox estimation: Two-step
In image cropping it is important to take into account not only what

remains in the cropped image, but also what is removed or modified
from the original image. To this end, in Yan et al. (2013) several
features have been considered to model the content and composition
changes due to the cropping operation, such as foreground map esti-
mation, color distance, texture, and sharpness. The best crop is the one
with the best composition among 500 candidates obtained considering
only the exclusion characteristics. The method has been trained and
evaluated on the image cropping data of the proposed ICDB dataset. A
meta-learning based method for the aspect-ratio-specified image crop-
ping is presented in Li et al. (2020a). The goal of the learning process
of this method is to learn cropping models for different aspect ratio
requirements. In the base model, there are two parameters depending
on the aspect ratio, which are determined by the meta-learners: the
Aspect Ratio Specified Feature Transformation Matrix (ARS-FTM), and
the Aspect Ratio Specified Pixel-Wise Predictor (ARS-PWP). When both
ARS-FTM and ARS-PWP are estimated, the newly generated model can
predict the cropping window of the specified aspect ratio from the
image.

2.2.5. Supervised ranking: Predefined anchor boxes
The previous methods aim to find the best sub-window of the image,

however the search space is very huge, for this reason alternative
methods have been proposed aimed at ordering a set of predefined
anchor boxes. The latter pooled from multiple image re-composition
and cropping algorithms.

in Chen et al. (2017a), the authors demonstrated the effectiveness
of the pairwise leaning-to-rank strategy compared to traditional image
cropping techniques on the proposed FCDB dataset. Wei et al. (2018)
exploited the teacher–student learning paradigm to train the View Eval-
uation Network (VEN) and the View Proposal Net (VPN), respectively.
The VEN is a Siamese architecture trained on pair of images by using
the RankingLoss as criterion. The VPN is in charge of ranking 895 pre-
defined anchor boxes and is optimized by using the proposed pairwise
ranking orders loss on all the anchor boxes. ASM-Net (Tu et al., 2020)
estimated a composition-aware and saliency-aware aesthetic score map
of the same size as the input image. For each crop of a set of pre-
defined anchor boxes, the crop-level score was estimated by pooling
the pixels of the map belonging to the crop. The map is obtained
using a multi-scale feature extractor trained with two pairwise ranking
losses to estimate which crop has the best composition and the most
salient between pair of crops. in Lu et al. (2019a), the learning of photo
composition has been formulated as a listwise ranking problem. The
Listwise View Ranking Network (LVRN), given an image, extracts its
features using a VGG16 as backbone, the refined view sampling module
cuts the features related to a series of candidate views from the entire
feature map, which are finally sorted based on their composition.

2.2.6. Supervised regression: Predefined anchor boxes
Still with the aim of reducing the number of candidate crops, a

grid anchor based formulation of image cropping in Zeng et al. (2019),
Zeng et al. (2020) has been proposed. Unlike the methods of the
previous family, a very light deep cropping model trained to estimate
a quality score for each candidate has been designed. The experiments
conducted on their GAICD dataset have shown the effectiveness of
the model based on three new types of metrics defined to reliably
5

Table 1
Backbone architecture (Sandler et al., 2018). Each line de-
scribes a sequence of 1 or more identical layers, repeated n
times. All layers in the same sequence have the same number
c of output channels, instead c changes from a sequence to
another. The first layer of each sequence has a stride s and
all others use stride 1. t represents the expansion factor. The
output of the sequence in blue is used as feature volume

for the first scale, the output of the sequence in red is used
as feature volume for the second scale, finally the output of
the gray sequence is the third feature volume.

Input Operator t c n s

224 × 224 × 3 conv2d – 32 1 2
112 × 112 × 32 bottleneck 1 16 1 1
112 × 112 × 16 bottleneck 6 24 2 2
56 × 56 × 24 bottleneck 6 32 3 2
28 × 28 × 32 bottleneck 6 64 4 2
28 × 28 × 64 bottleneck 6 96 3 1
14 × 14 × 96 bottleneck 6 160 3 2
7 × 7 × 160 bottleneck 6 320 1 1
7 × 7 × 320 conv2d 1 × 1 – 1280 1 1
7 × 7 × 1280 avgpool 7 × 7 – – 1 –
1 × 1 × 1280 conv2d 1 × 1 – n_classes – –

and comprehensively evaluate the cropping performance. In Li et al.
(2020b), Li et al. improved the previous method by introducing in
it a gated-based module to model mutual relations between different
candidates crops.

3. Method

The autocropping method we propose here is based on the idea that
a good cropping strategy should identify a sub-region of the original
image which is the best in terms of aesthetics, geometric composition,
and more important, that preserves semantics of the main content of
the original image. Fig. 4 shows the proposed method. The method
takes inspiration from the anchor-based approaches but extends the
underlying idea by considering multiple cropping criteria instead on
a single one. Given an input image and a corresponding list of pre-
defined anchor boxes, three different strategies based on aesthetics,
composition and semantics are used to generate three ranked lists of
the input anchor boxes. Each strategy is based on a Deep Convolutional
Neural Network (CNN) specially trained to perform the assigned task.
The output of the method is a final ranked list of anchor boxes that
is the average of the three lists generated in the previous steps. The
best crop is the head of the output ranked list which is the one with
the highest score. The evaluation procedure of the different pre-defined
anchor boxes is inspired by Zeng et al. (2020), while the criteria with
which these are evaluated extends (Fang et al., 2014).

3.1. The cropping model

All the three strategies employed are based on the same pipeline as
shown in Fig. 5 which involves: (i) a lightweight and efficient backbone
based on the MobileNet-v2 architecture (Sandler et al., 2018) which
takes an input image of size 𝑁×𝑀 and extracts a feature volume having
spatial resolution equal to 𝐻 ×𝑊 and 𝐶 channels using a multi-scale
approach; (ii) a cropping module, based on three convolution layers,
that takes the flattened version of the feature volume corresponding to
each pre-defined anchor box as input and it outputs a score value.

Multi-scale feature extraction. We extract multi-scale features from the
CNN in order to make features invariant with respect to the scale of
objects into photographs. Specifically, we take the features to three
different scales by gathering activations of MobileNet-v2 as specified in
Table 1. These 𝐻×𝑊 ×𝐶 feature volumes have dimensions correspond-
ing to 32 × 32 × 32, 16 × 16 × 96, and 8 × 8 × 320, respectively. Since

they have a different spatial resolution, we use bilinear downsampling
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Fig. 4. Overview of the proposed cropping method. Given an image and a set of pre-defined anchor boxes as input, the method estimates a score for each box of the set by
averaging the predictions of three models which models aesthetics, geometric composition, and semantics of the crops. The final scores are then ranked to select the best crop.
Fig. 5. Cropping model definition. For a test image the method extract multi-scale features that are scaled to the same resolution, concatenated along the channel dimension, and
finally reduced on the number of channels. Given the previous feature volume and a set of pre-defined anchor boxes, the crop module employs the RoIAlign (He et al., 2017) and
the RoDAlign (Zeng et al., 2019) modules to extract the regions of the volume corresponding to each box. Finally each of these feature vectors is passed in a series of convolutional
blocks to finally produce a score for each box.
and upsampling to make them having the same spatial resolution.
Then the three feature volumes are concatenated along the channel
dimension obtaining a feature volume of shape 16 × 16 × 448 (i.e. 32
+ 96 + 320 channels).

The number of channels of the feature map is then reduced to only
8 by using a 1 × 1 convolution for making our image cropping model
very efficient and lightweight without loss of performance.

Cropping module. Given a pre-defined anchor box, this module selects
two different regions from the feature volume calculated in the previous
step by following the strategy proposed by Zeng et al. (2019): one
contains the cropped region of the image (Region of Interest, RoI),
the other contains the region to be discarded (called also the Region
of Discard (RoD)). The RoIAlign operation (He et al., 2017) is used
for extracting the portion of the feature map corresponding to the
RoI and then the bilinear interpolation is used to resize it at a fixed
spatial resolution of 9 × 9. The RoDAlign (Zeng et al., 2019) is instead
applied to gather the Region of Discard (RoD) by zeroing the region
of the whole feature map corresponding to the RoI and by using
bilinear interpolation to scale the RoD feature map at the same spatial
resolution of the RoI. The two feature maps are then chained along the
channel dimension, flattened and fed to a stack of three fully connected
layers for predicting the score of each anchor box.

Loss. The multi-scale feature extraction module is specifically pre-
trained to accomplish each given task: aesthetics, composition, se-
mantics. The cropping module is trained on the autocropping bench-
mark dataset used in the evaluation. To this end, a SmoothL1 loss is
employed:

SmoothL1(𝑔𝑖, 𝑝𝑖) =
{

0.5(𝑔𝑖 − 𝑝𝑖)2, if |𝑔𝑖 − 𝑝𝑖| < 1
(1)
6

|𝑔𝑖 − 𝑝𝑖| − 0.5, otherwise.
where, 𝑔𝑖 and 𝑝𝑖 denote the ground-truth MOS and predicted scores of
the 𝑖th candidate respectively. This loss is widely used for regression
tasks because of its robustness to outliers.

3.2. Cropping models ensemble

Many deep learning-based cropping methods, consider only a single
criterion to define the best crop or crops in an image. However,
as we argued, a single criterion does not capture the complexity of
human preferences that may be influenced by prior knowledge and
backgrounds. Here, we exploit three quality criteria for a crop: image
aesthetic, composition and semantic. The first criterion is widely used
in the context of image cropping as its inclusion is to have a crop image
that is visually pleasing. The second criterion is related to photographic
aspects of the image: the crop region should have a good balance in
how the elements are arranged in the image. The last criterion refers
to the proper content of the image: the cropped region should preserve
the same semantic information as the original image. These criteria do
not cover all the possible aspects of a good image crop. Nonetheless,
we considered them as to be sufficiently diverse and complementary to
be used as a case study in our approach.

We model the aforementioned criteria, by pre-training the backbone
architecture of the multi-scale feature extraction module for encod-
ing image aesthetics, photographic composition, and image semantic,
respectively.

The image aesthetics model is based on the formation of the
MobileNet-v2 following the approach proposed in Talebi and Milan-
far (2018) on the AVA (Murray et al., 2012) dataset. It consists in
interpreting the distribution of human ratings of a given image as
a probability distribution and in minimizing the error between this
distribution and that predicted by the model by exploiting the loss of
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𝐴

the earth’s mobile distance (EMD) loss. We train the model for 100
epochs using Stochastic Gradient Descent (SGD).

The model able to predict the basic photographic composition
guidelines is obtained by training the MobileNet-v2 architecture on the
KU-PCP dataset, which consists of 4244 outdoor photographs (3169 for
training and 1075 for testing) (Lee et al., 2018). It has been annotated
by 18 human subjects to categorize images into nine not mutually
exclusive geometric composition classes: Rule of Thirds (RoT), vertical,
horizontal, diagonal, curved, triangle, center, symmetric, and pattern.
We train our model by using the binary cross-entropy loss and the SGD
optimizer for 90 epochs with learning rate initially set to 0.001 and
dropped by half every 30 epochs.

Finally, the model characterizing semantics is built by training the
CNN for image categorization on the 1000 classes of the ImageNet
dataset. SGD and cross-entropy loss are used for optimizing the model
for 30 epochs with an initial learning rate equal to 0.1 which decays
by a factor of 0.1 every 30 epochs. We randomly crop and horizontally
flip training images for data augmentation.

Each of the above pre-trained backbones is then used to train
three cropping models as described in Section 3.1: the aesthetics-
based cropping model, the composition-based cropping model, and the
semantic-based cropping model. Each of the previous models, both the
backbone and the cropping module, have independent weights that are
not shared.

Given an image, each cropping model predicts its own list of com-
position scores for a list of 𝑁 pre-defined anchor boxes, namely 𝐬𝐀 =
[𝑠𝐴1 , 𝑠

𝐴
2 ,… , 𝑠𝐴𝑁 ], 𝐬𝐂 = [𝑠𝐶1 , 𝑠

𝐶
2 ,… , 𝑠𝐶𝑁 ], and 𝐬𝐒 = [𝑠𝑆1 , 𝑠

𝑆
2 ,… ., 𝑠𝑆𝑁 ]. The

overall score of a box is finally obtained by calculating the average
of the scores obtained by the three cropping models for that box:
𝑠𝐴𝑆𝑀𝑖 =

𝑠𝐴𝑖 +𝑠
𝐶
𝑖 +𝑠

𝑆
𝑖

3 . The final scores are then ranked to select the best
crop for the image.

4. Experimental setup

We compare our method with the state of the art by objectively
evaluating performance on GAICD and legacy datasets.

4.1. Datasets

We train and evaluate the proposed cropping method on the Grid
Anchor Based Image Cropping dataset (GAICD) (Zeng et al., 2019). It
has 106,860 candidate crops taken from 1236 total images. A Mean
Opinion Score (MOS) that represents the composition quality is associ-
ated to each candidate crop. The images are divided into 1036 training
images and 200 test images.

We also perform a comparison with the state of the art on legacy
datasets well known in the community: ICDB, FLMS, FCDB. We believe
that this comparison has many critical issues, which have also been
pointed out in our previous work (Celona et al., 2019), but we believe
it is important to include it to complete the study.

The ICDB database is a collection of 950 images gathered from the
CUHKPQ dataset (Yan et al., 2013). It contains seven classes of images,
i.e. animal, architecture, human, landscape, night, plant, and static.
A cropped region is respectively annotated for each image by three
different professional photographers. The images are taken from an
existing image quality assessment dataset, the CUHKPQ dataset (Tang
et al., 2013). The images are of varying aesthetic quality and are of
different image categories.

The FLMS dataset consists of 500 images crawled from Flickr (Fang
et al., 2014). These images have been selected for their imperfect
composition and have different contents. Each image is cropped by 10
expert users on AMT who passed a strict qualification test. There is no
ranking of the views. Each view is considered separately. No further
details are provided in Fang et al. (2014) about this dataset.

The Flickr Cropping DataBase (FCDB) contains 1743 non-iconic im-
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ages gathered from Flickr (Chen et al., 2017a). The cropping annotation
Table 2
Characteristics of the image cropping datasets used in the experiments.

Dataset Images Views Source Crops Evaluation Ranking

GAICD 1,236 106,860 Flickr Grid 19 experts Yes
ICDB 950 3 CUHKPQ Human 3 experts No
FCDB 348 1 Flickr Human AMT workers No
FLMS 500 10 Flickr Human 10 experts No

for each image derives from the choices of four AMT workers who
evaluated several candidate views manually drawn. 348 out of the 1743
images are adopted as test set.

Table 2 summarizes the characteristics of the databases used in the
experiments in terms of the number of images, the number of views
i.e. the number of crops available for each image, the source from
which the images were taken, how the crops have been obtained, who
annotate the crops, and whether the different views are ranked by
preference.

4.2. Evaluation metrics

Ranking correlation metrics. Pearson Linear Correlation Coefficient
(PLCC) and Spearman Rank-Order Correlation Coefficient (SROCC) are
used for estimating prediction consistency with ground-truth MOS. First
PLCC and SROCC are measured between the MOS vector of all the crops
of an image and the scores of these crops estimated by the model, then
the average PLCC and SROCC over the testing images are computed as
final results.

Best return metrics. The practical purpose of a cropping algorithm is
to return the best crops rather than accurately rank all the candidate
crops, so a set of metrics have been defined to assess the ability of the
models to return the best crops (Zeng et al., 2019). This new set of
metrics is called the ‘‘return K of top N ’’ accuracy. It checks on average
how many of the returned K crops fall into the top-N best crops of an
image denoted as 𝑆𝑖(𝑁). It is defined as:

𝑐𝑐𝐾∕𝑁 = 1
𝑇𝐾

𝑇
∑

𝑖=1

𝐾
∑

𝑘=1
𝑇 𝑟𝑢𝑒(𝑐𝑖𝑘 ∈ 𝑆𝑖(𝑁)), (2)

where 𝑇 𝑟𝑢𝑒(∗) = 1 if ∗ is true, otherwise 𝑇 𝑟𝑢𝑒(∗) = 0. Following (Zeng
et al., 2019) the number of returned crops 𝐾 is equal to 4, and the
number of best crops 𝑁 is set to 5 or 10. A total of 8 accuracy indexes
𝐴𝑐𝑐𝐾∕𝑁 is obtained based on the combination of 𝐾 and 𝑁 .

Rank weighted best return metrics. Given that the previous metric does
not distinguish the rank among the return top-𝑁 crops, a variant of the
𝐴𝑐𝑐𝐾∕𝑁 metric has been introduced. The ‘‘rank weighted return 𝐾 of
top-𝑁 ’’ accuracy, which is defined as

𝐴𝑐𝑐𝑤𝐾∕𝑁 = 1
𝑇𝐾

𝑇
∑

𝑖=1

𝐾
∑

𝑘=1
𝑇 𝑟𝑢𝑒(𝑐𝑖𝑘 ∈ 𝑆𝑖(𝑁)) ∗ 𝑤𝑖𝑗 , (3)

where

𝑤𝑖𝑗 = 𝑒
−𝛽(𝑟𝑖𝑗−𝑗)

𝑁 , (4)

in which 𝛽 > 0 is a scaling parameter set to 1 as in Zeng et al. (2019).
The definition of the weight 𝑤𝑖𝑗 is aimed at rewarding the correct rank
and being equal to 1 when the sorted rank 𝑟𝑖𝑗 matches the order of 𝑐𝑖𝑗
among the 𝐾 returns.

Intersection-over-union (IoU). The intersection-over-union (IoU), also
referred to as the Jaccard index, is essentially a method to quantify
the percent overlap between the ground-truth candidate view and the
predicted crop. Given the area of the ground-truth candidate view 𝑊GT
and the area of the predicted crop 𝑊 , the IoU is defined as follows:

𝐼𝑜𝑈 = (𝑊GT ∩𝑊 )∕(𝑊GT ∪𝑊 ) (5)
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Boundary displacement error (BDE). The boundary displacement error
computes the distance between the four edges of the ground-truth
candidate view and the corresponding edges of the predicted crop. By
denoting the four edges of the ground-truth candidate view and of the
predicted view respectively as 𝐵GT(𝑙), 𝐵GT(𝑟), 𝐵GT(𝑡), 𝐵GT(𝑏), and 𝐵(𝑙),
𝐵(𝑟), 𝐵(𝑡), 𝐵(𝑏). The BDE is estimated as follows:

𝐵𝐷𝐸 =
∑

𝑗={𝑙,𝑟,𝑢,𝑏}
|𝐵GT(𝑗) − 𝐵(𝑗)|∕4, (6)

4.3. Implementation details

We implement our method using the PyTorch framework. In the
training phase, our method takes as input an image and 64 randomly
selected candidate crops from the set of annotated candidates. To
improve the generalization ability of the proposed method, we apply
data augmentation techniques by randomly adjusting brightness, con-
trast, saturation, hue, and by horizontally flipping the input image
and the corresponding candidate crops. Data augmentation does not
affect the image composition. During the testing phase, the trained
method evaluates all the annotated candidate crops and estimates a
score for each one of them. During both training and test, the short
side of input images is resized to 256 pixels, and pixel values are scaled
to the range of [0,1] and normalized using the mean and standard
deviation calculated on ImageNet. The MOS values are also normalized
by removing the mean and dividing by the standard deviation across
the training set. The Adam optimizer (Kingma & Ba, 2014) is used to
train our models for 40 epochs with a fixed learning rate of 1𝑒−4.

5. Results

We compare our method with previous methods which released the
source code or executable program: View Finding Network (VFN) (Zeng
et al., 2019), View Evaluation Network (VEN) (Wei et al., 2018),
A2-RL (Li et al., 2018), and two version of GAIC: the conference ver-
sion (Wei et al., 2018) and the journal version trained on the conference
version of GAICD (Zeng et al., 2020).

We evaluate four variants of the proposed method, which we call
OurA, OurC, OurS, and OurACS. The first three consist of a single crop-
ping model based on a pre-trained network on aesthetics, composition
or semantics respectively. The last one represents our full method that
considers all the three criteria.

5.1. Results on the GAICD

Table 3 reports the performance of the proposed method and its
variants compared with the state of the art on the GAICD dataset. All
the considered methods, apart from A2-RL, output scores for all the
candidate crops provided by the dataset, thus for those methods we
can estimate all the defined evaluation metrics. A2-RL outputs a single
crop so we can only compute Acc1∕5, Accw1∕5, Acc1∕10, and Accw1∕10 for it.

From the analysis of the results reported in the Table 3, it is possible
to make various considerations. First of all, our full cropping method
(OurACS) outperform previous ones with respect to all the considered
metrics.

This confirms our initial assumption that a cropping method should
take into account several criteria in order to select the best crop. Having
different criteria, each of which, focus on different aspects of image
content and perception, is more effective than using only one or two
image characteristics as in previous methods in the state-of-the-art.

This is also supported by the performance obtained by our meth-
ods leveraging either the aesthetic, the composition or the semantic.
Each of these methods achieves good results but not as good as the
full model. This indicates that several criteria intervene and intermix
in deciding what a good crop is. The full model better fit the user
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preferences expressed by the MOS of the GAICD dataset.
Fig. 6 shows the qualitative comparison between our method and
the state of the art. The first row of the figure contains the source
images, the last line reports the ground-truth crop for each image.
Each of the remaining rows exhibits the first crop returned by each
method for a given image. As can be seen, our method produces crops
very similar to the ground-truth. OurACS and GAIC crop almost in
the same way but GAIC tends to preserve more information. A2-RL
sometimes returns the source image without removing any distracting
element. Both VFN and VEN cut important content in photos with the
main subject e.g. in the photo of the cat, while outputs 16:9 crops for
panoramic photos.

5.2. Computation time

In the last column of Table 3, we compare the computation time
in terms of frame-per-second (FPS) on both GPU and CPU for all
the considered methods. All methods are tested on the same desktop
computer with an Intel Core i7-8700 CPU@3.20 GHz, 16 GB DDR4
RAM 2400 MHz, and NVIDIA GTX 1080Ti with 3580 CUDA cores. Our
method, GAIC (Zeng et al., 2020), GAIC (Conf.) (Zeng et al., 2019), and
VEN (Wei et al., 2018) are implemented using the PyTorch framework.
A2-RL (Li et al., 2018) and VFN (Chen et al., 2017b) are implemented
in Tensorflow. As can be seen, the fastest method is GAIC based on the
MobileNet-v2 at 200 FPS on GPU and 6 FPS on CPU. Our method is
the second fastest among competitors at 183 FPS on GPU and 2 FPS on
CPU. The other methods are much slower because they employ heavy
CNN architectures (GAIC (Conf.)), individually process each crop (VFN
and VEN), or repeatedly update the cropping window (A2-RL).

Previous performance for our method is estimated by running the
three cropping models that make up our method in parallel. Since
the architecture of the cropping models is lightweight (it includes a
MobileNet-v2), it is possible to load the three models into memory
and perform the forward steps in parallel, eventually averaging the
estimated scores from the three models. Running the three cropping
models sequentially decreases the performance of our method, namely
58 FPS on GPU and 0.614 FPS on CPU.

5.3. Ablation study

In this ablation study, we firstly evaluate different ways to combine
scores predicted by aesthetics 𝐀, composition 𝐂 and semantic-based 𝐒
models. We then compare the joint use of aesthetics, composition and
semantic 𝐀𝐂𝐒 with variants such as 𝐀𝐂, 𝐂𝐒, etc. All the evaluation are
carried out on the GAICD dataset.

Combining cropping model predictions. As described in Section 3.2, given
an image, each cropping model predicts its own list of composi-
tion scores for a list of 𝑁 pre-defined anchor boxes, namely 𝐬𝐀 =
[𝑠𝐴1 , 𝑠

𝐴
2 ,… , 𝑠𝐴𝑁 ], 𝐬𝐂 = [𝑠𝐶1 , 𝑠

𝐶
2 ,… , 𝑠𝐶𝑁 ], and 𝐬𝐒 = [𝑠𝑆1 , 𝑠

𝑆
2 ,… ., 𝑠𝑆𝑁 ]. The

overall score of a box can be obtained by calculating the minimum,
the maximum, the average, or the weighted average of the scores
obtained by the three cropping models. The four combining approaches
considered can be formally described as:

𝑠𝑚𝑖𝑛𝑖 = min(𝑠𝐴𝑖 , 𝑠
𝐶
𝑖 , 𝑠

𝑆
𝑖 ), (7)

𝑠𝑚𝑎𝑥𝑖 = max(𝑠𝐴𝑖 , 𝑠
𝐶
𝑖 , 𝑠

𝑆
𝑖 ), (8)

𝑠𝑎𝑣𝑔𝑖 =
𝑠𝐴𝑖 + 𝑠𝐶𝑖 + 𝑠𝑆𝑖

3
, (9)

𝑠𝑤𝑎𝑣𝑔
𝑖 =

𝑤𝐴𝑠𝐴𝑖 +𝑤𝐶𝑠𝐶𝑖 +𝑤𝑆𝑠𝑆𝑖
3

. (10)

Here, 𝑤𝐴, 𝑤𝐶 , and 𝑤𝑆 are three weights balancing the contribution
of the score predicted by each cropping model. The previous weights
are optimized on the training set of the dataset using the least square
method. The best results for all the considered metrics are obtained by

averaging cropping model predictions. In particular, its Acc1∕5 equal



Expert Systems With Applications 186 (2021) 115852L. Celona et al.
Table 3
Comparison with state-of-the-art methods on GAICD (Zeng et al., 2019). The ‘‘–’’ means that the result is not available.

Method Backbone PLCC SROCC Acc1∕5 Acc4∕5 Accw1∕5 Accw4∕5 Acc1∕10 Acc4∕10 Accw1∕10 Accw4∕10 FPS (GPU) FPS (CPU)

A2-RL (Li et al., 2018) AlexNet – – 24.5 – 15.6 – 41.0 – 26.9 – 4 0.047
VFN (Chen et al., 2017b) AlexNet 0.470 0.450 27.0 24.6 16.8 11.1 39.0 37.3 25.9 19.1 0.4 0.004
VEN (Wei et al., 2018) VGG16 0.653 0.621 40.5 36.8 20.0 12.8 54.0 48.4 30.0 23.8 0.3 0.002
GAIC (Conf.) (Zeng et al., 2019) VGG16 0.762 0.735 53.5 46.6 37.6 30.0 71.5 65.5 53.7 46.9 136 1.278
GAIC (Zeng et al., 2020) VGG16 0.782 0.758 59.0 48.6 37.2 34.2 74.0 67.4 53.7 50.7 123 1.189
GAIC (Zeng et al., 2020) MobileNetV2 0.806 0.783 62.5 52.5 39.6 36.2 78.5 72.3 56.9 54.4 200 6
OurA MobileNetV2 0.797 0.773 60.5 50.2 39.6 35.2 78.5 70.5 56.3 52.4 200 6
OurC MobileNetV2 0.807 0.781 62.5 52.0 39.6 37.0 78.5 70.8 56.5 53.6 200 6
OurS MobileNetV2 0.789 0.764 62.0 50.5 41.4 36.0 79.0 69.3 57.3 52.2 200 6
OurACS MobileNetV2 0.822 0.798 65.5 54.4 44.9 39.2 83.5 72.5 61.5 55.5 183 2
Fig. 6. Qualitative comparison of returned top-1 crops by different methods on GAICD test images.
9
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Table 4
Results given by the combination of the three considered criteria, namely: A - aesthetics, C - composition,
and S - semantics. In each column, the best and second-best results are marked in boldface and underlined,
respectively.

Method PLCC SROCC Acc1∕5 Acc4∕5 Accw1∕5 Accw4∕5 Acc1∕10 Acc4∕10 Accw1∕10 Accw4∕10
OurA 0.797 0.773 60.5 50.2 39.6 35.2 78.5 70.5 56.3 52.4
OurC 0.807 0.781 62.5 52.0 39.6 37.0 78.5 70.8 56.5 53.6
OurS 0.789 0.764 62.0 50.5 41.4 36.0 79.0 69.3 57.3 52.2
OurAC 0.818 0.794 63.5 54.2 42.2 39.2 79.5 72.2 59.0 55.2
OurCS 0.817 0.793 64.0 53.9 44.3 38.3 82.5 72.1 60.5 54.8
OurAS 0.809 0.785 65.5 52.4 45.2 37.4 82.0 71.4 60.0 54.3
OurACS 0.822 0.798 65.5 54.4 44.9 39.2 83.5 72.5 61.5 55.5
Fig. 7. Qualitative comparison returned top-1 crops obtained by our crop models trained on the three criteria.
to 65.5% is 2% higher than the second approach consisting in taking
the maximum among the three scores per candidate crop, and 6%
with respect to worst performance achieved by taking the minimum.
On average, the second best approach is to take the maximum of the
predicted scores, while the weighted average performs worse than the
average and the maximum probably due to overfitting on the training
set.
10
Criteria for evaluating candidate crop regions. To demonstrate that the
set of the three considered criteria (that is, aesthetics, composition, and
semantics) allows selecting the best crop, we alternate the criterion or
the criteria for evaluating the crops. More in detail, after measuring
the performance obtained by considering one criterion at a time for the
rank of candidate crops, we also analyze pairs of criteria, namely aes-
thetics+composition (named Our ), composition+semantics (Our ),
AC CS
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Table 5
Comparison with state-of-the-art methods on the ICDB (Yan et al., 2013) dataset in terms of IoU and BDE.

Method Phot. 1 Phot. 2 Phot. 3

IoU ↑ BDE ↓ IoU ↑ BDE ↓ IoU ↑ BDE ↓

Baseline 0.823 0.046 0.830 0.046 0.808 0.050

VFN (Chen et al., 2017b) 0.764 0.064 0.753 0.068 0.733 0.074
VEN (Wei et al., 2018) 0.781 – 0.770 – 0.753 –
GAIC (Zeng et al., 2020) 0.785 0.055 0.760 0.063 0.763 0.061
A2-RL (Li et al., 2018) 0.802 0.052 0.796 0.053 0.790 0.053
ABP-AA (Wang & Shen, 2017) 0.813 0.030 0.806 0.032 0.816 0.032
OurACS 0.784 0.056 0.759 0.063 0.763 0.061
T
I

and aesthetics+semantics (OurAS). The overall score of a box is ob-
ained by calculating the average of the scores obtained by the two
ropping models.

Table 4 reports the results for the previous experiments on the test
et of GAICD dataset. We would like to highlight that the combination
f the three criteria, OurACS, obtains the best performance on all metrics
part from Accw1∕5. The second best results are achieved by the method
onsidering both aesthetics and composition, OurAC. Finally, the worst
esults are obtained by considering only one criterion, in particular the
ne based on semantics (OurS). Looking at the scores obtained by this
atest cropping model for each image, it is possible to see that they are
ot very different from each other. This is probably due to the fact that
he semantic features extracted for the candidate crops are unable to
iscriminate high from low quality crops.

Fig. 7 shows the qualitative comparison of the crops obtained using
he cropping models based on a single criterion, namely aesthetics
OurA), composition (OurC), and semantics (OurS), and the combination
f the three criteria (OurACS). Some considerations can be made, on
he basis of the results. First of all, for the sampled images, the crops
btained for OurA, OurC, and OurS are different. This confirms that
ropping models based on different criteria output different crop ranks.
econd, the OurACS crop is sometimes present among OurA, OurC, and
urS. For example, for the first column image, OurACS is identical to
urA, for the third column image, OurACS is OurC. It could happen that

he combination of the three criteria can re-rank the candidate crops
roducing as best crop a candidate that does not excel for the criteria
aken individually. This is illustrated in the case of the sample image
n the last column.

.4. Results on legacy datasets

Tables 5, 6 and 7 reports on the comparison between the proposed
ethod and the state of the art on the ICDB, FLMS and FCDB, respec-

ively. Following the original works, for comparison, here the metrics
sed are the IoU and BDE.

With respect to the ICDB dataset, Table 5 shows that the attention-
ased approach ABP-AA (Wang & Shen, 2017) achieves the best overall
esults followed by the aesthetic-based A2-RL method. The GAIC and
ur methods perform similarly and are in a third position. We can
lso see that, depending on which photographer GT is considered, the
erformance varies. Specifically, Photographer 1 seems to have a GT
ifferent from Photographers 2 and 3 whose results are similar. This
ould suggests that experts may have quite different opinions on what
o consider relevant for a crop image.

Table 6 shows the results obtained on the FLMS dataset. Similarly
o the ICDB dataset, the only two measures considered are the IoU and
DE. In this case, we see that the best results are obtained by the VEN
pproach (Wei et al., 2018), followed by AIC (Wang et al., 2018), and
hen by A2-RL. Our approach has similar results to GAIC. On the overall
ll the methods, with the exception of Chen et al. (2016) have results
bove 0.81 in IoU and are not very dissimilar.

Finally, on the FCDB dataset (Table 7), the best performance are
chieved by the VEN (Wei et al., 2018) method. The other methods,
ith the exception of RankSVM (Chen et al., 2017a), have very similar
11

esults both in terms of IoU and BDE.
able 6
mage cropping results obtained for the FLMS dataset (Fang et al., 2014).
Method IoU ↑ BDE ↓

Baseline 0.586 0.116

Chen et al. (2016) 0.640 0.075
ABP-AA (Wang & Shen, 2017) 0.810 0.057
GAIC (Zeng et al., 2020) 0.817 0.046
A2-RL (Li et al., 2018) 0.820 –
AIC (Wang et al., 2018) 0.830 0.052
VEN (Wei et al., 2018) 0.837 0.041
OurACS 0.818 0.045

Table 7
The IoU (and BDE) obtained for FCDB (Chen et al., 2017a).

Method IoU ↑ BDE ↓

Baseline 0.636 0.100

RankSVM (Chen et al., 2017a) 0.602 0.106
AIC (Wang et al., 2018) 0.650 0.080
A2-RL (Li et al., 2018) 0.663 0.089
GAIC (Zeng et al., 2020) 0.665 0.085
VFN (Chen et al., 2017b) 0.684 0.084
VEN (Wei et al., 2018) 0.735 0.072
OurACS 0.682 0.083

Observing the results in the three previous tables, we can see that
there is no method that consistently perform well on all the datasets.
Each dataset presents a different best method and also the other ap-
proaches rank differently on each dataset. The main reason for this
behavior is that, as demonstrate in our previous work (Celona et al.,
2019), each dataset models the cropping problem differently. This
means that the subjects who created the GT for images use different
rationals to select their best crop region. Methods that consider only
one dataset as their benchmark dataset may be biased towards that
specific data and thus do not perform similarly well on other datasets
having different rationals. The contents of the images play an important
role in deciding how to crop an image. Image datasets with very similar
content are not very useful for designing a general purpose cropping
method. For example, in Celona et al. (2019), we have shown that
on some datasets, a dummy cropping strategy (indicated as baseline
in Tables 5, 6 and 7), i.e. considering the whole image as cropping
region, is able to achieve comparable results to more complex methods.
These show that there are biases in some of the cropping datasets
usually used in evaluating cropping algorithms. For these reasons,
to evaluate the effectiveness of the cropping methods, we have also
considered performing subjective tests with panels of users. The tests
are aimed at collecting user preferences on the cropping results across
different datasets, in a comparative manner.

5.5. User preference study

We conduct two user studies to compare the output of different
cropping methods. For each source image, we show the human subject
the source image as reference, and several cropping results obtained
by different methods displayed in random order. The human subject
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Fig. 8. User rating statistics for image versions obtained using the four variants of our
cropping method.

Fig. 9. User rating statistics for image versions obtained using different cropping
methods.
12
is asked to choose the best view from those compared for each image.
To make the comparison fair, we randomly selected 25 images from
each of the four considered datasets (thus a total of 100 images).
We invited 20 subjects to participate in the user study: 10 randomly
selected participants were involved in the first subjective study, while
the remaining 10 took part in the second user study.

In the first subjective study, we compare the cropping results ob-
tained by our four variants, namely OurA, OurC, OurS, and OurACS. In
Fig. 8 we see that OurACS is the most selected method with 29.4%,
followed by OurS with 25%, OurA with 23.1%, and finally OurC with
22.5%. The results shows that the users prefer the cropping results
produced by the method that considers all the three criteria together.
This support our original idea. When considering a single criterion, the
user’s preferences are for semantics rather than aesthetics or composi-
tion. This suggests that, for users, it is important that the cropped region
retain its original semantics. However, the very similar percentages
obtained by OurS, OurC, and OurA indicate that different users have
different opinions on what constitutes a good crop. This reinforces our
idea of expanding the set of criteria that must be taken into account in
cropping algorithms.

In the second study we compare the cropping results obtained by
three state-of-the-art methods under their default settings (i.e. A2-
RL (Li et al., 2018), VEN (Wei et al., 2018), GAIC (Zeng et al., 2020)),
our best method from the previous experiment (OurACS), and the source
image itself. Fig. 9 shows the statistics of the subjective study. As
it can be seen, our method collected more votes than the others.
Specifically, it received 32.4% votes, outperforming the second method
which is GAIC by a large margin (11%). Measuring the statistics of the
participants’ opinions for each database separately confirms not only
that our method works better than the others on GAICD, but that this
also applies to the other three databases considered. This last aspect is
very interesting because the VEN, which is the method to obtain the
best performances on both FCDB and FLMS (see Tables 6 and 7), for
our ten participants it is the third choice on these two databases after
the GAIC and the proposed method.

It is interesting to note that about 18% of the times, the original,
uncropped, image is chosen by the subjects. By analyzing the selections,
we found out that most of these choices are made on images from the
ICDB and FCDB datasets. Upon inspection of these images, it emerged
that most of them depict a prominent subject encompassing the entire
image. According to the users, this makes it difficult to identify a
Fig. 10. Two images of those selected for subjective studies showing prominent subjects that do not allow cropping without losing relevant regions or worsening the composition.
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meaningful crop without losing relevant parts of the original image.
Fig. 10 shows two examples of such images. In particular, in the second
row of the figure, we show the images cropped by our method. For both
images, our method selected candidate crops where edge pixels are
excluded. Such results worsen the quality of the composition, especially
for the image on the left, which justifies the fact that the subjects
preferred the original image.

6. Conclusion

In this paper we proposed a cropping method that evaluates the
goodness of a candidate cropping region leveraging different qual-
ity criteria. Our method is based on a combination of efficient and
lightweight neural networks. Each network was specifically designed
to evaluate the candidate crops with respect to a criterion. Specifically,
for a crop region, we considered its aesthetic, overall composition, and
semantics. The experimental results demonstrate that the combination
of the three criteria together allows to select the most visually appealing
crop region and to outperform state-of-the-art methods. A more in-
depth analysis shows that, of the three cropping models, the one based
on the composition obtains the best performance, while the one based
solely on semantics obtains the worst results. The previous results
probably indicate that between the two criteria, composition with
respect to semantics has a greater ability to discriminate between high
and low quality crops.

The analysis of the computational efficiency of the methods high-
lights how the efficient network architecture used to develop the pro-
posed method makes it highly competitive with respect to the other
methods. We also performed subjective experiments that corroborated
our initial assumption that different quality criteria play an important
role in determining the best crop within an image.

The experimental findings demonstrate that the combination of the
three criteria is effective in learning a generic or universal cropping
method. Our method can be easily extended by adding more networks
to evaluate other criteria in order to further improve the performance.
In future development, we therefore intend to consider other criteria,
such as salience. At the same time, given that individual user’s prefer-
ence may differ from that of the general user, we intend to exploit and
combine the criteria to better model the tastes of the individual user
for the design of a personalized image cropping approach.
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