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Abstract. In image databases, variations in imaging conditions and
preprocessing may result in similar originals that exhibit a low mea-
sure of similarity when color information is used in standard image
retrieval methods. We examine the performance of various color-
based retrieval strategies to see whether, and to what degree, the
effectiveness of retrieval improves with Retinex-based preprocess-
ing, regardless of the strategy adopted. The results of experiments
performed on four different databases are reported and discussed.
© 2003 SPIE and IS&T. [DOI: 10.1117/1.1526844]

1 Introduction

Recently the problem of meaningful retrieval from ima
databases has been addressed by many authors exploi
great variety of approaches.1,2 Most of the systems index
only the syntactic content of the images in terms of vis
features~color, shape, texture, size, distance, relative po
tion, etc.!. Visual features can be automatically extract
from raw data, without considering semantic informatio
and used to represent the entire image, a subregion of
a single object. Color-based features, in particular, h
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been extensively studied and experimented on in the
few years since they can be efficiently computed, and
particularly robust with regard to noise; image degradati
and variations in image size, resolution, and orientati
However, color-based features are unstable image ind
when the acquisition conditions and imaging devices
not knowna priori, or are not carefully controlled. Digita
images depend on the physical content of the scene
picted, the illumination of the scene, and the characteris
of the imaging device. In many practical situations, w
have very little or no information about these three facto
Other factors that may strongly affect color-based ima
retrieval, and are often underestimated: the images
lected in a database, where they are usually represe
only in terms of device-dependent color coordinates, m
have been derived from many different sources, and m
also have passed through a number of processing st
between entry and indexing; this may have introduced co
shifts and nonlinear transformations, making similar,
even identical originals appear quite different and exh
low similarity measures when standard image retrie
methods are used.3

We examine here the performance of various col
based retrieval strategies when coupled with retinex-ba
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prefiltering to see whether, and to what degree, this pre
cessing improves the effectiveness of retrieval, regard
of the strategy adopted. The experiments were perform
on four databases, one of 310 paintings, another of
ceramic objects, the Simon Fraser University databas
55 images, and the University of East Anglia~UEA! uncali-
brated color image database of 392 images.

2 Related Work

Querying a database with an image acquired under un
trolled illumination, or with an imaging system differen
from that used for other archive items, may produce un
isfactory results if the problems of the illuminant and t
device dependence of the color were not addressed w
designing the retrieval strategy. These problems were d
with using mainly two different approaches. Some auth
have introduced new illuminant-invariant color features
image indexing,4–8 while others have followed a color con
stancy approach by preprocessing the query and data
images to normalize the colors to a standard neutral illu
nant. Image normalization can be accomplished in vari
ways. One method considers the color phenomenon pri
rily from a physical point of view, and the correspondin
algorithms estimate the scene illuminant on the basis of
acquired image, e.g., using statistical techniques,9 or con-
straints on the spectral matching between the image
some possible illuminants.10 Another approach consider
the color a result of the interaction between the phys
stimulus and the adaptation mechanisms of hum
vision.11,12 In this case, the equalization property of th
algorithms derives from the spatial distribution of the ch
matic contents of the image.

A completely different normalization strategy for imag
retrieval was recently presented by Finlaysonet al.13 In
their approach, prefiltering is still used, but the objective
not to recover the appearance of image contents un
some canonical conditions. Their normalization mechan
renders the image independent of lighting geometry
illumination color, but the final image produced is ve
different in appearance from the original.

Funt and Barnard14 compared various preprocessing a
gorithms in the context of color-based object recognit
using histogram intersection, and their conclusion is t
prefiltering for color constancy improves results in obje
recognition tasks.

However, Finlayson and Schaefer15 have recently re-
ported that none of the existing color invariant and co
normalization techniques, tested on a database of 28
signs acquired under 14 typical conditions, perform w
enough to support color-based object recognition.

Our aim here is to investigate the performance of
effective image normalization algorithm retinex in
content-based image retrieval system when coupled w
some of the retrieval strategies most commonly used
target-search tasks. We have focused on retinex as
known to enhance images of unknown origin and unkno
able color content.16,17 Retinex maintains color appearan
so that the necessary parameters for color image inde
preserve a meaning that would otherwise be lost. Moreo
retinex redistributes the dynamics of the image, expand
the dynamics of the color content, and maximizing the s
162 / Journal of Electronic Imaging / January 2003 / Vol. 12(1)
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tem’s capacity for discrimination of the color based featu
indexes.

Sections 3 and 4 of this paper present retinex and
retrieval algorithms that have been implemented, wh
Sec. 4 describes the experiments performed, and provid
critical review of our results.

3 Retinex Filtering

Retinex was developed by Land and McCann12 as a model
of color perception in human vision. Many software a
hardware variations of the original method have been p
sented in the last few years.18–21 These algorithms differ
mainly in the strategy used to exploit the spatial distrib
tion of the colors in the scene, and require, in general,
heuristic setting of a large number of parameters~threshold,
number of paths, maximum path distance, etc.!. However,
experimentation has shown that when these parameter
properly tuned, the various versions produce compara
results.22 In our experiments we have used the latest v
sion of McCann’s algorithm and a retinex algorithm, d
signed by some of the authors of this paper, that empl
Brownian paths and look up tables. The Brownian alg
rithm has been amply experimented in recent years,23 al-
lowing a fine adjustment of its parameters, while McCan
has recently been critically analyzed,16 and a very effective
implementation, which requires the setting of only one p
rameter, is now available.

3.1 Basic Retinex Algorithm

The original retinex algorithm,12 applied to a digital image,
can be described as follows. LetI be the image to be pro
cessed; for each pixelI x at positionx, a numberN of paths
starting from different pointsI j i with i 51,...,N and ending
at pixel I x are generated~see Fig. 1!. For each chromatic
channelc, let us indicate thei th path as a sequence ofn
pixels $I c

j i1,I c
j i2,...,I c

j i ,n% with I c
j i ,n5I c

x and I c
j i15I c

j i. Along
each path, a sequence of ratio products called the c
value ~CV! is computed according to the following rules

CVc
i ,151

for k52 to n:

CVc
i ,k5CVc

i ,k21dc
i ,k where

Fig. 1 Different paths to pixel Ix.
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Retinex preprocessing of uncalibrated images . . .
dc
ik5H I c

i ,k

I c
j i ,k21

if uI c
j i ,k2I c

j i ,k21u.threshold

1 otherwise

. ~1!

If all the pixels along the path are darker than the first o
the CV is less than 1. If a lighter pixel is found, the C
may exceed 1, and the following reset mechanism is t
applied:

If CV c
i ,k.1 then CVc

i ,k51. ~2!

In this way the CV is recomputed starting from that light
pixel.

The output pixel valueĪ c
x for channelc of the original

pixel I x is the mean of all the CVs computed along all t
N paths that end atI x:

Ī c
x5

1

N (
i 51

N

CVc
i ,x , ~3!

These values are calculated independently on the t
RGB channels considered an approximation of thel, m, and
s retinal wavebands.12

3.2 Brownian Look-Up Table Retinex—Retinex 1

The various implementations of the retinex algorithm dif
in the characteristics of paths used to explore the ima
For our version we have chosen random Brownian pa
generated with a midpoint displacement technique.17,24,25

The threshold value in Eq.~1!, which enables us to cop
with nonuniform illumination, may vary up to 10% in colo
depth without appreciable differences in the outp
images;17 we have set this parameter at 5% in all the e
periments reported here.

The implementation has been expedited with the use
look-up tables~LUTs! and a subsampled version of th
original image.22 The subsampling level depends on t
size and the frequency content of the images. No autom
procedure for setting this parameter has been develope
date; we have set it, on the basis of our experience, at
eighth of the image sides. To avoid high-frequency alias
we have first applied a 737 low-pass Gaussian filter. Thre
LUT mapping functions between the subsample and its
tered image have then been created, one for each c
band. These LUT functions have been applied on the or
nal full size image to obtain the filtered image~see Fig. 2!.

The local effects of retinex may change the value
originally equal pixels. The three mapping functions a
built by associating each value of the input subsamp
image with the average of all the corresponding values
the output subsampled image. Lost values of the orig
image, not present in the subsample, are recovered by
ear interpolation.

3.3 McCann Multilevel Retinex—Retinex 2

In the McCann multilevel retinex16 there are no paths ex
ploring the image: nonadjacent pixels are compared by
plying the multilevel propagation mechanism of the pix
ratios.
,

n
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To begin, a pyramid of subsampled images is compu
from a logarithmic scaled version of the original imag
halving the edge size at each step and averaging the p
values, until an image of only a few pixels is produc
~maximum 535). In this way, a series of images rangin
from the original resolution Input0 to the lower resolution
Inputlow is created. To avoid zero argument, the logarithm
scaling is obtained in the following way:

Input0~x,y!5 logF I ~x,y!10.001

1.001 G .
The algorithm starts from the lowest level of resolution.
each level, three matrixes with dimensions correspond
to the resolution of that level, and called the new prod
~NP!, the inner product~IP!, and the old product~OP! are
created. To begin with, at the lowest resolution level, t
OP is initialized with the maximum value found i
Inputlow .

Each pixel in the NP is obtained by computing cloc
wise the ratio between the original pixel in the same po
tion and its neighboring pixels. The reset operation is th
applied on each ratio, which is averaged with the relat
OP value. At the end of this operation, the NP becomes
OP, and the process is repeated for each level a prefi
number of times, according to a parameter value nIterat
which may differ from level to level, but has been set he
at four iterations for each level.

low5SamplingOf(Input0)
OP←MaxValue(Inputlow)
for j 5 low downto 0

for i 51 to nIterationsj
With Neighbors Do

IP5
OP1Inputj

Inputj

NP5
OP1IP

2

Fig. 2 LUT retinex algorithm.
Journal of Electronic Imaging / January 2003 / Vol. 12(1) / 163
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Ciocca et al.
OP5ResizeDouble(NP)

When all the operations of a level have been completed,
NP is enlarged to twice the edge size, by pixel replicati
and becomes the OP of the next level.

At the end of the last iteration on the last level the N
will be a gray-level image constituting one of the thr
chromatic channels of the output image. These operat
must be performed once for each chromatic channel.

Finally, the image is reversed from the logarithmic sc
ing;

output5exp~NP!,

and rescaled to the output device range.

4 Color-Based Image Retrieval

There is no single ‘‘best’’ representation of the color co
tent of an image, but only multiple representations t
characterize the content from different perspective26

Among all the available color features we have chosen h
saturation, and value~HSV! color moments, the color his
togram, the color coherence vector, and the spatial c
matic histogram interactions as representative of the m
variations of color-based retrieval algorithms. HSV co
moments matching does not require any preprocessing~ex-
cept color space transformation!; the other methods requir
a priori color quantization.

4.1 Color Features Quantization

The effective and efficient computation of the color fe
tures has required a drastic reduction in the number of
ors used to represent the contents of our 24-bit imag
Formally, we let C be a color space, andP
5$c1 ,c2 , . . . ,ci , . . . ,cnuciPC,n!iCi% be a subset ofC
called a quantization space. A functionQ, which maps each
color in C to an element inP, and is called a quantizer i
defined as:

Q:C→P. ~4!

Let I be a 24-bitsn3m image. Colors inI, defined on color
spaceC, are reduced by applying the quantizerQ using the
palette ofc chosen colors~P!.

We have used the HSV color space here, as color
tures in the HSV color space are known to yield bet
results in image retrieval than color features in oth
spaces.27 The subsetP was selected by nonuniformly sam
pling the HSV color space at 64 intervals grouping colo
with the same appearance. To reduce quantization no
and preserve chromaticity contents, a vector majority fi
was applied to the quantized image, using a working w
dow W of 333 pixels. LettingĨ be the quantized image

each pixel Ĩ (x,y) was assigned a value according to t
following rule:

Ĩ 8~x,y!5ck with ck5argmax
ck

$iAci
i%and

Aci
5$ Ĩ ~x,y!u Ĩ ~x,y!5ci , Ĩ ~x,y!PW%. ~5!
164 / Journal of Electronic Imaging / January 2003 / Vol. 12(1)
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The discriminability of color histograms depends large
on the color quantization method used, as well as on
size of the final palette.26 An advantage of retinex-base
preprocessing is that it preserves the color appearanc
the image contents. We can reasonably assume that a q
tization method tuned for content-based color image
trieval can be applied as is to an image database pre
cessed with a retinex algorithm.

4.2 HSV Color Moments (HSVM)

The color distribution of an image can be considered
probability distribution. Because any probability distrib
tion is uniquely characterized by its central moments, co
distribution can be characterized in the same manner
Ref. 28, the first three moments~mean, variance, and skew
ness! of each color channel of the HSV color space we
used to evaluate image similarity. The feature entries
the i’th color channel were:

Ei~ Ĩ !5
1

N (
x,y

Ĩ i~x,y!

that is, the average color channel values,

s i~ Ĩ !5H 1

N (
x,y

@ Ĩ i~x,y!2Ei~ Ĩ !2#J 1/2

that is, the standard deviation, ~6!

s~ Ĩ !5H 1

N (
x,y

@ Ĩ i~x,y!2Ei~ Ĩ !#3J 1/3

that is, the third root of the skewness.

The evaluation function proposed was a user-speci
weightedL1 distance. Each feature entry was weighted b
value selected by the user in view of the specific appli
tion:

dmom~ Ĩ 1 , Ĩ 2!5(
i

@wi1uEi~ Ĩ 1!2Ei~ Ĩ 2!u1wi2us i~ Ĩ 1!

2s i~ Ĩ 2!u1wi3usi~ Ĩ 1!2si~ Ĩ 2!u#, ~7!

wherewi1 , wi2 , wi3>0, and i 5H, S, and V. In our ex-
periments, all the weights were set at 1.

4.3 Color Histogram (HIST)

Color histograms are frequently used to compare ima
because they are simple to compute and tend to be ro
regarding small changes in camera viewpoint. Retrieval
ing color histograms to identify objects in image databa
has been investigated in Refs. 29 and 30. An image hi
gram refers to the probability mass function of image
tensities. The histogram has been extended for color ima
to capture the joint probabilities of the intensities of t
three color channels. More formally, each entry of the h
togram is defined by
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Retinex preprocessing of uncalibrated images . . .
hci
~ Ĩ !5N•Prob@ Ĩ ~x,y!5ci #

x51, . . . ,m,y51, . . . ,n and N5m3n. ~8!

Computationally, the color histogram is formed b
counting the number of pixels of each color. There are s
eral distance formulas for measuring the similarity of co
histograms. Techniques for comparing probability distrib
tions are not appropriate for color histograms because
similarity is determined by visual perception, rather th
the closeness of the probability distributions. One of
most commonly used measures for color histogram co
parison is the histogram intersection.29 The intersection for-
mula is given by

d@h~ I 1!,h~ I 2!#5
( min@hci

~ I 1!,hci
~ I 2!#

min@ ih~ I 1!i ,ih~ I 2!i #
, ~9!

whereih(I 1)i andih(I 2)i give the area of each histogram

4.4 Color Coherence Vector (CCV)

Color coherence vector histograms proposed in Ref. 31
a refinement of color histograms, which classifies the pix
of each image: a pixel is said to be coherent if it is part
a large, similarly colored region; otherwise, it is labeled
noncoherent. To extract the color regions, the image
quantized inn colors, and an eight-neighbor connect
component algorithm is then applied. Pixels in regions o
size exceeding a predefined threshold~typically, 0.5 to 1%
of the whole image! are considered coherent pixels; tho
in smaller regions are noncoherent. For each colorci the
number of coherent pixelsaci

and the number of noncohe

ent pixelsbci
are then computed. Each entry in the CCV

thus a pair (aci
,bci

), called a coherence pair. The who
coherence vector is defined as

CCV~ Ĩ !5^~ac1
,bc1

!, . . . , ~aci
,bci

!, . . . , ~acn
,bcn

!&.
~10!

Clearly the sumaci
1bci

is the number of pixels of colorci

present in the image; the set of the sums fori 51, . . . ,n
represents the color histogram. TheL1 distance can then b
used to compare two CCVs:

DCCV~ Ĩ , Ĩ 8!5(
i 51

n

~ uaci
2aci

8 u1ubci
2bci

8 u!. ~11!

4.5 Spatial Chromatic Histogram (SCH)

Spatial chromatic histograms32 are extended histogram
that preserve, together with information about the co
content of the image, the spatial distribution of each co
within the image. Each entry in a SCH is composed of th
values:hci

( Ĩ ), the ratio of pixels inĨ of color ci ; bci
( Ĩ )

5( x̄ci
,ȳci

), the baricenter~in relative coordinates! of the

spatial distribution of colorci ; and sci
( Ĩ ), the standard

deviation of the distribution of colorci . The elements of
the SCH for an image are then:
-

e

-

e

Sci
~ Ĩ !5@hci

~ Ĩ !,bci
~ Ĩ !,sci

~ Ĩ !#, where i 51, . . . ,m. ~12!

Letting Ack
be the set of pixels in the image having th

same colorck , Ack
5$ Ĩ (x,y)u Ĩ (x,y)5ck%, and the three

elements of the SCH can then be computed as follows

hck
~ Ĩ !5

uAck
u

n3m
, where n and m

are the width and height of the image,

x̄ck
~ Ĩ !5

1

n

1

uAck
u (

Ĩ ~x,y!PAck

x,

ȳck
~ Ĩ !5

1

m

1

uAck
u (

Ĩ ~x,y!PAck

y, ~13!

sck
~ Ĩ !5H 1

uAck
u (

pPAck

d@p,bck
~ Ĩ !#2J 1/2

,

whered( ) is the Euclidean distance between two pixels
The similarity function proposed by the authors has be

designed to separate color information from spatial inf
mation:

f ~ Ĩ 1 , Ĩ 2!5(
ci

S min@hci
~ Ĩ 1!,hci

~ Ĩ 2!#

3H&2d@bci
~ Ĩ 1!bci

~ Ĩ 2!#

&

1
min@sci

~ Ĩ 1!,sci
~ Ĩ 2!#

max@sci
~ Ĩ 1!,sci

~ Ĩ 2!#
J D . ~14!

5 Experiments

We examine here the performance of the described co
based retrieval strategies when coupled with retinex-ba
prefiltering to see whether, and to what degree, retinex
proves the effectiveness of retrieval, regardless of the s
egy adopted. All the experiments have been carried
using the Quicklook4 Image Search Engine.33 The experi-
ments were performed on a database of 310 paintings,
one of 387 ceramic objects, on both of which we ha
simulated a change in imaging conditions, using differe
illuminants and different device color spaces; two pub
databases, the Simon Fraser University~SFU! database of
11 objects acquired under 5 different illuminants, and
UEA uncalibrated color image database of 28 designs
quired under 14 different conditions.34,35

Given the different nature of the databases, we p
formed two series of experiments. First, on the painting a
ceramics databases, we performed ‘‘target search’’ exp
ments: fifteen query images were randomly selected fr
each database, we randomly changed their device c
Journal of Electronic Imaging / January 2003 / Vol. 12(1) / 165
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Fig. 3 (a) Images used to query the database of ceramics, (b) images used to query the database of
paintings, (c) and (d) query images under changed illumination and device color space, (e) and (f)
query images processed with the retinex 1 algorithm, and (g) and (h) query images processed with the
retinex 2 algorithm.
igi
es
th
ar

es-

rom
the
space and illumination, and then attempted to retrieve or
nal image from the database. The original query imag
the queries after the change in imaging conditions, and
results of retinex preprocessing of the modified queries
shown in Fig. 3.
of Electronic Imaging / January 2003 / Vol. 12(1)
-
,
e
e

Second, our objective for the UEA and SFU databas
was: given the image of an object~or a pattern!, the re-
trieval of all the images of the same object~or pattern!. To
define the query sets, we randomly selected an image f
each homogeneous group, for a total of 11 images from



Retinex preprocessing of uncalibrated images . . .
Fig. 4 (a) Images used to query the SFU database, (b) images used to query the UEA database, (c)
and (d) the query images after application of the retinex 1 algorithm, (e) and (f) the query images after
application of the retinex 2 algorithm.
ase
re

wa
ies
nd
nd

d

ut
-

SFU database and of 28 images from the UEA datab
The original query images, and the results of retinex p
processing of them are shown in Fig. 4. The search
performed three times, using the four retrieval strateg
described in Sec. 4, first without any color processing, a
then applying each retinex algorithm to both the query a
.
-
s

the database images~see Fig. 5!. The results are compare
in Sec. 5.3.

5.1 Databases of Paintings and Ceramics

The management of archives of cultural artifacts is, witho
a doubt, an application in which color information is im
Fig. 5 Scheme of the experiment.
Journal of Electronic Imaging / January 2003 / Vol. 12(1) / 167
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Ciocca et al.
portant, and cannot be replaced, or emulated by other
torial features. This was the reason for performing the fi
experiments on the databases of 310 painting and of
ceramic objects. The database of paintings contains ima
downloaded from the web sites of some museums and
age providers. It was particularly interesting as most of
scenes depicted have unusual color casts and no refer
whites. We wanted to see if this simulation of uncontroll
imaging conditions would ‘‘confuse’’ the retinex algo
rithms, leading them to produce inconsistent results. T
ceramics object database is composed of all the color
ages available on the web siteCeramica d’arte in Italia36

~Ceramic Art in Italy!. These images, acquired from seve
art books and museum catalogues, were interactively m
fied by skilled operators to match the appearance of the
objects or, more precisely, ‘‘to match the mental repres
tation of those objects,’’ since in many cases, the opera
have never seen them. Experts in the field consider
quality of these images to be good on the whole. Howe
most of these images have completely black or colo
backgrounds which, again, could ‘‘confuse’’ the retinex
gorithms. To resemble real situations in content-based
trieval, in our experiments no background-foreground s
mentation was applied. Note that retinex prefiltering w
used here only for normalization purposes.

5.1.1 Simulating changes in imaging conditions

Our objective in these experiments was to test the rob
ness of retinex preprocessing in situations where the d
base is composed of images that have not been conve
into a common color space, but preserve color coordina
deriving from various visualization systems. Image conv
sions among device color spaces are usually accomplis
by color transform engines based on the standardized sp
fication of the devices according to International Co
Consortium~ICC! guidelines. ICC profiles for display de
vices contain information about the phosphors and wh
point chromaticities, and gamma values for each co
channel. To perform the color space transform of the qu
image we have used the ‘‘Profile to Profile’’ function o
Adobe Photoshop, and converted images from the sR
168 / Journal of Electronic Imaging / January 2003 / Vol. 12(1)
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profile37 to a generic monitor profile, either the Gener
EBU 1.5 Gamma Monitor, or the Generic EBU 1.8 Gamm
Monitor. Output profiles having gamma values substa
tially different from the sRGB value of 2.2 were chosen
test the retinex algorithm with a nonlinear transformatio

If we consider two images representing the same sc
under two different illuminants, a simple model for descri
ing differences in corresponding pixels is a linear transf
mation ~a 333 matrix of coefficients!, regardless of the
pixel’s location. An even simpler model is one consideri
a diagonal matrix. The diagonal model has been propo
by Von Kries as a model for human adaptation.38 For it to
hold exactly, sensor filters must be assumed to h
narrow-band properties. Although this hypothesis has
been completely verified in practice, it is frequently a
sumed in the definition of illuminant-invariant imag
descriptors.4,5,12

To simulate a change in illuminant conditions we us
the Von Kries chromatic adaptation model. As the datab
images were coded in standard RGB color space, sR
values were first converted to Commission Internation
de I’Eclairage~CIE! XYZ coordinates, and the Von Krie
transform was then applied to map tristimulus values fr
the sRGB reference white to the target illuminant. The t
get illuminant was chosen from a set of eight different sta
dard illuminants39 ~A, B, C, D50, D55, D75, D93, F2!. The
resultingXYZ values were then converted into sRGB va
ues.

This procedure for simulating changes in illuminatio
results in a uniform alteration of the color cast of the imag
It could be objected that an algorithm simpler than retin
could be used in the presence of a uniform cast. But in r
cases, the illumination may not always be uniform, due
the presence of shadows, and the effectiveness of retine
discounting the illumination in real cases has already b
verified.23

5.2 SFU and UEA Object Databases

The SFU database is composed of 55 images of 11 obje
acquired under five different illuminants using a So
Fig. 6 Summary of results of the target search experiments on the database of paintings and ceram-
ics in terms of STS.
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DXC-930 three-chip CCD camera used with the gam
correction off, and the color temperature set at 3200
~tungsten illuminant!. More details regarding the acquis
tion system can be found on the Web.34 The illuminants
were the Macbeth Judge II illuminant A, a Sylvania Co
White Fluorescent, a Philips Ultralume Fluorescent,
Macbeth Judge II 5000 Fluorescent, and the Macbeth Ju
II 5000 Fluorescent together with a Roscolux 3202 full bl
filter, which produced an illuminant similar in color tem
perature to a very deep blue sky. Figure 4~a! shows the
query images used for the experiment; Fig. 4~c!, the results
of the application of the retinex 1 algorithm; and Fig. 4~e!,
those of retinex 2.

The UEA uncalibrated color image database is a n
completely uncalibrated, database of 392 design ima
comprising 28 different designs acquired under three li
sources using four digital cameras~ranging from a high-end
studio camera to a low-end personal camera! and two ran-
domly chosen commercial scanners. The images were
quired under a yellowish tungsten light, a whitish fluore
cent light, and a bluish daylight15,40 producing for each
design 14 different images of often widely varying col
appearance. Figure 4~b! shows the query images used f
the experiment; Fig. 4~d!, the results of the application o
the retinex 1 algorithm; and~f!, those of the retinex 2.

Table 1 Percentage improvement in experiment scores compared
with retreival without retinex prefiltering.

Database

Paintings Ceramics UEA SFU

Retinex 1 10,7763 21,5690 83,7343 35,7970

Retinex 2 11,1838 20,8283 118,4458 108,6645
e

,
s
t

c-

5.3 Results

5.3.1 Experiments on the databases of ceramics
and paintings

The performance of each of the retrieval strategies on
ceramic and painting databases has been quantified in t
of a success of target search~STS! index defined as fol-
lows:

STS5S 12
Rank21

N21 D , ~15!

where Rank is the retrieval position of the target image, a
ranges from 1 toN, the number of images in the databas
The STS ranges from 0, the worst result, to 1, indicatin
perfect retrieval.

Figure 6 summarizes the results of the application
retinex 1 and of retinex 2. In each diagram, the STS val
are reported for all the features used in retrieval, first w
no color processing~‘‘original’’ !, and then after retinex pro
cessing.

The search on retinex preprocessed images consta
outperformed the search on nonfiltered images. The a
age improvement in performance was 16.2% for the retin
1 algorithm and 16% for the retinex 2 algorithm~see Table
1 below!. No significant differences in the performance
the two retinex algorithms were observed in the expe
ments on these databases.

5.3.2 Experiments on SFU and UEA databases

The results of searching the SFU and UEA databases
presented in Fig. 7. The index here is not the STS score,
the number of images of the same query object ran
among the first 5 retrieved for the SFU database, or am
the first 14 for the UEA database, 5 and 14 being the nu
ber of different imaging conditions applied, respective
Fig. 7 Summary of results of the experiments performed on the SFU and UEA databases.
Journal of Electronic Imaging / January 2003 / Vol. 12(1) / 169
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Fig. 8 Retinex, discounting the illuminant, renders the relevant images similar to the query but, if most
of the images in the database are similar in color content, some non relevant images may also be
found in top positions.
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The score ranges from a minimum of 1~i.e., only the query
image itself has been found! to a maximum of 5 or 14~i.e.,
all the images of the same object are ranked in the
positions!. The numerical results were normalized to co
pare the performances on the two databases:

score5
objects retrieved in topN

N
, N55 or 14. ~16!

Figure 7 shows that the use of retinex prefiltering produ
an evident improvement in query effectiveness under
conditions and with all retrieval strategies. It also regist
a difference in the performance of the two retinex alg
rithms, with a mean improvement of 59.8% for retinex
and of 113.6% for retinex 2~see Table 1!. This is due to the
different characteristics of these algorithms, as explaine
Sec. 3: the multilevel algorithm~retinex 2! computes the
ratio-threshold-reset-product at various subsampling lev
while the simplified LUT version~retinex 1! computes the
same operations at only one given subsampling resolut
the 1/8 here, losing significant spatial color correlation a
consequence. For example, we can see in Fig. 4~a! that the
SFU database is undersampled to 1/8, the broad black b
ground that results produces very dark pictures, further
creasing the color dynamics. Retinex 2, operating at hig
resolution levels, maintains the color dynamics of t
whole images.

Given the improvement in results after retinex prefilte
ing, we must ask ourselves why the searching the U
database is less successful than searching the SFU.
possible reasons are that the UEA images, designed to
different color constancy methods and not database
trieval algorithms, have less color dynamics than the S
images, and that many of the pictures have similar co
palettes.

If we compare the variance of target search results
the databases of ceramics and paintings before and
applying the retinex algorithms, we see that it is grea
reduced by the application of retinex filters, and that b
algorithms produce similar results. On the contrary, on
UEA and SFU databases, although the overall results
prove with the application of retinex, the variance of t
score increases when retinex 1 is applied to prefilter
SFU database.

Since the color features used for retrieval totally, or
least partially, disregard spatial information and the da
base images have a limited palette and a similar color c
ctronic Imaging / January 2003 / Vol. 12(1)
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tent, some nonrelevant filtered images may be ranked in
positions. This can be seen, for example, in Fig. 8. Fig
8~a! shows the top five images retrieved taking the fi
image to query the UEA database and using the SCH~Sec.
4.5! retrieval method. Both the query and the database
ages were preprocessed with the retinex 2 algorithm.
rank and distance from the query are reported under e
image. Among the relevant images we find a nonrelev
one, the visual appearance and color content of which
quite close to those of the relevant images. While res
are not perfect, however, retinex prefiltering has s
greatly improved them, as we can see in Fig. 8~b!, which
shows the ranks and distances for the same images
trieved without retinex prefiltering. Retinex effectively dis
counts the differences in illuminant in the images of t
same object, rendering them much more similar to e
other greatly reducing the distances from the query a
consequently improving the ranking.

6 Conclusions

We examined the results of retinex-based preprocessin
color-based image retrieval. Two different implementatio
of the algorithm were used in searching four databases w
four commonly implemented color-based retrieval stra
gies.

The results demonstrate that retinex preprocess
clearly improves the effectiveness of the retrieval strateg
applied.

The two retinex algorithms used here produced v
similar results on the painting and ceramics databases~on
which we simulated a change in imaging conditions!, while
on the SFU and the UEA databases, acquired under di
ent lighting conditions~and therefore the product of mor
complex and unpredictable color transformations!, the lat-
est version of McCann’s algorithm outperforms the Brow
ian LUT retinex designed by some of the authors of t
paper. The comparison may be biased by the tuning
some of the retinex parameters, and perhaps the rela
ship between the search strategy and retinex parame
could be better, and, possibly, automatically adjusted
more thorough investigation is planned.

We must not forget that color alone cannot suffice
index large image databases, not even those acquired u
standard lighting conditions: in real image searches,
combination of color with other visual features is a mus

In some cases of retrieval, where it might be necess
to preserve the images as they are since their color ca
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part of their semantic content,~the picture of a sunset, fo
example!, the application of retinex, or any other color no
malization method, would not be useful. Integrating retin
preprocessing in a general purpose search engine w
make it possible to exploit image classification in order
identify those special cases. Or the user could be given
choice of whether or not to apply retinex preprocessi
just as the retrieval strategy can be selected.33,41,42

We plan to continue our testing on a large image da
base of public domain, and have taken the first steps in
direction.
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