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Abstract. In image databases, variations in imaging conditions and
preprocessing may result in similar originals that exhibit a low mea-
sure of similarity when color information is used in standard image
retrieval methods. We examine the performance of various color-
based retrieval strategies to see whether, and to what degree, the
effectiveness of retrieval improves with Retinex-based preprocess-
ing, regardless of the strategy adopted. The results of experiments
performed on four different databases are reported and discussed.
© 2003 SPIE and IS&T. [DOI: 10.1117/1.1526844]

1

Recently the problem of meaningful retrieval from image
databases has been addressed by many authors exploiting
great variety of approachég.Most of the systems index
only the syntactic content of the images in terms of visual
features(color, shape, texture, size, distance, relative posi-
tion, etc). Visual features can be automatically extracted
from raw data, without considering semantic information,
and used to represent the entire image, a subregion of it, o
a single object. Color-based features, in particular, have
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been extensively studied and experimented on in the last
few years since they can be efficiently computed, and are
particularly robust with regard to noise; image degradation;
and variations in image size, resolution, and orientation.
However, color-based features are unstable image indices
when the acquisition conditions and imaging devices are
not knowna priori, or are not carefully controlled. Digital
images depend on the physical content of the scene de-
picted, the illumination of the scene, and the characteristics
of the imaging device. In many practical situations, we
have very little or no information about these three factors.
%ther factors that may strongly affect color-based image
retrieval, and are often underestimated: the images col-
lected in a database, where they are usually represented
only in terms of device-dependent color coordinates, may
have been derived from many different sources, and may
also have passed through a number of processing stages
petween entry and indexing; this may have introduced color
shifts and nonlinear transformations, making similar, or
even identical originals appear quite different and exhibit
low similarity measures when standard image retrieval
methods are usetl.

We examine here the performance of various color-
based retrieval strategies when coupled with retinex-based
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prefiltering to see whether, and to what degree, this prepro-
cessing improves the effectiveness of retrieval, regardless
of the strategy adopted. The experiments were performed
on four databases, one of 310 paintings, another of 387
ceramic objects, the Simon Fraser University database of
55 images, and the University of East AngliBEA) uncali-
brated color image database of 392 images.

2 Related Work

Querying a database with an image acquired under uncon-
trolled illumination, or with an imaging system different
from that used for other archive items, may produce unsat-
isfactory results if the problems of the illuminant and the
device dependence of the color were not addressed when
designing the retrieval strategy. These problems were dealt ) S
have introduced new illuminant-invariant color features for indexes. ) )

image indexind, " while others have followed a color con-  Sections 3 and 4 of this paper present retinex and the
stancy approach by preprocessing the query and databadétrieval algorithms that have been implemented, while
images to normalize the colors to a standard neutral illumi- S€c. 4 describes the experiments performed, and provides a
nant. Image normalization can be accomplished in variouscitical review of our results.

ways. One method considers the color phenomenon prima-

rily from a physical point of view, and the corresponding 3 Retinex Filtering

algorithms estimate the scene illuminant on the basis of thegeatinex was developed by Land and McCHras a model
acquired image, e.g., using statistical techniqlies con- f color perception in human vision. Many software and
straints on the spectral matching between the image anCﬁardware variations of the original method have been pre-
some possible illuminant$. Another approach considers sented in the last few yeal®:2! These algorithms differ

the color a result of the interaction between the physical y5inly in the strategy used to exploit the spatial distribu-
stimulus and the adaptation mechanisms of humangon of the colors in the scene, and require, in general, the

vision ™2 In this case, the equalization property of the peyistic setting of a large number of parametémseshold,
algorithms derives from the spatial distribution of the chro- , ,mper of paths, maximum path distance, letdowever

matic contents of the image. . experimentation has shown that when these parameters are
A completely different normalization strategy for image properly tuned, the various versions produce comparable

retrieval was recently presented by Finlaysenal™ In — ogis?? |n our experiments we have used the latest ver-

their approach, prefiltering is still used, but the objective is gjoy of McCann's algorithm and a retinex algorithm, de-

not to recover the appearance of image contents undegjgneq py some of the authors of this paper, that employs
some canonical conditions. Their normalization mechanismg,o\wnian paths and look up tables. The Brownian algo-

renders the image independent of lighting geometry andjthm has been amply experimented in recent y&ad;
illumination color, but the final image produced is Very |oying a fine adjustment of its parameters, while McCann'’s
different in appearance from the original. has recently been critically analyz&tand a very effective

Funt and Barnard compared various preprocessing al- implementation, which requires the setting of only one pa-
gorithms in the context of color-based object recognition 3meter. is now available.

using histogram intersection, and their conclusion is that
prefiltering for color constancy improves results in object ) . .
recognition tasks. 3.1 Basic Retinex Algorithm
However, Finlayson and Schaefehave recently re-  The original retinex algorithn applied to a digital image,

ported that none of the existing color invariant and color can be described as follows. Lebe the image to be pro-
normalization techniques, tested on a database of 28 deecessed; for each pixél at positionx, a numbem of paths
signs acquired under 14 typical qonditions, _p_erform well starting from different point$'i with i=1,...N and ending
enough to support color-based object recognition. at pixel I* are generatedsee Fig. 1 For each chromatic

ﬁOLt'_r aim here is to ||1|yest§|gate lthe.tﬁ)]erformtance of the channelc, let us indicate théth path as a sequence of
effective image normalization algorithm retinex in a . i1 yiiz Jim itk 10— | X Jir_ i
content-based image retrieval system when coupled withp'xms{IC Ae -l with 1 . lc andlg*=1;. Along .
some of the retrieval strategies most commonly used in€ach path, a sequence of ratio products called the chain
target-search tasks. We have focused on retinex as irs/alu€(CV) is computed according to the following rules:
known to enhance images of unknown origin and unknow- _ .

6,17 : L cvil=1
able color content®” Retinex maintains color appearance c
so that the necessary parameters for color image indexin _
preserve a meaning that would otherwise be lost. Moreover,or k=2 ton:
retinex redistributes the dynamics of the image, expanding . L
. .S Cvl, :CVI,k 15I,k where

the dynamics of the color content, and maximizing the sys-*“Vc c c

Fig. 1 Different paths to pixel /*.
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|1k o
sk |1—ick,1 if |10k—114=1|>threshold
c—) ‘¢ .

D

1 otherwise
If all the pixels along the path are darker than the first one,
the CV is less than 1. If a lighter pixel is found, the CV

may exceed 1, and the following reset mechanism is then \
applied: N/

i
?) 2h

N S— 5
In this way the CV is recomputed starting from that lighter i

If CVik>1 then C\Vk=1.

|
pixel. —
The output pixel valu?é for channelc of the original
pixel I* is the mean of all the CVs computed along all the
N paths that end at*:

Fig. 2 LUT retinex algorithm.

_ 1 X
'EZNE CVLX, ©)
i=1 To begin, a pyramid of subsampled images is computed

from a logarithmic scaled version of the original image,

These values are calculated independently on the threg5)ying the edge size at each step and averaging the pixel
RGB channels considered an approximation ofifies and \gyes, until an image of only a few pixels is produced

s retinal wavebands’ (maximum 5x5). In this way, a series of images ranging
) ) ) from the original resolution Inpytto the lower resolution

3.2 Brownian Look-Up Table Retinex—Retinex 1 Input,,, is created. To avoid zero argument, the logarithmic

The various implementations of the retinex algorithm differ scaling is obtained in the following way:

in the characteristics of paths used to explore the image.

For our version we have chosen random Brownian paths

generated with a midpoint displacement technitfué:?®

The threshold value in Eq1), which enables us to cope
with nonuniform illumination, may vary up to 10% in color
depth without appreciable differences in the output
images'’ we have set this parameter at 5% in all the ex-
periments reported here.

The implementation has been expedited with the use o
look-up tables(LUTs) and a subsampled version of the
original image?®> The subsampling level depends on the |
size and the frequency content of the images. No automaticnpllzmowh' ixel in the NP is obtained b : lock
procedure for setting this parameter has been developed to . at% p'xt? Ibn tt e thIS 0 'ta_une] . quoThputlng clocie.
date; we have set it, on the basis of our experience, at ond"'>¢ th€ ratio between the original pixel in the same posi
eighth of the image sides. To avoid high-frequency aliasing ion and its neighboring pixels. The reset operation is then

) ' ] S applied on each ratio, which is averaged with the relative
we have f|r_st applle_d aX7 low-pass Gaussian filter. Three_ OP value. At the end of this operation, the NP becomes the
LUT mapping functions between the subsample and its fil-

tered image have then been created, one for each coIoOP’ and the process is repeated for each level a prefixed

! ; O'Ohumber of times, according to a parameter value nlteration,
band. These LUT functions have been applied on the origi-\ i may differ from level to level, but has been set here
nal full size image to obtain the filtered imageee Fig. 2 : :

. at four iterations for each level.
The local effects of retinex may change the value of

originally equal pixels. The three mapping functions are

built by associating each value of the input subsampled
image with the average of all the corresponding values in
the output subsampled image. Lost values of the original
image, not present in the subsample, are recovered by lin-
ear interpolation.

Inputy(x,y)=log

[(x,y)+0.00
1.001

The algorithm starts from the lowest level of resolution. At
each level, three matrixes with dimensions corresponding
to the resolution of that level, and called the new product
f(NP), the inner productIP), and the old productOP) are
created. To begin with, at the lowest resolution level, the
OP is initialized with the maximum value found in

low=SamplingOf(Inputy)
OP«+MaxValue(Inputy,,)
for j=low downto 0
for i=1 to niterationsg
With Neighbors Do

3.3 McCann Multilevel Retinex—Retinex 2 = m
In the McCann multilevel retinéR there are no paths ex- nput
ploring the image: nonadjacent pixels are compared by ap-

plying the multilevel propagation mechanism of the pixel p— OP+IP
ratios. 2
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OP=ResizeDoubléN P) The discriminability of color histograms depends largely
on the color quantization method used, as well as on the
When all the operations of a level have been completed, thesize of the final paletté® An advantage of retinex-based
NP is enlarged to twice the edge size, by pixel replication, preprocessing is that it preserves the color appearance of
and becomes the OP of the next level. the image contents. We can reasonably assume that a quan-
At the end of the last iteration on the last level the NP tization method tuned for content-based color image re-
will be a gray-level image constituting one of the three trieval can be applied as is to an image database prepro-
chromatic channels of the output image. These operationgessed with a retinex algorithm.
must be performed once for each chromatic channel.
Finally, the image is reversed from the logarithmic scal-
ing; 4.2 HSV Color Moments (HSVM)

The color distribution of an image can be considered a
probability distribution. Because any probability distribu-
tion is uniquely characterized by its central moments, color
distribution can be characterized in the same manner. In
Ref. 28, the first three momentsmean, variance, and skew-
4 Color-Based Image Retrieval nes$ of each color channel of the HSV color space were
There is no Sing|e “best” representation of the color con- Use_d to evaluate Image S|m|lar|ty. The feature entries for
tent of an image, but only multiple representations that thei'th color channel were:

characterize the content from different perspectifes.

Among all the available color features we have chosen hue, -~ 1 .« ~

saturation, and valuBHSV) color moments, the color his- Ei(l)= NXE li(x,y)

togram, the color coherence vector, and the spatial chro- Y

matic histogram interactions as representative of the many that is, the average color channel values,
variations of color-based retrieval algorithms. HSV color

moments matching does not require any preprocessixg 1 112

cept color space transformatjonhe other methods require ¢, (T) = [_ Z [Ti(X,y) — Ei(T)Z]]

a priori color quantization. Ny

output=exp(NP),

and rescaled to the output device range.

o that is, the standard deviation, (6)
4.1 Color Features Quantization

The effective and efficient computation of the color fea- _ 1 ~ ~ 13
tures has required a drastic reduction in the number of col-s(T)={ = >, [Ti(x,y)—E(T)]?

ors used to represent the contents of our 24-bit images. Y

Formally, we let C be a color space, andP that is, the third root of the skewness.
={c4,C5,...,Ci,...,Chlcie C,n<||C|} be a subset of

called a quantization space. A functi@y which maps each The evaluation function proposed was a user-specified

color in C to an element irP, and is called a quantizer is  eightedL, distance. Each feature entry was weighted by a
defined as: value selected by the user in view of the specific applica-

Q:C—P. @ dom

Let| be a 24-bits1 X mimage. Colors irl, defined oncolor g 7 7,)=> [w;,|E(T1)— E(T,)| +wip|o3(T1)
spaceC, are reduced by applying the quantizgusing the i
palette ofc chosen colorgP). ~ ~ ~

We have used the HSV color space here, as color fea- — (1) +wis|si(T1) —si(12)]], (7
tures in the HSV color space are known to yield better
results in image retrieval than color features in other wherew;;, wi,, w;3=0, andi=H, S andV. In our ex-
spaceg’ The subseP was selected by nonuniformly sam- periments, all the weights were set at 1.
pling the HSV color space at 64 intervals grouping colors
with the same appearance. To reduce quantization noise,
and preserve chromaticity contents, a vector majority filter 4.3  Color Histogram (HIST)

was applied to the quantized image, using a working win- cojor histograms are frequently used to compare images
dow W of 3X 3 pixels. Lettingl be the quantized image, because they are simple to compute and tend to be robust
each pixell(x,y) was assigned a value according to the regarding small changes in camera viewpoint. Retrieval us-
following rule: ing color histograms to identify objects in image databases
has been investigated in Refs. 29 and 30. An image histo-
gram refers to the probability mass function of image in-

tensities. The histogram has been extended for color images
to capture the joint probabilities of the intensities of the

~ ~ ~ three color channels. More formally, each entry of the his-
ACi:{I YOGy =c¢i,1(X,y) € W} 5 togram is defined by y Y

T'(x,y)=c with ¢,=argmax|A|l}and

Cxk
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he,(T)=N-ProfT(x,y)=c;]
x=1,...,my=1,...n and N=mXn.

®

Computationally, the color histogram is formed by

counting the number of pixels of each color. There are sev-

eral distance formulas for measuring the similarity of color
histograms. Techniques for comparing probability distribu-

tions are not appropriate for color histograms because then_ (T)

similarity is determined by visual perception, rather than
the closeness of the probability distributions. One of the

most commonly used measures for color histogram com-

parison is the histogram intersectittrl he intersection for-
mula is given by

2 min[he (11),he (12)]
minf[[h(1)[,[Ih12)[] "

where||h(1,)| and|/h(l,)|| give the area of each histogram.

dih(l1),h(l2)]= 9

4.4 Color Coherence Vector (CCV)

Color coherence vector histograms proposed in Ref. 31 are

a refinement of color histograms, which classifies the pixels
of each image: a pixel is said to be coherent if it is part of
a large, similarly colored region; otherwise, it is labeled as
noncoherent. To extract the color regions, the image is
quantized inn colors, and an eight-neighbor connected
component algorithm is then applied. Pixels in regions of a
size exceeding a predefined thresh@igically, 0.5 to 1%

of the whole imaggare considered coherent pixels; those
in smaller regions are noncoherent. For each colathe
number of coherent pixels., and the number of noncoher-

ent pixels,BCi are then computed. Each entry in the CCV is
thus a pair €,B.), called a coherence pair. The whole
coherence vector is defined as

ceV(=((ac.Bc) - - - (ac,Be), - - (e, Be ).
(10

Clearly the sumwg + B, is the number of pixels of colar;

present in the image; the set of the sumsiferl,...,n
represents the color histogram. Thedistance can then be
used to compare two CCVs:

n
ACCV(IT) =2, (g~ ag|+1Be ~ Be))- (11)
4.5 Spatial Chromatic Histogram (SCH)

Spatial chromatic histograrifs are extended histograms

that preserve, together with information about the color
content of the image, the spatial distribution of each color
within the image. Each entry in a SCH is composed of three

values:h (1), the ratio of pixels inl of color ¢;; b (T)
=(Xc,.Yc,). the baricente(in relative coordinatesof the
spatial distribution of color;; and U'Ci(T), the standard

deviation of the distribution of coloc;. The elements of
the SCH for an image are then:

Se (N =[he,(T),bs(1),0¢(T)], wherei=1,...,m. (12

Letting Ac, be the set of pixels in the image having the

same colorcy, Ack:{T(x,y)|~I(x,y)=ck}, and the three
elements of the SCH can then be computed as follows:

Ac,]

Ck
= ., wheren and m
nxm

k

are the width and height of the image,

- 1 1
X, (== > X

« n |A‘3k|T(x,y)eACk

- 1 1
Vo (== , (13
Vo D=1 Ack|“|<x,y%Ac y

k

_ 1 - 1/2

D=\ A ] pgek dlp.be (MH1?

whered( ) is the Euclidean distance between two pixels.

The similarity function proposed by the authors has been
designed to separate color information from spatial infor-
mation:

f(T1.T2)= 2 | minfhe (Ty),he(T2)]

V2—d[be,(I1)be (12)]
%

X

min[o,(T1),0¢(T2)]

max O, (Tl) 10 (TZ)]

+

(14

5 Experiments

We examine here the performance of the described color-
based retrieval strategies when coupled with retinex-based
prefiltering to see whether, and to what degree, retinex im-
proves the effectiveness of retrieval, regardless of the strat-
egy adopted. All the experiments have been carried out
using the Quicklook Image Search Engir&.The experi-
ments were performed on a database of 310 paintings, and
one of 387 ceramic objects, on both of which we have
simulated a change in imaging conditions, using different
illuminants and different device color spaces; two public
databases, the Simon Fraser Univer$®fU) database of
11 objects acquired under 5 different illuminants, and the
UEA uncalibrated color image database of 28 designs ac-
quired under 14 different conditiori&3®

Given the different nature of the databases, we per-
formed two series of experiments. First, on the painting and
ceramics databases, we performed “target search” experi-
ments: fifteen query images were randomly selected from
each database, we randomly changed their device color
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Fig. 3 (a) Images used to query the database of ceramics, (b) images used to query the database of
paintings, (c) and (d) query images under changed illumination and device color space, (e) and (f)
query images processed with the retinex 1 algorithm, and (g) and (h) query images processed with the
retinex 2 algorithm.

h)

space and illumination, and then attempted to retrieve origi- Second, our objective for the UEA and SFU databases-
nal image from the database. The original query images,was: given the image of an objeGir a pattery, the re-
the queries after the change in imaging conditions, and thetrieval of all the images of the same objéot pattern. To
results of retinex preprocessing of the modified queries aredefine the query sets, we randomly selected an image from
shown in Fig. 3. each homogeneous group, for a total of 11 images from the
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Fig. 4 (a) Images used to query the SFU database, (b) images used to query the UEA database, (c)
and (d) the query images after application of the retinex 1 algorithm, (e) and (f) the query images after
application of the retinex 2 algorithm.

e) § g2, 2906 monnc) Lk | mwegih o2 ame

SFU database and of 28 images from the UEA databasethe database imagésee Fig. 5. The results are compared
The original query images, and the results of retinex pre-in Sec. 5.3.

processing of them are shown in Fig. 4. The search was - )
performed three times, using the four retrieval strategies®-1 Databases of Paintings and Ceramics

described in Sec. 4, first without any color processing, andThe management of archives of cultural artifacts is, without
then applying each retinex algorithm to both the query anda doubt, an application in which color information is im-

@ » HSVM

> st 4l

SCH [0l Database

T o Retinex

QuickLoo‘L2 Search
Engine
] |
HSVM
P HIST <«

CCv
SCH

Fig. 5 Scheme of the experiment.
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portant, and cannot be replaced, or emulated by other picprofile®” to a generic monitor profile, either the Generic
torial features. This was the reason for performing the first EBU 1.5 Gamma Monitor, or the Generic EBU 1.8 Gamma
experiments on the databases of 310 painting and of 38Monitor. Output profiles having gamma values substan-
ceramic objects. The database of paintings contains imagesally different from the sRGB value of 2.2 were chosen to
downloaded from the web sites of some museums and im-+est the retinex algorithm with a nonlinear transformation.
age providers. It was particularly interesting as most of the If we consider two images representing the same scene
scenes depicted have unusual color casts and no referenaender two different illuminants, a simple model for describ-
whites. We wanted to see if this simulation of uncontrolled ing differences in corresponding pixels is a linear transfor-
imaging conditions would “confuse” the retinex algo- mation (a 3xX3 matrix of coefficienty regardless of the
rithms, leading them to produce inconsistent results. Thepixel's location. An even simpler model is one considering
ceramics object database is composed of all the color im-a diagonal matrix. The diagonal model has been proposed
ages available on the web si@eramica d’arte in Italid® by Von Kries as a model for human adaptatiror it to
(Ceramic Art in Italy. These images, acquired from several hold exactly, sensor filters must be assumed to have
art books and museum catalogues, were interactively modinarrow-band properties. Although this hypothesis has not
fied by skilled operators to match the appearance of the reabeen completely verified in practice, it is frequently as-
objects or, more precisely, “to match the mental represen-sumed in the definition of illuminant-invariant image
tation of those objects,” since in many cases, the operatorsdescriptorg:>2

have never seen them. Experts in the field consider the To simulate a change in illuminant conditions we used
quality of these images to be good on the whole. However,the Von Kries chromatic adaptation model. As the database
most of these images have completely black or coloredimages were coded in standard RGB color space, sSRGB
backgrounds which, again, could “confuse” the retinex al- values were first converted to Commission Internationale
gorithms. To resemble real situations in content-based re-de I'Eclairage(CIE) XYZ coordinates, and the Von Kries
trieval, in our experiments no background-foreground seg-transform was then applied to map tristimulus values from
mentation was applied. Note that retinex prefiltering was the SRGB reference white to the target illuminant. The tar-

used here only for normalization purposes. get illuminant was chosen from a set of eight different stan-
_ , o - dard illuminant® (A, B, C, D50, D55, D75, D93, F2 The
5.1.1 Simulating changes in imaging conditions resulting XYZ values were then converted into SRGB val-

Our objective in these experiments was to test the robust-ues.

ness of retinex preprocessing in situations where the data- This procedure for simulating changes in illumination
base is composed of images that have not been convertetesults in a uniform alteration of the color cast of the image.
into a common color space, but preserve color coordinatedt could be objected that an algorithm simpler than retinex
deriving from various visualization systems. Image conver- could be used in the presence of a uniform cast. But in real
sions among device color spaces are usually accomplishegases, the illumination may not always be uniform, due to
by color transform engines based on the standardized specithe presence of shadows, and the effectiveness of retinex in
fication of the devices according to International Color discounting the illumination in real cases has already been
Consortium(ICC) guidelines. ICC profiles for display de- verified??

vices contain information about the phosphors and white
point chromaticities, and gamma values for each color .
channel. To perform the color space transform of the query®-2 SFU and UEA Object Databases

image we have used the “Profile to Profile” function of The SFU database is composed of 55 images of 11 objects,
Adobe Photoshop, and converted images from the sRGBacquired under five different illuminants using a Sony

Paintings - lllum+Device change Ceramics - lllum+Device change
1,20
115
1,10
1,05
1,00
0953 - - .|
@ Original osot- L @Original
DO Retinex 1 a::z s O Retinex 1
@ Retinex 2 am]l @ Retinex 2
b
0,55
0,50
045
HSVM HIST CCVv SCH HSVM HIST Cccv SCH
HSVM  HIST cev SCH HSVM  HIST cev SCH
o Mean 0885 0826 0854 0,857 Original_Wean 0873 0800 0773 03815
nainal  std. Dev. 0,214 0254 0261 0,244 Std. Dev. 0219 0363 0,324 0,351
- Mean 0011 0054 0064 0007 - Mean 09T 0, ] 1
Retinex1 o4 Dev. 0136 0150 04105 0118 Refinex 1 o Dev. 0011 0030 0033 0016
— 5 Wean 0008 0985 0065 0995 Ratnee 2 Mean 0978 0995 0,963 0,007
Retinex2 o pev. 0172 0032 0100 0017 Std.Dev. 0034 0010 0092 0,009

Fig. 6 Summary of results of the target search experiments on the database of paintings and ceram-
ics in terms of STS.
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Table 1 Percentage improvement in experiment scores compared
with retreival without retinex prefiltering.

5.3 Results

5.3.1 Experiments on the databases of ceramics

Database and paintings
Paintings  Ceramics UEA SFU The performance of each of the retrieval strategies on the
ceramic and painting databases has been quantified in terms
Retinex 1 10,7763 21,5690 83,7343 35,7970 of a success of target sear(BTS index defined as fol-
Retinex 2 11,1838 20,8283 118,4458  108,6645 lows:
sTs- 1 Rankt (15)
N—-1 /'

DXC-930 three-chip CCD camera used with the gamma
correction off, and the color temperature set at 3200 K
(tungsten illuminant More details regarding the acquisi-
tion system can be found on the The illuminants
were the Macbeth Judge Il illuminant A, a Sylvania Cool
White Fluorescent, a Philips Ultralume Fluorescent, the
Macbeth Judge 11 5000 Fluorescent, and the Macbeth Judg
11 5000 Fluorescent together with a Roscolux 3202 full blue
filter, which produced an illuminant similar in color tem-
perature to a very deep blue sky. Figure@)4shows the
query images used for the experiment; Fi¢e)4the results

of the application of the retinex 1 algorithm; and Fige}
those of retinex 2.

The UEA uncalibrated color image database is a new,
completely uncalibrated, database of 392 design image
comprising 28 different designs acquired under three light
sources using four digital camer@anging from a high-end
studio camera to a low-end personal camenad two ran-

where Rank is the retrieval position of the target image, and
ranges from 1 td\, the number of images in the database.
The STS ranges from 0, the worst result, to 1, indicating a
perfect retrieval.

Figure 6 summarizes the results of the application of

éetinex 1 and of retinex 2. In each diagram, the STS values

are reported for all the features used in retrieval, first with
no color processing‘original” ), and then after retinex pro-
cessing.

The search on retinex preprocessed images constantly
outperformed the search on nonfiltered images. The aver-
age improvement in performance was 16.2% for the retinex
1 algorithm and 16% for the retinex 2 algorithisee Table

below). No significant differences in the performance of
he two retinex algorithms were observed in the experi-
ments on these databases.

5.3.2 Experiments on SFU and UEA databases

domly chosen commercial scanners. The images were ac
quired under a yellowish tungsten light, a whitish fluores- The results of searching the SFU and UEA databases are
cent light, and a bluish daylight*® producing for each  presented in Fig. 7. The index here is not the STS score, but
design 14 different images of often widely varying color the number of images of the same query object ranked
appearance. Figure(ld) shows the query images used for among the first 5 retrieved for the SFU database, or among
the experiment; Fig. @), the results of the application of the first 14 for the UEA database, 5 and 14 being the num-
the retinex 1 algorithm; an¢), those of the retinex 2. ber of different imaging conditions applied, respectively.

SFU Image Database UEA Image Database

12
1,1 ]
1,0 ]
0.0 |
08 |
07 1 O Original @ Original
0,6 4 O Retinex 1 ORetinex 1
0,5 @Retinex 2 i |@Retinex 2
0.4 |
03}
0.2 .
0.1
0,0
HSVM HIST cev SCH HSVM HIST cev SCH
HSVM  HIST cev SCH HSVM  HIST cev SCH

s Mean 0,291 0,382 0,436 0,455 Original _ Mean 0,219 0,212 0,204 0,274
Original 4 Dev. 0138 0189 0196 0,181 ngl Std.Dev. 0118 04133 0115 0126

: Mean 0455 0636 0527 0,709 Ratnor 1 Wean 0370 0408 0395 0385
Retinex1 o4 Dev. 0202 0280 0313 0,288 Std.Dev. 0,189 0,170 0,154 0,146

- Mean 063 0873 083 0891 , Mean 0450 0485 042 0485
Refinex2 s::. Dev. 0196 0185 0,196 0,138 Refinex2 i Dev. 0187 0192 0,177 0,196

Fig. 7 Summary of results of the experiments performed on the SFU and UEA databases.
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With TP S E e (e e e |[tEt e sfwb® |, L4090

. N EEEE R R e feo8es |0 kias
Retinex PP e |[Pe P e e |+ Ree R | Lol
Preprocessing [ A S ¢ > o> e [ ."._. > & s &
Qi (2) 8.64651 (3) 12.64305 (4) 13.02136 (5) 13.41211

Without e esal|voo0+ OIS &9 ¢3¢
, Pt e [+ e e+ g L 2
Retinex S I Y * e
Preprocessing EITNE e + v 0 s s 6 6 5 s
(1) Query (255) 69.35884 | (217) 68.36212 | (22) 33.3811T | (240) 6876346

Fig. 8 Retinex, discounting the illuminant, renders the relevant images similar to the query but, if most
of the images in the database are similar in color content, some non relevant images may also be
found in top positions.

The score ranges from a minimum ofile., only the query  tent, some nonrelevant filtered images may be ranked in top
image itself has been fouhtb a maximum of 5 or 14i.e., positions. This can be seen, for example, in Fig. 8. Figure
all the images of the same object are ranked in the top8(a) shows the top five images retrieved taking the first
positions. The numerical results were normalized to com- image to query the UEA database and using the $8&t.
pare the performances on the two databases: 4.5) retrieval method. Both the query and the database im-
ages were preprocessed with the retinex 2 algorithm. The
rank and distance from the query are reported under each
image. Among the relevant images we find a nonrelevant
one, the visual appearance and color content of which are

Figure 7 shows that the use of retinex prefiltering producesdulite close to those of the relevant images. While results
an evident improvement in query effectiveness under allare not perfect, however, retinex prefiltering has still
conditions and with all retrieval strategies. It also registers 9reatly improved them, as we can see in Fig)Bwhich

a difference in the performance of the two retinex algo- shows the ranks and distances for the same images, re-
rithms, with a mean improvement of 59.8% for retinex 1 trieved Wlthoqt retinex p_ref_|lter|r_19. Retinex e_ffect|vely dis-
and of 113.6% for retinex &ee Table 1L This is due to the ~ counts the differences in illuminant in the images of the
different characteristics of these algorithms, as explained inS@me object, rendering them much more similar to each
Sec. 3: the multilevel algorithniretinex 2 computes the ~ Other greatly reducing the distances from the query and
ratio-threshold-reset-product at various subsampling levels consequently improving the ranking.

while the simplified LUT versior{retinex ) computes the .

same operations at only one given subsampling resolution® €onclusions
the 1/8 here, losing significant spatial color correlation as aWe examined the results of retinex-based preprocessing in
consequence. For example, we can see in Ra).that the color-based image retrieval. Two different implementations
SFU database is undersampled to 1/8, the broad black backef the algorithm were used in searching four databases with
ground that results produces very dark pictures, further de-four commonly implemented color-based retrieval strate-
creasing the color dynamics. Retinex 2, operating at highergies.

resolution levels, maintains the color dynamics of the The results demonstrate that retinex preprocessing
whole images. clearly improves the effectiveness of the retrieval strategies

Given the improvement in results after retinex prefilter- applied.
ing, we must ask ourselves why the searching the UEA The two retinex algorithms used here produced very
database is less successful than searching the SFU. Twsimilar results on the painting and ceramics databéses
possible reasons are that the UEA images, designed to testhich we simulated a change in imaging conditignghile
different color constancy methods and not database re-on the SFU and the UEA databases, acquired under differ-
trieval algorithms, have less color dynamics than the SFUent lighting conditiongand therefore the product of more
images, and that many of the pictures have similar colorcomplex and unpredictable color transformatipribe lat-
palettes. est version of McCann'’s algorithm outperforms the Brown-

If we compare the variance of target search results onian LUT retinex designed by some of the authors of this
the databases of ceramics and paintings before and aftepaper. The comparison may be biased by the tuning of
applying the retinex algorithms, we see that it is greatly some of the retinex parameters, and perhaps the relation-
reduced by the application of retinex filters, and that both ship between the search strategy and retinex parameters
algorithms produce similar results. On the contrary, on thecould be better, and, possibly, automatically adjusted. A
UEA and SFU databases, although the overall results im-more thorough investigation is planned.
prove with the application of retinex, the variance of the = We must not forget that color alone cannot suffice to
score increases when retinex 1 is applied to prefilter theindex large image databases, not even those acquired under
SFU database. standard lighting conditions: in real image searches, the

Since the color features used for retrieval totally, or at combination of color with other visual features is a must.
least partially, disregard spatial information and the data- In some cases of retrieval, where it might be necessary
base images have a limited palette and a similar color con-to preserve the images as they are since their color cast is

objects retrieved in topN

score=
N

,N=5 or 14. (16)
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part of their semantic contenthe picture of a sunset, for
example, the application of retinex, or any other color nor-
malization method, would not be useful. Integrating retinex 57
preprocessing in a general purpose search engine would
make it possible to exploit image classification in order to

identify those special cases. Or the user could be given the?®-
choice of whether or not to apply retinex preprocessing, ,q

just as the retrieval strategy can be selecfetd:*?

base of public domain, and have taken the first steps in tha

We plan to continue our testing on a large image data-

direction.
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