
Abstract Video summarization, aimed at reducing

the amount of data that must be examined in order to

retrieve the information desired from information in a

video, is an essential task in video analysis and index-

ing applications. We propose an innovative approach

for the selection of representative (key) frames of a

video sequence for video summarization. By analyzing

the differences between two consecutive frames of a

video sequence, the algorithm determines the com-

plexity of the sequence in terms of changes in the visual

content expressed by different frame descriptors. The

algorithm, which escapes the complexity of existing

methods based, for example, on clustering or optimi-

zation strategies, dynamically and rapidly selects a

variable number of key frames within each sequence.

The key frames are extracted by detecting curvature

points within the curve of the cumulative frame dif-

ferences. Another advantage is that it can extract the

key frames on the fly: curvature points can be deter-

mined while computing the frame differences and the

key frames can be extracted as soon as a second high

curvature point has been detected. We compare the

performance of this algorithm with that of other key

frame extraction algorithms based on different ap-

proaches. The summaries obtained have been objec-

tively evaluated by three quality measures: the Fidelity

measure, the Shot Reconstruction Degree measure and

the Compression Ratio measure.

Keywords Video summarization Æ Visual summary

evaluation Æ Dynamic key frames extraction Æ Frame

content description

1 Introduction

The growing interest of consumers in the acquisition of

and access to visual information has created a demand

for new technologies to represent, model, index and

retrieve multimedia data. Very large databases of

images and videos require efficient algorithms that

enable fast browsing and access to the information

pursued [1]. In the case of videos, in particular, much

of the visual data offered are simply redundant, and we

must find a way to retain only the information strictly

needed for functional browsing and querying.

Video summarization, aimed at reducing the

amount of data that must be examined in order to re-

trieve a particular piece of information in a video, is

consequently an essential task in applications of video

analysis and indexing [2], as can be seen in Fig. 1.

Generally, a video summary is a sequence of still or

moving images, with or without audio. These images

must preserve the overall contents of the video with

minimum data. Still images chronologically arranged

form a pictorial summary that can be assumed to be the

equivalent of a video storyboard. Summarization uti-

lizing moving images (and at times a corresponding

audio abstract) is called video skimming; the product is

similar to a video trailer or clip. Both approaches must
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present a summary of the important events recorded in

the video. We focus our attention here on the creation

of a visual summary using still images, called key

frames, extracted from the video. Although video

skimming conveys pictorial, motion and, where used,

audio information, still images can summarize the vi-

deo content in more rapid and compact way: users can

grasp the overall content more quickly from key

frames than by watching a set of video sequences (even

when brief). Key frame-based video representation

views video abstraction as a problem of mapping an

entire segment (both static and moving contents) to

some small number of representative images. The

extraction of key frames must be automatic and con-

tent based so that they maintain the salient content of

the video while avoiding all redundancy. In theory,

semantic primitives of the video such as relevant ob-

jects (people or object identities), actions and events (a

meeting, a convention, etc.) should be used.

However, since this kind of specific semantic anal-

ysis is not currently feasible, key frame extraction

based on low-level video features (mainly visual fea-

tures) is used instead [1]. Besides providing video

browsing capability and content description, key

frames act as video ‘‘bookmarks’’ that designate

interesting events captured, supplying direct access to

video sub-sequences. Key frames, which visually rep-

resent the video content, can also be used in the

indexing process, where we can apply the same

indexing and retrieval strategies developed for image

retrieval to retrieve video sequences. Low-level visual

features can be used in indexing the key frames and

thus the video sequences to which they belong. The use

of low-level features in the indexing process should not

be considered as a less powerful strategy; high-level

features with different levels of semantic can be de-

rived from them. For example, high-level information

can be derived from low-level visual features by using

knowledge-based techniques inherited from the

domain of artificial intelligence and pattern recogni-

tion. Examples of this can be found in Antani et al. [3],

where different pattern recognition strategies are dis-

cussed, and in Schettini et al. [4], where classification

strategies are used to annotate the global content of

the images in terms of high-level concepts (close-up,

indoor, outdoor). A similar strategy can be adopted to

automatically identify semantic regions within the

images themselves [5]. If the audio track is available,

transcripts of the audio can also be used [6].

Section 2 of this paper presents several approaches

to key frame extraction described in the literature.

Section 3 introduces the three quality measures used

here to evaluate the summaries. Section 4 describes the

key frame extraction algorithm proposed. The results

of the comparison of our approach with other key

frame selection algorithms are shown in Sects. 5 and 6.

Section 7 briefly illustrates an application of our algo-

rithm.

2 Related work

Different methods can be used to select key frames. In

general these methods assume that the video has al-

ready been segmented into shots (a continuous se-

quences of frames taken over a short period of time) by

a shot detection algorithm and extract the key frames

from within each shot. One of the possible approaches

to key frame selection is to take the first frame in the

shot as the key frame [7]. Ueda et al. [8] and Rui et al.

[9] use the first and last frames of each shot. Other

approaches time sample the shots at predefined inter-

vals, as in Pentland et al. [10] where the key frames are

taken from a set location within the shot or in an

alternative approach where the video is time sampled

regardless of shot boundaries [9]. These approaches do

not consider the dynamics in the visual content of the

shot but rely on the information regarding the se-

Fig. 1 General application
of the video analysis and
indexing tasks
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quence’s boundaries. They often extract a fixed num-

ber of key frames per shot. In Zhonghua et al. [11] only

one key frame is extracted from each shot: the frames

are segmented into objects and background, and the

frame with the maximum ratio of objects to back-

ground is chosen as the key frame of the segment since

it is assumed to convey the most information about the

shot. Other approaches try to group the key frames (in

each shot or in the whole video) into visually similar

clusters. In Arman et al. [12] the shot is compacted into

a small number of frames, grouping consecutive frames

together. Zhuang et al. [13] group the frames in clus-

ters, and the key frames are selected from the largest

clusters. In Girgensohn et al. [14] constraints on the

position of the key frames in time are also used in the

clustering process; a hierarchical clustering reduction is

performed, obtaining summaries at different levels of

abstraction. In Gong and Liu [15] the video is sum-

marized with a clustering algorithm based on single

value decomposition (SVD). The video frames are

time sampled and visual features computed from them.

The refined feature space obtained by the SVD is

clustered, and a key frame is extracted from each

cluster.

In order to take into account the visual dynamics of

the frames within a sequence, some approaches com-

pute the differences between pairs of frames (not

necessarily consecutive) in terms of color histograms,

motion or other visual descriptions. The key frames are

selected by analyzing the values obtained. Zhao et al.

[16] have developed a simple method for key frame

extraction called Simplified Breakpoints. A frame is

selected as a key frame if its color histograms differ

from that of the previous frame by a given threshold.

When the set of selected frames reaches the required

number of key frames for the shot, the process stops. In

Hanjalic et al. [17] frame differences are taken to build

a ‘‘content development’’ curve that is approximated,

using an error minimization algorithm, by a curve

composed of a predefined number of rectangles. Hoon

et al. [18] propose a very simple approach: the key

frames are selected by an adaptive temporal sampling

algorithm that uniformly samples the y-axis of the

curve of cumulative frame differences. The resulting

nonuniform sampling on the curve’s x-axis represents

the set of key frames.

The compressed domain is often considered when

developing key frame extraction algorithms since it

easily allows to express the dynamics of a video se-

quence through motion analysis. Narasimha et al. [19]

propose a neural network approach using motion

intensities computed from MPEG-compressed video.

A fuzzy system classifies the motion intensities into five

categories, and those frames that exhibit high intensi-

ties are chosen as key frames. In Calic and Izquierdo

[20] video features extracted from the statistics on the

macro-blocks of an MPEG-compressed video are used

to compute frame differences. A discrete contour

evolution algorithm is applied to extract key frames

from the curve of the frame differences. In Liu et al.

[21] a perceived motion energy (PME) computed on

the motion vectors is used to describe the video con-

tent. A triangle model is then employed to model

motion patterns and extract key frames at the turning

points of acceleration and deceleration.

The drawback of most of these approaches is that

the number of representative frames must be set in

some manner a priori depending on the length of the

video shots for example. This cannot guarantee that

the frames selected will not be highly correlated. It is

also difficult to set a suitable interval of time, or

frames: large intervals mean a large number of frames

will be chosen, while small intervals may not capture

enough representative frames and those chosen may

not be in the right places to capture significant content.

Still other approaches work only on compressed video,

are threshold-dependent or are computationally

intensive (e.g., [21, 22]).

In this paper, we instead propose an approach for

the selection of key frames that determines the com-

plexity of the sequence in terms of changes in the

pictorial content using three visual features: its color

histogram, wavelet statistics and an edge direction

histogram. Similarity measures are computed for each

descriptor and combined to form a frame difference

measure. The frame differences are then used to

dynamically and rapidly select a variable number of

key frames within each shot. The method woks fast on

all kind of videos (compressed or not) and does not

exhibit the complexity of existing methods based, for

example, on clustering strategies. It can also extract

key frames on the fly, i.e., it can output key frames

while computing the frame differences without having

to process the whole shot.

3 Summary evaluation

One of the most challenging topics in the field of video

analysis and summarization is that of evaluating the

summaries produced by the different key frame

extraction algorithms. In their work to design a

framework for video summarization, Fayzullin et al.

[23] define three properties that must be taken into

account when creating a video summary: continuity,

priority and repetition. Continuity means that the
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summarized video must be as uninterrupted as possi-

ble. Priority means that, in a given application, certain

objects or events may be more important than others,

and thus the summary must contain high-priority items.

Repetition means that it is important to not represent

the same events over and over again. It is often very

difficult to successfully incorporate these semantic

properties in a summarization algorithm. Priority, in

particular, is a highly task-dependent property. It re-

quires that video experts carefully define the summa-

rization rules most suitable for each genre of video

sequence processed.

The most common evaluation of a summary relies

on the subjective opinion of a panel of users. This shifts

the problem of incorporating semantic information

into the summarization algorithm to the evaluation

phase where users are requested to compare the sum-

mary with the original sequence. For example, in

Narasimha et al. [19] and Lagendjik et al. [24] a global

subjective evaluation is given for the goodness of the

summary; in Liu et al. [21] users are asked to give

scores based on their satisfaction marking the sum-

maries as good, acceptable or bad. Ngo et al. [25] apply

the criteria of ‘‘informativeness’’ and ‘‘enjoyability’’,

for their evaluation of video highlights: ‘‘informative-

ness’’ assesses the capability of covering the content

while avoiding redundancy; ‘‘enjoyability’’ assesses the

performance of the algorithm in selecting perceptually

agreeable video segments for summaries.

The problem of these approaches is that their

evaluation is highly subjective and cannot be used to

analyze video sequences automatically. We have

chosen, instead, a more objective, general purpose to

summary evaluation, one that does not take into ac-

count the kind of video being processed, and can be

automatically applied to all video sequences without

requiring the services of video experts. A summary is

considered good if the set of key frames effectively

represents the pictorial content of the video sequence.

This objective evaluation is valid, regardless of genre,

and can be performed automatically if a suitable

quality measure is provided. From the very few works

that have addressed the problem of objective evalua-

tion of summaries, we have chosen two quality mea-

sures. The first, well known in the literature, is the

Fidelity measure, as proposed by Chang et al. [26];

the second is the Shot Reconstruction Degree (SRD)

recently proposed by Liu et al. [27]. These measures

were chosen because they apply two different ap-

proaches: the Fidelity employs a global strategy, while

the SRD uses a local evaluation of the key frames.

Along with the evaluation of the pictorial content

using these two measures we have also judged the

compactness of the summary on the basis of the

Compression Ratio measure.

3.1 Fidelity

The Fidelity measure, which compares each key frame

in the summary with the other frames in the video

sequence, is defined as a semi-Hausdorff distance. We

let a video sequence starting at time t and containing

cNF frames be

St ¼ Fðt þ nÞ n ¼ 0; 1; . . . ; cNF � 1jf g ð1Þ

and the set of cNKF key frames extracted from the vi-

deo sequence be

KFt¼ FKFðtþn1Þ;FKFðtþn2Þ; . . . ;FKFðtþnNKFÞ 0� nijf
ð2Þ

The distance between the set of key frames KFt and

a frame F belonging to the video sequence St can be

computed as

d Fðt þ nÞ;KFtð Þ ¼ min
j

Diff Fðt þ nð Þ;FKFðt þ njÞ
� �

j ¼ 1; 2; . . . ; cNKF; ð3Þ

where Diff( ) is a suitable frame difference measure.

The distance between the video sequence St and the set

of key frames KFt is finally defined as

dðSt;KFtÞ ¼max
n

d FðtþnÞ;KFtð Þ n¼ 0;1; . . . ;cNF� 1jf g:

ð4Þ

We can then compute the Fidelity measure as

FidelityðSt;KFtÞ ¼MaxDiff � dðSt;KFtÞ; ð5Þ

where MaxDiff is the largest possible value that the

Diff( ) frame difference distance can assume. High

Fidelity values indicate that the key frames extracted

from the video sequence provide a good global

description of the visual content of the sequence. A

visual representation of the Fidelity measure compu-

tation is shown in Fig. 2.

3.2 Shot Reconstruction Degree

The idea underlying the SRD measure is that, using a

suitable frame interpolation algorithm, we should be

able to reconstruct the whole sequence, from the set of

key frames. The better the reconstruction approxi-

mates the original video sequence, the better the key
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frames summarize its content. Let the video sequence

St and the set of key frames KFt be defined as in the

previous paragraph. Let FIA( ) be a frame interpola-

tion algorithm that computes a frame from a pair of

key frames in KFt:

~Fðt þ nÞ ¼ FIA FKFðt þ njÞ;FKFðt þ njþ1Þ; n; nj; njþ1

� �

nj � n\njþ1: ð6Þ

The SRD measure is defined as

SRD St;KFtð Þ ¼
XcNF�1

n¼0

Sim Fðt þ nÞ; ~Fðt þ nÞ
� �

; ð7Þ

where Sim( ) is a similarity measure between two

frames. In Liu et al. [27], the chosen similarity measure

has been defined as a PSNR-like measure:

Sim Fðt þ nÞ; ~Fðt þ nÞ
� �

¼ C log MaxDiff
�
Diff Fðt þ nÞ; ~Fðt þ nÞ

� �� �
; ð8Þ

where C is a positive constant, Diff( ) a frame differ-

ence distance computed on a gray scale version of the

original frames and MaxDiff the largest possible value

it can assume. The SRD measure focuses on local de-

tails within the video sequences; it should thus be able

to evaluate more accurately the video summary with

respect to the visual dynamics of the original video. A

visual representation of the SRD computation is shown

in Fig. 3.

3.3 Compression ratio

A video summary should not contain too many key

frames since the aim of the summarization process is to

allow users to quickly grasp the content of a video

sequence. For this reason, we have also evaluated the

compactness of the summary (compression ratio). The

compression ratio is computed by dividing the number

of key frames in the summary by the length of the

video sequence. For a given video sequence St, the

compression rate is thus defined as

CRatioðStÞ ¼ 1� cNKF cNF= ; ð9Þ

where cNKF is the number of key frames in the sum-

mary and cNF the total number of frames in the video

sequence. Ideally, a good summary produced by a key

frame extraction algorithm will present both high-

quality measure (in terms of Fidelity or SRD) and a

high compression ratio (i.e., small number of key

frames).

4 New key frame extraction approach

The proposed key frame extraction algorithm functions

as shown in Fig. 4. The algorithm employs the infor-

mation obtained by a video segmentation algorithm to

process each shot. We have developed a prototypical

segmentation algorithm that for the moment detects

only abrupt changes and fades, because these are the

most common editing effects. For abrupt changes we

have implemented a threshold-based algorithm cou-

pled with a frame difference measure computed from

histograms and texture descriptors. The same frame

difference measure is used for the key frame extraction

algorithm. To detect fades we have implemented a

modified version of the algorithm proposed by Fer-

nando et al. [28]. The results obtained by these algo-

rithms are submitted for evaluation to a decision

module which gives the final response. This allows us to

cope with conflicting results or with groups of frames

that are not meaningful, such as those between the end

of a fade-out and the start of a fade-in, increasing the

robustness of the detection phase. A gradual transition

detection algorithm is currently being developed and

will be integrated in a similar manner.

We distinguish two types of shots: ‘‘informative’’

shots (type A) and ‘‘uninformative’’ shots (type B).

Type B shots are those limited by: a fade-out followed

by a fade-in effect, a fade-out followed by a cut or a cut

followed by a fade-in. If we were to extract key frames

from these shots the resulting set of frames would

contain uniformly colored images that are meaningless

in terms of the information supplied. Key frames are

extracted from type A shots only.

4.1 Frame difference measure

In general, a single visual descriptor cannot capture all

the pictorial details needed to estimate the changes in

the visual content of frames and the visual complexity

of a video shot. In defining what a good pictorial rep-

resentation of a frame is, we must take into account

both color properties and structural properties, such as

texture. Instead, as stated in Sect. 2, many existing

algorithms use only one feature. To overcome the

frame representation problem, we compute three dif-

ferent descriptors: a color histogram, an edge direction

histogram and wavelet statistics. The features used

have been selected for three basic properties: percep-

tual similarity (the feature distance between two ima-

ges is large only if the images are not ‘‘similar’’),

efficiency (the features can be rapidly computed) and

economy (small dimensions that do not affect efficacy).

The use of these assorted visual descriptors provides a

J Real-Time Image Proc (2006) 1:69–88 73

123



more precise representation of the frame and captures

slight variations between the frames in a shot.

Color histograms are frequently used to compare

images because they are simple to compute and tend to

be robust regarding small changes in camera viewpoint.

Retrieval using color histograms to identify objects in

image databases has been investigated in [29, 30]. An

image histogram h( ) refers to the probability mass

function of image intensities. Computationally, the

color histogram is formed by counting the number of

pixels belonging to each color. Usually a color quan-

tization phase is performed on the original image in

order to reduce the number of colors to consider in

computing the histogram and thus the size of the his-

togram itself. The color histogram we use is composed

of 64 bins determined by sampling groups of mean-

ingful colors in the HSV color space [31]. The use of

the HSV color space allows us to carefully define

groups of colors in terms of Hue, Saturation and

Lightness.

The edge direction histogram is composed of 72 bins

corresponding to intervals of 2.5�. Two Sobel filters are

applied to obtain the gradient of the horizontal and

vertical edges of the luminance frame image [32].

These values are used to compute the gradient of each

pixel; those pixels that exhibit a gradient above a

predefined threshold are taken to compute the gradient

angle and then the histogram. The threshold has been

heuristically set at 4% of the gradient maximum value

in order to remove from the histogram computation

edges derived from background noise.

Multiresolution wavelet analysis provides represen-

tations of image data in which both spatial and fre-

quency information are present [33]. In multiresolution

wavelet analysis we have four bands for each level of

resolution resulting from the application of two filters,

a low-pass filter (L) and an high-pass filter (H). The

filters are applied in pairs in the four combinations, LL,

LH, HL and HH, and followed by a decimation phase

that halves the resulting image size. The final image, of

the same size as the original, contains a smoothed

version of the original image (LL band) and three

bands of details (see Fig. 5a).

Each band corresponds to a coefficient matrix that

can be used to reconstruct the original image. These

bands contain information about the content of the

image in terms of general image layout (the LL band)

and details (edges, textures, etc.). In our procedure the

features are extracted from the luminance image using

a three-step Daubechies multiresolution wavelet

Fig. 2 Computation of the
Fidelity measure. Each frame
in the video sequence is
compared with each key
frame in the summary, and
the minimal distance of each
is retained. The greatest of
these distances provides the
Fidelity measure

Fig. 3 The computation of
the SRD measure. The video
sequence is reconstructed
using the key frames
extracted and a frame
interpolation algorithm
(FIA). The interpolated
frames are compared with the
corresponding frames in the
original sequence, and the
computed frame differences
are used to compute the final
SRD measure
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decomposition that uses 16 coefficients and producing

10 sub-bands [34] (Fig. 5b). Two energy features, the

mean and standard deviation of the coefficients, are

then computed for each of the 10 sub-bands obtained,

resulting in a 20-valued descriptor.

To compare two frame descriptors, a difference

measure is used to evaluate the color histograms,

wavelet statistics and edge histograms. There are sev-

eral distance formulas for measuring the similarity of

color histograms. Techniques for comparing probabil-

ity distributions are not appropriate because it is visual

perception that determines the similarity, rather than

the closeness of the probability distributions. One of

the most commonly used measures is the histogram

intersection [29]. The distance between two color his-

tograms (dH) using the intersection measure is given by

dH Ht;Htþ1ð Þ ¼ 1�
X63

j¼0

min HtðjÞ;Htþ1ðjÞð Þ; ð10Þ

where Ht and Ht+1 are the color histograms for frame

F(t) and frame F(t+1), respectively.

The difference between two edge direction histo-

grams (dD) is computed using the Euclidean distance

as such in the case of two wavelet statistics (dW):

dD Dt;Dtþ1ð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X71

j¼0

DtðjÞ �Dtþ1ðjÞð Þ2
vuut ;

dW Wt;Wtþ1ð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X19

j¼0

WtðjÞ �Wtþ1ðjÞð Þ2
vuut ;

ð11Þ

where Dt and Dt+1 are the edge direction histograms

and Wt and Wt+1 are the wavelets statistics for frame

F(t) and frame F(t+1).

The three resulting values (to simplify the notation

we have indicated them as dH, dW and dD only) are

mapped into the range [0, 1] and then combined to form

the final frame difference measure (dHWD) as follows:

dHWD ¼ dHdWð Þ þ dWdDð Þ þ dDdHð Þ: ð12Þ

The aim of the frame difference measure is to

accentuate dissimilarities in order to detect changes

within the frame sequence. At the same time it is

important that only when the frames are very different,

the measure should report high difference values. As

told before, the majority of the key frame selection

methods exploit just one visual feature which is not

sufficient to effectively describe an image content. If

we were to use, for example, only the color histogram,

a highly dynamic sequence (e.g., one containing fast

moving or panning effects) with frames of the same

color contents would result in a series of similar frame

difference values and the motion effects would be lost.

Similarly, frames with the same color content but dif-

ferent from the point of view of other visual attributes

are considered similar. The uses of multiple feature can

overcome these issues but pose the problem of their

combination. In content-based retrieval systems, the

features are combined by weighing them with suitable

factors which are usually task-dependent [31]. We

choose instead to use a different approach: the explicit

selection of weight factors is removed by weighing each

difference against the other. Moreover, this allows us

to register significant differences in the dHWD values

only if at least two of the single differences exhibit high

values (and thus two of the visual attributes emphasize

the frame dissimilarity).

4.2 Key frame selection

The key frame selection algorithm that we propose

dynamically selects the representative frames by ana-

lyzing the complexity of the events depicted in the shot

in terms of pictorial changes. The frame difference

values initially obtained are used to construct a curve

of the cumulative frame differences which describes

how the visual content of the frames changes over the

entire shot, an indication of the shot’s complexity:

Fig. 4 The key frame
extraction algorithm
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sharp slopes indicate significant changes in the visual

content due to a moving object, camera motion or the

registration of a highly dynamic event. These cases

must be taken into account in selecting the key frames

to include in the shot summary. They are identified in

the curve of the cumulative frame differences as those

points at the sharpest angles of the curve (curvature or

corner points). The key frames are those correspond-

ing to the midpoints between each pair of consecutive

curvature points. To detect the high curvature points

we use the algorithm proposed by Chetverikov and

Szabo [35]. The algorithm was originally developed for

shape analysis in order to identify salient points in a 2D

shape outline. The high curvature points are detected

in a two-pass processing. In the first pass the algorithm

detects candidate curvature points. The algorithm de-

fines as a ‘‘corner’’ a location where a triangle of

specified size and opening angle can be inscribed in a

curve. Using each curve point P as a fixed vertex point,

the algorithm tries to inscribe a triangle in the curve

and then determines the opening angle a(P) in corre-

spondence to P. Different triangles are considered

using points that fall within a window of a given size w

centered in P; the sharpest angle is retained as a pos-

sible high curvature point. This procedure is illustrated

in Fig. 6. Defining the distance between points P and O

as dPO, the distance between points P and R as dPR and

the distance between points O and P as dOP, the

opening angle a corresponding to the triangle OPR is

computed as

a ¼ arccos
d2

OP þ d2
PR � d2

OR

2dOPdPR
: ð13Þ

A triangle satisfying the constraints on the distances

between points (we consider only the x-coordinates):

dmin � Px �Oxj j � dmax;

dmin � Px � Rxj j � dmax;
ð14Þ

and the constraint on the angle values

a � amax ð15Þ

is called an admissible triangle. The first two con-

straints represent the operating window; the set of

points contained in it are used to define the triangles.

The third constraint is used to discard angles that are

too flat. The sharpest opening angle of the admissible

triangles is then assigned to P:

aðPÞ ¼ min
a

a ¼ OP̂R
n o

: ð16Þ

If a point has no admissible triangles, the point is

rejected assigning it an angle default value of p. In the

second pass, those points in the set of the candidate

high curvature points that are sharper than their

neighbors (within a certain distance) are classified as

high curvature points. A candidate point P is discarded

if it has a sharper valid neighbor N, i.e., if

aðPÞ ð17Þ

A point N is defined to be a neighbor of P if the

following constraint is valid:

Px �Nxj j � dmax: ð18Þ

In our implementation we have defined the mini-

mum points distance dmin as always equal to 1; conse-

quently the only two parameters that influence the

results of the algorithm are dmax and amax. The most

important parameter is amax which controls the set of

admissible angles: a high value of amax will result in

more points included in the set of candidate high cur-

vature points, while a lower value indicates that only

very sharp angles must be considered. This is the same

as considering worthy of attention only slopes corre-

sponding to sharp changes in the curve of the cumu-

lative dHWD frame differences.

Once the high curvature points have been deter-

mined, key frames can be extracted by taking the

Fig. 5 Multiresolution
wavelet analysis. a The
filtering and decimation of the
image along the horizontal
and vertical directions. Four
bands are created each a
quarter the size of the whole
image. b The tree-step
application of the
multiresolution wavelet. The
wavelet filters are applied to
the top left band containing
the resized image
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midpoint between two consecutive high curvature

points. Figure 7 is an example of how the algorithm

works. The top image shows an example shot: the

algorithm detects a high curvature point within the

curve of cumulative frame differences. The first and

last frames of the shot are implicitly assumed to cor-

respond to high curvature points. The frames corre-

sponding to the midpoints between each pair of

consecutive high curvature points are selected as key

frames (Fig. 7 center, triangles represent the high

curvature points detected while the circles represent

the key frames selected). If a shot does not present a

dynamic behavior, i.e., the frames within the shot are

highly correlated, the curve does not show evident

curvature points, signifying that the shot can be sum-

marized by a single representative frame. Figure 7

bottom shows the key frames extracted from the

example shot. The summary contains the relevant

elements of the frame sequence in terms of low-level

features. Unlike some methods, such as those that ex-

tract key frames based on the length of the shots, our

algorithm does not have to process the whole video.

Another advantage is that it can extract the key frames

on the fly: to detect a high curvature point we can limit

our analysis to a fixed number of frame differences

within a predefined window. Consequently the curva-

ture points can be determined while computing the

frame differences, and the key frames extracted as

soon as a second high curvature point has been de-

tected.

The high curvature points analysis for key frames

extraction is similar to the approach proposed in [36]

and also used in [27] where a polygonal curve repre-

senting the frames evolution is iteratively simplified by

removing curve points. Unlike this approach, which

requires that all the curve points should be globally

analyzed at each step in order to select the candidate

point to be removed, our detection of high curvature

points can be made sequentially and locally.

As stated above, the corner point algorithm has two

parameters: the size of the window within which the

curvature angles are computed (dmax) and the maxi-

mum value of the angle considered in determining the

point’s curvature angle (amax). We have found experi-

mentally that a size 3 window and angles of less than

140� provide a fair tradeoff between the number of

computations required and the number of key frames

extracted from each shot.

It is interesting to note that, in theory, the shot

segmentation phase is not strictly required. Suppose

that a segmentation algorithm is not available, and thus

the video is a single sequence of frames. As cuts are

abrupt changes in the visual content of the video se-

quence, our key frame selection algorithm can still

detect them as corner points. The key frames extracted

are the same as those extracted when the video is

segmented. In case of fading or dissolving effects, the

key frame extraction algorithm is not able to detect

them since their visual evolution does not present

sharp changes and they will not have corner point as-

signed. Thus, the selection of key frames within these

gradual transition sequences cannot be entirely avoi-

ded. Take, for example, the case of the video that starts

with a fade-in followed immediately by a cut: a key

frame will be selected in the set of frames corre-

sponding to the fade sequence. Consequently the seg-

mentation algorithm serves to remove these kinds of

shots, improving the summarization results by ensuring

the selection of informative frames only.

5 Experimental setup

5.1 Algorithms tested

We have compared the results of our algorithm with

those of five other key frame extraction algorithms.

Together with our Curvature Points (CP) algorithm,

we tested the Adaptive Temporal Sampling (ATS)

algorithm of Hoon et al. [18], the ‘‘Flexible Rectan-

gles’’ (FR) algorithm of Hanjalic et al. [17], the Shot

Reconstruction Degree Interpolation (SRDI) algo-

rithm of Liu Tieyan et al. [27], the Perceived Motion

Energy (PME) algorithm of Liu Tianming et al. [21]

and a simple Mid Point (MP) algorithm.

Both the ATS and FR algorithms select the key

frames on the basis of the cumulative frame differ-

ences: they compute the color histogram differences on

the RGB color space and plot them on a curve of

cumulative differences. The key frames are selected by

Fig. 6 Detection of the high curvature points algorithm
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sampling the y-axis of the curve of the cumulative

differences at constant intervals. The corresponding

values in the x-axis represent the key frames. More key

frames are likely to be found in intervals where the

frame differences are pronounced than in intervals

with lower values for frame differences. The FR algo-

rithm also uses color histogram differences to build its

curve, but the histograms are computed on the YUV

color space. The curve of cumulative differences is

approximated by a set of rectangles, each of which is

used to select a key frame. As the widths of the rect-

angles are calculated to minimize the approximation

error, an optimization algorithm is required (an itera-

tive search algorithm is used). The input parameter of

the algorithm is the number of key frames (and thus of

the approximation rectangles) to be extracted. These

Fig. 7 An example of key frame selection with the proposed
method. Top the shot to analyze. Center the corner points
detected (triangles) and the key frames selected (circles). Bottom

the two key frames, number 71 and 112, extracted from the
example shot are shown
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authors also propose a strategy for deciding how many

key frames to select from the shots of the video se-

quence: they assign the number of key frames in pro-

portion to the length of the shot.

Given a specified number of key frames to be ex-

tracted, the SRDI algorithm uses the motion vectors to

compute the frame’s motion energy. All the motion

energy values are then used to build a motion curve

that is passed to a polygon simplification algorithm.

This algorithm retains only the most salient points that

can approximate the whole curve. The frames corre-

sponding to these points form the key frame set. If the

number of frames in the final set differs from the

number of key frames requested, the set is reduced or

increased by interpolating frames according to the

SRD criteria. When the number of frames is lower

than the number desired, the shot is reconstructed by

interpolating the frames in the frame set, and the

interpolated frames that have largest reconstruction

errors are retained up to the number of key frames

needed. When the number of frames in the frame set is

greater than the number of key frames needed, the

frames in the frame set are interpolated, and those with

the minimal reconstruction error are removed from the

set. The result of the SRDI algorithm depends on both

the polygon simplification algorithm and the SRD

criteria. The only parameter that must be set for the

ATS, FR and SRDI algorithms is the number of key

frames to be extracted.

The PME algorithm works on compressed video

using the motion vectors as indicators of the visual

content complexity of a shot. A triangle model based

on a PME feature is used to select key frames. With

this model, a shot is segmented into sub-segments

representing an acceleration and deceleration motion

pattern (each modeled by a triangle). Key frames are

then extracted from the shots by taking the vertices of

the triangles. To compute the PME feature, the mag-

nitudes of the motion vectors of the B frames are first

filtered with two nonlinear filters. For each motion

vector in the frame feature, a spatial filter is applied

within a given spatial window, and a temporal filter is

applied on values belonging to frames within a given

temporal window. For each B frame, the PME is then

computed on the magnitudes of the motion vectors and

the dominant motion direction. This preprocessing

requires the setting of several parameters.

A simple procedure then automatically computes

the triangles on the PME values and the corresponding

key frames. The algorithm requires the setting of two

parameters, the most important of which is the mini-

mum size of a triangle as it influences the length of the

interval between two consecutive key frames. The MP

algorithm was chosen because it can represent the ex-

treme case of our algorithm, when no evident high

curvature points can be found in a shot and the center

frame of the sequence is chosen as the key frame in-

stead.

Where available the parameters set for the algo-

rithms were always those reported in the original pa-

pers. The ATS, FR and SRDI algorithms require the

input parameter of the number of key frames that must

be provided. Defining a general rule for setting this

number is a crucial matter; the results may vary widely,

depending on the rule selected. We have set the input

parameter for these algorithms as the same number of

key frames found by our algorithm. We can then

compare the algorithms regardless of the number of

key frames: any difference in results depends only on

the selection strategy adopted. Because the PME

algorithm, instead, extracts the key frames in a totally

automatic way, as does our algorithm, the results de-

pend on both the number of key frames extracted and

the selection strategy applied.

5.2 Video data set

Six videos of various genre were used to test the per-

formance of the key frame extraction algorithms. Ta-

ble 1 summarizes the characteristics of the six video test

sequences. The ‘‘eeopen’’ video is a MPEG1 introduc-

tion sequence of a TV series with short shots and several

transition effects. The ‘‘news’’ and ‘‘nwanw1’’ are two

MPEG1 news sequences; the shots are moderately long,

not too dynamic and mixed with commercial sequences

of very fast-paced shots. The ‘‘nwanw1’’ video is similar

Table 1 The six videos used
to test the key frame
extraction algorithms

TNS total number of frames,
NS number of shots found.
Both refer to type A and type
B shots

Video
name

Genre Length
(mm:ss)

Resolution
(W· H)

TNF NS

eeopen TV series intro 00:42 352·240 1,289 24
nwanw1 News with commercials 03:39 176·112 6,556 39
news News with commercials 02:39 176·112 4,757 12
football Sport 03:43 176·112 6,697 28
bugsbunny Short cartoon 07:30 352·240 13,492 89
basketball2 Single shot sport sequence 00:30 320·220 893 1
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to the ‘‘news’’ video, but has longer shots. The ‘‘foot-

ball’’ and ‘‘basketball2’’ videos are two MPEG1 sport

sequences: ‘‘football’’ exhibits rather long shots, while

‘‘basketball2’’ is a single long shot, and both have pan-

ning and camera motion effects. Finally, ‘‘bugsbunny’’ is

a MPEG1 short cartoon sequence with many shots and

a number of transition effects.

The videos were chosen in order to evaluate the

capability of the key frame extraction algorithms to

cope with shots of different length and with various

levels of dynamic events captured. In particular the

single shot of the ‘‘basketball2’’ video was chosen to

test the ability of the algorithms to effectively capture

the content of the long sequence in the presence of

considerable camera motion. Each video was pro-

cessed by each of the six key frame extraction algo-

rithms. The Fidelity and the SRD measure were

computed on the resulting summaries. The parameters

applied were not changed when passing from one video

to the other, except for the number of key frames ex-

tracted for the ATS, FR and SRDI algorithms.

5.3 Measures setup

Since key frames are extracted from each shot, we

must take this into account when computing the quality

measures defined in Sect. 3. For each shot of type A

the Fidelity and the SRD measure are computed; if an

algorithm does not extract key frames from the shot,

the corresponding quality measures are set at equal to

the worst case value (zero for both Fidelity and SRD).

The final quality measure for the entire video is then

computed as the average of all Fidelity and SRD

measures for the shots:

Fidelity ¼ 1=cNS

XcNS

t¼1

FidelityðSt;KFtÞ;

SRD ¼ 1=cNS

XcNS

t¼1

SRDðSt;KFtÞ;
ð19Þ

where cNS is the number of shots. For both measures

the higher the value the better the summary represents

the video content. The compression ratio measure was

computed considering the whole video as follows:

CRatio ¼ 1� cTNKF=cTNF
; ð20Þ

where cTNKF is the total number of key frames ex-

tracted and cTNF the total number of frames in shots of

type A.

Both the Fidelity and the SRD measure require that

a frame difference be defined. In order to evaluate the

influence of frame difference on the quality measures,

the Fidelity and the SRD were computed using two

different formulations, the first is based on the previ-

ously defined color histogram differences computed

with the histogram intersection formula, the second on

the HWD measure instead.

Since the number of key frames extracted from a

shot is usually small (even one only), to compute the

SRD we opted for a simple linear interpolation algo-

rithm on the frame’s descriptive features. One reason

for this choice is that a more complex interpolation

algorithm cannot be used effectively when the inter-

polation points at disposal are very few. Another rea-

son is that pixel values depend on the objects moving in

the scene, and interpolating each pixel of the frame

using only the color information may result in a very

noisy image that does not reflect the real content of the

original frames. Interpolating global features instead

can capture the overall pictorial content of the frames

without having to take motion into account. To allow

frame interpolation when only one key frame was

available we also selected the first and last frames of

the shot as interpolation points.

6 Experimental results

Table 2 summarizes some of the characteristics of the

algorithms tested. The top row in Table 2 regards the

most important property of a key frame selection

algorithm: it must extract key frames in a totally

automatic way without requiring that the user specify

the number of key frames to be extracted as a

parameter. Otherwise the user should know the video

content in advance and adjust the parameter accord-

ingly. The next row indicates that the algorithm

should be flexible enough to extract a variable num-

ber of key frames according to some criteria (e.g.,

shot complexity, shot dynamics or shot length). By

‘‘on-the-fly processing’’ we mean the ability of the

given algorithm to output key frames without having

to process all the frames in the shot or, worse, all the

frames in the video sequence. By ‘‘real-time process-

ing’’ we mean mainly that the time the algorithm

takes to compute the key frames (with all the eventual

pre-processing phases included) must be less than the

time required to view the whole video sequence.

Some algorithms require that motion vectors video

(usually from MPEG-compressed video) be provided.

These algorithms do not decode the frames but their

applicability is limited to a specific compression

standard algorithm: videos that are not compressed

would have to be compressed before being processed.
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On the contrary, algorithms that work on uncom-

pressed data, when presented with a compressed vi-

deo, need to decode the frames. Due to the

asymmetric nature of the compression algorithms, the

coding time is usually much higher than the decoding

time. Algorithms that implement an optimization

algorithm usually offer better results, but present the

drawback of being time consuming and needing effi-

cient implementation in order to be practical [24].

‘‘Shot length sensitive’’ refers to the fact that the key

frames extracted depend in some way on the length of

a shot. This is, for example, the case of the FR

algorithm, where the number of key frames is pro-

portional to the length of a given shot or that of the

PME, where the algorithm’s parameter defines the

minimum gap between two consecutive key frames. In

case of the ATS algorithm, no evaluation can be made

since the original publication gives no indication of

how the key frames are distributed among the shots.

The motion vectors for the SRDI and PME algo-

rithms have been directly extracted from the com-

pressed video. The ATS, FR, CP and the interpolation

of the SRDI algorithm have been performed on sub-

sampled frames. By experiments we have observed

that we can sub-sample the frames down to 48 pixels

(with respect to the larger dimension and maintaining

the aspect ratio) and still obtaining similar results as

the application of the algorithms to the original frames.

To limit the risk to lose information, especially for the

edge histogram and the wavelet statistics, we have

chosen to sub-sample the frames to a dimension of

64 pixels.

6.1 Theoretical complexity

Table 3 shows the theoretical complexity of the key

frame extraction algorithms. We have used the same

approach and notation in Lefevre et al. [37]. The

complexity was computed considering mathematical,

logical and comparison operations (all supposed having

cost one). We have not taken into account memory

usage, allocation, de-allocation or the cost required to

decode a frame. In computing the complexity we have

considered the cost required to compute the features

needed by the algorithm (such as color histograms,

statistics, etc.), the cost required to compute the values

to be analyzed (such as the cumulative frame differ-

ences or the PME values) and the cost required by the

actual key frame detection algorithm. All the costs

were computed considering the algorithms’ parame-

ters. Following the authors notation,N is the number of

bins in a histogram (we have used the same symbol to

indicate the size of a feature vector),P the number of

pixels in a frame, andB the number of blocks of pixels

in a frame (e.g., the macro-blocks in a compressed vi-

deo). Finally, we indicate withK the number of key

frames. The complexity is relative to the operations per

frame required to process a shot.

Although the key frame selection step of the PME

algorithm is simple, the pre-processing phase per-

formed with the two nonlinear filters penalizes the

algorithm: more data must be analyzed, and each step

of the filtering process also requires data reordering

before the final result for that step can be obtained.

More than half of the operations required for the CP

algorithm are due to the wavelet computation (we

have used the standard wavelet decomposition). Using

the lifting scheme will reduce the complexity by

approximately half [38]. The # annotation for the

SRDI algorithm indicates that the one-time opera-

tions performed on the key frames (divided for the

number of frames) for the background classification

have not been added. The + annotation for the SRDI

and PME algorithms indicates instead that the com-

plexity reported does not include the motion vectors

computation. The SRDI and PME use motion vectors

and thus they can take advantage of compressed video

using them. If the motion vectors are not available an

additional cost should be added for each frame

requiring forward or backward motion vectors com-

Table 2 Comparison of the six key frame extraction algorithms
used in our experiment

ATS FR SRDI MP PME CP

Automatic key
frames selection

N N N Y Y Y

Variable number
of key frames

Y Y Y N Y Y

On-the-fly processing N N N Y N Y
Real-time processing Y Y N Y N Y
Requires motion vectors N N Y N Y N
Uses an optimization

algorithm
N Y N N N N

Shot length sensitive ? Y N N Y N
Reference [18] [17] [26] – [21]

For each algorithm some important characteristics are reported

Table 3 Complexities of the
key frame algorithms tested

Algorithm Complexity

ATS O(3P + 9N)
FR O(18P + 9N+ 2K)
CP O(72P + 13N)
SRDI O(53P)+

#

PME O(958B)+

MP O(2)
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putation. For example, using the fast 2D log search

algorithm, which is sub-optimal, requires an additional

O(75P) operations [37].

6.2 Computational time

Table 4 shows the computation time (in minutes,

seconds and thousands of seconds) of the algorithms

tested including the frame decoding time for the

algorithms that required it. We have implemented

the key frames extraction algorithms in C++ under

the Borland C++ Builder 5.0 development environ-

ment with the default optimization (for faster exe-

cution) turned on. The computer used for the

comparison was an AMD Athlon 1 GHz with

512 MB of RAM and running a Windows 2000

Professional operating system. For image processing

algorithms, separable filters were used whenever it

was possible. Results that can be used in subsequent

operations were computed only once. A test session

was performed by processing all the six video se-

quences with a key frame extraction algorithm. Be-

fore the next test session the system was restarted.

For each video the computational time reported re-

fers to the average time of three test sessions. The

MP algorithm is not included since its computation is

virtually instantaneous. The algorithm’s computa-

tional time is reported in relative form with respect

to the ATS computational time.

For the apparent discrepancies in the computational

time of the ATS and FR algorithms with respect to the

CP algorithm, it should be noted that the decoding

time take up a significant part of the processing time of

the two algorithms. For the ‘‘eeopen’’, ‘‘bugsbunny’’

and ‘‘basketball’’ videos, the decoding time represents

about 90% (ATS) and 82% (FR) of the total compu-

tational time. For the remaining three videos, the

decoding time represents 70 and 50% of the ATS and

FR total time, respectively. The high computational

time of the SRDI and PME algorithms is mainly due to

the heavy preprocessing required before the key frame

can be selected. The SRDI algorithm requires pixel

interpolation based on motion vectors and pixel

background classification. Although the key frame

selection step of the PME algorithm is simple, the

pre-processing phase performed with the two nonlinear

filters penalizes the algorithm: more data must be

analyzed, and each step of the filtering process also

requires data reordering before the final result for that

step can be obtained.

6.3 Results

In our preliminary experiments, the Fidelity and

SRD measures for the FR algorithm were more than

20% lower than those for the other algorithms. As

stated before, in its original formulation, the FR

algorithm assigns to each shot a number of key

frames proportional to the length of the shot. When

the total number of key frames to be extracted is

comparable to the number of shots, there is a high

probability that no key frames will be assigned to

some of the shots. Thus for a fair comparison, in

subsequent experiments we have modified the

assignment criteria for the FR algorithm. In this

modified formulation, the FR algorithm extracts from

each shot the same number of key frames computed

by the CP algorithm. The same criterion was applied

to the ATS algorithm.

Tables 5, 6 and 7 show the results of the different

algorithms on the six video sequences. Table 5 shows

the compression ratio (CRatio) values and some sta-

tistics. KFPerShot indicates the average number of key

frames for each shot: nUsedShots and FrPerShots

indicate the number of type A shots and the average

number of frames per shots, respectively. From Ta-

ble 5 we can see that for the ‘‘eeopen’’, ‘‘nwanw1’’ and

‘‘bugsbunny’’ videos some type B shots have been re-

moved by our shot detection algorithm. Our key frame

selection algorithm is able to extract more than one

frame per type A shot as is the PME algorithm (that

the number of key frames of the FR, ATS and SRDI

algorithms depends on the CP algorithm). Videos with

high dynamics, in fact, are assigned more key frames

per shot than those with little motion. This can be seen

in the case of ‘‘basketball2’’, ‘‘football’’ and ‘‘news’’

videos. For the ‘‘bugsbunny’’ video, although very few

shots exhibit high dynamics, the PME algorithm ex-

tracts nearly double the number of key frames than the

CP algorithm.

Table 6 gives the Fidelity measure results with the

minimum and standard deviation of the measure

Table 4 Computational time of the five algorithms on the six
videos

Video ATS FR CP SRDI PME

eeopen 00:10:596 1.01 2.86 3.97 9.03
nwanw1 00:14:152 1.35 5.75 9.16 7.22
news 00:10:425 1.34 5.74 9.09 6.66
football 00:14:531 1.30 5.81 8.78 7.68
bugsbunny 01:38:542 1.13 2.98 4.65 9.41
basketball 00:06:570 1.08 3.08 4.55 6.97

The times reported for the ATS algorithm are in minutes, sec-
onds and thousands of seconds. For the other algorithms, the
times are in relative form with respect to the ATS
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computed on both the histogram and the HWD de-

scriptors. Table 7 presents the results of the SRD

measure. They show that the average Fidelity and SRD

measures computed on the histogram (HST) are less

variable than those computed on the HWD. This seems

to indicate that frame differences tend to be less dis-

tinguishable when using the color histogram alone. It is

also interesting to note that the summaries of the

‘‘basketball2’’ video are clearly unacceptable if we

evaluate them with the Fidelity measure computed on

the histogram, while they appear fairly acceptable if

evaluated with the HWD.

To judge the performance of our algorithm with

respect to the other five algorithms, it is useful to

express the results as a measure of relative improve-

ment (DQ) using the following formula:

DQðXÞ¼ Measure Alg CPð Þ�Measure Alg Xð Þð Þ
Measure Alg Xð Þ ; ð21Þ

where Measure_Alg corresponds to the Fidelity and

the SRD measure, and we substitute X with FR, ATS,

SRDI, PME and MP in turn.

Table 8 details for each video the relative edge of

the performance of our algorithm over that of other

five algorithms. It can be seen that when the number of

key frames per shot is small as in the case of the ‘‘ee-

open’’ and ‘‘bugsbunny’’ videos (1,136 and 1,145 key

Table 5 Compression ratios
(CRatio) and key frames
statistic results of the
algorithms on the six video
sequences

KFPerShot the average
number of key frames for
each shot, nUsedShots the
number of type A shots,
FrPerShots the average
number of frames per shot

CRatio Key frames KFPerShot nTotShots nUsedShots FrPerShot

eeopen
CP 0.980 25 1.136 24 22 53.500
FR 0.980 25 1.136 24 22 53.500
ATS 0.980 25 1.136 24 22 53.500
SRDI 0.980 25 1.136 24 22 53.500
PME 0.971 36 1.636 24 22 53.500
MP 0.982 22 1.000 24 22 53.500
nwanw1
CP 0.991 61 1.743 39 35 168.256
FR 0.991 61 1.743 39 35 168.256
ATS 0.991 61 1.743 39 35 168.256
SRDI 0.991 61 1.743 39 35 168.256
PME 0.990 66 1.886 39 35 168.256
MP 0.995 35 1.000 39 35 168.256
news
CP 0.993 35 2.917 12 12 397.083
FR 0.993 35 2.917 12 12 397.083
ATS 0.993 35 2.917 12 12 397.083
SRDI 0.993 35 2.917 12 12 397.083
PME 0.994 28 2.333 12 12 397.083
MP 0.997 12 1.000 12 12 397.083
football
CP 0.988 82 2.929 28 28 239.286
FR 0.988 82 2.929 28 28 239.286
ATS 0.988 82 2.929 28 28 239.286
SRDI 0.988 82 2.929 28 28 239.286
PME 0.992 55 1.964 28 28 239.286
MP 0.996 28 1.000 28 28 239.286
bugsbunny
CP 0.993 95 1.145 89 83 151.551
FR 0.993 95 1.145 89 83 151.551
ATS 0.993 95 1.145 89 83 151.551
SRDI 0.993 95 1.145 89 83 151.551
PME 0.986 182 2.193 89 83 151.551
MP 0.994 83 1.000 89 83 151.551
basketball2
CP 0.983 15 15.000 1 1 894.000
FR 0.983 15 15.000 1 1 894.000
ATS 0.983 15 15.000 1 1 894.000
SRDI 0.983 15 15.000 1 1 894.000
PME 0.993 6 6.000 1 1 894.000
MP 0.999 1 1.000 1 1 894.000
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frames per shot, respectively) the differences between

the CP, FR, ATS and MP algorithms are slight.

Exceptions are the SRDI algorithm, about 5% worse

than the CP algorithm, and the PME algorithm in the

‘‘bugsbunny’’ video, about 4% better than the CP

algorithm (note that the PME algorithm extracts 182

key frames and the CP algorithm 95). For the other

videos, the PME algorithm shows instead worst results

(excluding the MP algorithm). As the number of key

frames per shot increases, the gap is more marked.

With the exception of the ‘‘basketball2’’ video, the

performances of the FR algorithm and the CP algo-

rithm do not exhibit large differences; only in the

‘‘news’’ video does the FR algorithm outperform

(slightly) the CP algorithm. The most interesting

experiment is the one regarding the ‘‘basketball2’’ vi-

deo. The high dynamics and the length of the shot

cause greatly diverging results. The performance of the

SRDI algorithm exhibits a variable behavior depend-

ing on the measure employed, while the MP algorithm

shows the worse results.

Table 9 lists the DQ measure of relative improve-

ment computed as the percentage average for all five

videos. Overall our algorithm outperforms the other

five algorithms. Its advantages over the FR algorithm

are negligible, but we must remember that the FR

Table 6 Fidelity measure
results computed using the
histogram (HST) and the
HWD descriptors

The minimum (mi) and
standard deviation (SD) of
the Fidelity measures
computed on each shot are
also reported

Fid. HST Fid. HST
(mi)

Fid. HST
(SD)

Fid. HWD Fid. HWD
(mi)

Fid. HWD
(SD)

eeopen
CP 0.762 0.069 0.228 0.907 0.217 0.185
FR 0.760 0.072 0.232 0.906 0.184 0.191
ATS 0.756 0.016 0.236 0.885 0.123 0.235
SRDI 0.761 0.077 0.236 0.899 0.298 0.184
PME 0.763 0.072 0.228 0.892 0.133 0.213
MP 0.770 0.069 0.207 0.901 0.184 0.203
nwanw1
CP 0.642 0.013 0.325 0.778 0.192 0.310
FR 0.631 0.014 0.339 0.758 0.110 0.345
ATS 0.645 0.014 0.323 0.783 0.113 0.308
SRDI 0.619 0.046 0.343 0.762 0.035 0.313
PME 0.620 0.017 0.334 0.745 0.199 0.352
MP 0.613 0.007 0.354 0.733 0.015 0.371
news
CP 0.607 0.166 0.258 0.860 0.662 0.125
FR 0.614 0.167 0.250 0.870 0.656 0.117
ATS 0.612 0.194 0.248 0.872 0.671 0.115
SRDI 0.578 0.142 0.278 0.851 0.656 0.129
PME 0.600 0.139 0.275 0.851 0.648 0.137
MP 0.584 0.074 0.283 0.836 0.588 0.158
football
CP 0.627 0.293 0.208 0.858 0.512 0.133
FR 0.627 0.354 0.202 0.842 0.377 0.154
ATS 0.642 0.331 0.196 0.858 0.537 0.133
SRDI 0.611 0.268 0.214 0.840 0.447 0.147
PME 0.612 0.254 0.213 0.825 0.431 0.167
MP 0.601 0.243 0.233 0.834 0.183 0.185
bugsbunny
CP 0.656 0.052 0.239 0.907 0.118 0.148
FR 0.656 0.052 0.239 0.904 0.118 0.150
ATS 0.665 0.065 0.226 0.906 0.141 0.141
SRDI 0.647 0.024 0.245 0.904 0.283 0.134
PME 0.678 0.004 0.232 0.910 0.351 0.126
MP 0.650 0.052 0.247 0.901 0.118 0.152
basketball2
CP 0.093 0.093 0.000 0.556 0.556 0.000
FR 0.094 0.094 0.000 0.528 0.528 0.000
ATS 0.064 0.064 0.000 0.528 0.528 0.000
SRDI 0.081 0.081 0.000 0.552 0.552 0.000
PME 0.075 0.075 0.000 0.533 0.533 0.000
MP 0.031 0.031 0.000 0.407 0.407 0.000
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algorithm uses an optimization strategy to allocate

the key frames within a shot and requires that the

number of key frames must be given a priori. For the

ATS and SRDI algorithms, the gap is more notice-

able and, as the number of key frames extracted is

the same, the results depend only on the selection

strategies adopted by the algorithms. The poor per-

formance of the MP algorithm is, of course, to be

expected since it extracts only one key frame from

each shot.

More interesting is the performance of the PME

algorithm, which extracts key frames in a totally

automatic way based on motion vectors. The results of

the SRD measure show that the CP algorithm out-

performs the PME algorithm by about 10%. The key

frames selected only by motion do not seem to be

successful in visually representing the content of the

video.

7 An application for key frames

Our key frame extraction algorithm is currently being

applied in the ‘‘Archivio di Etnografia e Storia Soci-

ale—AESS’’ (Archive of Social History and Ethnog-

raphy) [39]. The AESS archive has as its purpose the

conservation, consultation and employment of docu-

ments and images regarding the life and social trans-

Table 7 Shot Reconstruction
Degree (SRD) measure
results computed using the
histogram (HST) and the
HWD descriptors

The minimum (mi) and
standard deviation (SD) of
the SRD measures computed
on each shot are also reported

SRD HST SRD HST
(mi)

SRD HST
(SD)

SRD HWD SRD HWD
(mi)

SRD HWD
(SD)

eeopen
CP 4.882 2.214 1.211 7.591 3.814 1.700
FR 4.868 2.077 1.239 7.577 3.741 1.723
ATS 4.660 2.072 1.246 7.259 3.729 1.757
SRDI 4.693 1.984 1.189 7.314 3.416 1.684
PME 4.949 1.752 1.501 7.550 3.308 2.065
MP 4.846 1.842 1.283 7.563 3.682 1.749
nwanw1
CP 3.887 1.474 1.162 6.648 2.928 1.634
FR 3.887 1.369 1.212 6.632 2.696 1.690
ATS 3.849 1.527 1.199 6.588 2.984 1.664
SRDI 3.587 0.636 1.295 6.104 1.402 1.959
PME 3.581 1.280 1.255 6.067 2.668 1.839
MP 3.642 0.897 1.306 6.311 1.858 1.919
news
CP 3.520 2.167 1.372 6.186 4.355 2.064
FR 3.534 2.122 1.374 6.238 4.296 2.048
ATS 3.515 2.006 1.350 6.188 4.317 2.033
SRDI 3.209 1.415 1.504 5.663 2.974 2.273
PME 3.084 1.714 1.189 5.527 3.279 1.993
MP 3.147 1.513 1.537 5.651 3.218 2.357
football
CP 3.335 2.294 0.766 5.856 4.270 1.076
FR 3.361 2.294 0.727 5.902 4.270 1.008
ATS 3.276 1.847 0.844 5.684 3.522 1.196
SRDI 3.067 1.817 0.834 5.327 3.319 1.230
PME 2.846 1.634 0.816 5.049 3.026 1.248
MP 2.814 1.467 0.802 5.121 2.809 1.334
bugsbunny
CP 3.442 1.176 1.091 6.476 2.898 1.479
FR 3.444 1.176 1.095 6.483 2.898 1.488
ATS 3.339 1.201 1.070 6.275 2.769 1.464
SRDI 3.268 0.865 1.137 6.134 1.243 1.656
PME 3.597 1.170 1.151 6.521 2.324 1.586
MP 3.388 1.176 1.128 6.410 2.898 1.533
basketball2
CP 2.269 2.269 0.000 4.137 4.137 0.000
FR 2.079 2.079 0.000 4.044 4.044 0.000
ATS 1.980 1.980 0.000 3.786 3.786 0.000
SRDI 2.356 2.356 0.000 4.120 4.120 0.000
PME 1.658 1.658 0.000 3.336 3.336 0.000
MP 0.693 0.693 0.000 2.027 2.027 0.000
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formation, literature, oral history and the cultural

artifacts of the Lombard region. The AESS Web site

has been designed and implemented at the CNR–ITC

Unit of Milan for the project promoted by the Lom-

bard Region (the Direzione generale Culture, Identità

e Autonomie della Lombardia) and Interreg II Inter-

num project of the European Union. The archive of the

AESS Web site stores information concerning the

oral history of the Lombard region: it is mainly

composed of popular songs and other audio and video

records describing the popular traditions handed down

generation by generation, such as traditional fairs, and

customs. The images and videos represent occasions on

which the audio has been performed as songs, recorded

as interviews, etc. Linked with the audio and image

data are books, journals, discs, DVD, etc., on which

this information is stored (printed, recorded, etc.).

Video information is handled with the collaboration of

the DISCo department of the University of Milano-

Bicocca. Figure 8 shows a page of the AESS Web site

where the videos are stored and an example of a visual

summary associated with a chosen video. Within the

AESS Web site, the video key frames are used both as

visual content abstracts for the users and as entry

points to video sub-sequences.

8 Conclusion

In this paper, we have presented an innovative algo-

rithm for key frame extraction. By analyzing the dif-

ferences between pairs of consecutive frames of a

video sequence, the algorithm determines the com-

plexity of the sequence in terms of changes in visual

content as expressed by different frame descriptors.

Similarity measures are computed for each descriptor

and combined to form a frame difference measure. The

algorithm, which does not exhibit the complexity of

existing methods based, for example, on clustering or

optimization strategies, can dynamically and rapidly

select a variable number of key frames within each

sequence. Another advantage is that it can extract the

key frames on the fly: key frames can be determined

while computing the frame differences as soon as two

high curvature points have been detected. The per-

formance of this algorithm has been compared with

that of other key frame extraction algorithms based on

different approaches. The summaries have been eval-

uated objectively with three quality measures: the

Fidelity measure, the Shot Reconstruction Degree

measure and the compression ratio measure. Experi-

mental results show that the proposed algorithm out-

Table 8 The relative improvement (DQ) measured on the
Fidelity and SRD results of the proposed algorithm with
respect to each of the other algorithms tested

Fidelity
HST

Fidelity
HWD

SRD
HST

SRD
HWD

eeopen
CP 0.0 0.0 0.0 0.0
FR 0.3 0.1 0.3 0.2
ATS 0.8 2.5 4.8 4.6
SRDI 0.1 0.9 4.0 3.8
PME –0.1 1.7 –1.4 0.5
MP –1.0 0.7 0.7 0.4
nwanw1
CP 0.0 0.0 0.0 0.0
FR 1.7 2.6 0.0 0.2
ATS –0.5 –0.6 1.0 0.9
SRDI 3.7 2.1 8.4 8.9
PME 3.5 4.4 8.5 9.6
MP 4.7 6.1 6.7 5.3
news
CP 0.0 0.0 0.0 0.0
FR –1.1 –1.1 –0.4 –0.8
ATS –0.8 –1.4 0.1 0.0
SRDI 5.0 1.1 9.7 9.2
PME 1.2 1.1 14.1 11.9
MP 3.9 2.9 11.9 9.5
football
CP 0.0 0.0 0.0 0.0
FR 0.0 1.9 -0.8 –0.8
ATS –2.3 0.0 1.8 3.0
SRDI 2.6 2.1 8.7 9.9
PME 2.5 4.0 17.2 16.0
MP 4.3 2.9 18.5 14.4
bugsbunny
CP 0.0 0.0 0.0 0.0
FR 0.0 0.3 –0.1 –0.1
ATS –1.4 0.1 3.1 3.2
SRDI 1.4 0.3 5.3 5.6
PME –3.2 –0.3 –4.3 –0.7
MP 0.9 0.7 1.6 1.0
basketball2
CP 0.0 0.0 0.0 0.0
FR –1.1 5.3 9.1 2.3
ATS 45.3 5.3 14.6 9.3
SRDI 14.8 0.7 –3.7 0.4
PME 24.0 4.3 36.9 24.0
MP 200.0 36.6 227.4 104.1

The results are in percentages

Table 9 The average of the relative improvement (DQ)
measured on the Fidelity and SRD results of the proposed
algorithm with respect to each of the other algorithms tested

Overall Fid. HST Fid. HWD SRD HST SRD HWD

CP 0.0 0.0 0.0 0.0
FR 0.0 1.5 1.4 0.2
ATS 6.9 1.0 4.2 3.5
SRDI 4.6 1.2 5.4 6.3
PME 4.6 2.5 11.8 10.2
MP 35.5 8.3 44.5 22.4

The results are in percentages
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performs the other key frame extraction algorithms

investigated.
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