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Abstract Many imaging applications require that images are correctly orientated with
respect to their content. In this work we present an algorithm for the automatic detection of
the image orientation that relies on the image content as described by Local Binary Patterns
(LBP). The detection is efficiently performed by exploiting logistic regression. The pro-
posed algorithm has been extensively evaluated on more than 100,000 images taken from the
Scene UNderstanding (SUN) database. The results show that our algorithm outperformed
similar approaches in the state of the art, and its accuracy is comparable with that of human
observers in detecting the correct orientation of a wide range of image contents.

Keywords Image orientation detection · Low-level features · Local binary patterns ·
Logistic regression · Image classification

1 Introduction

Almost all imaging applications and photo-management systems require that images are
correctly oriented before processing and visualization. For example, most of the applications
for image detection and scene classification, heavily rely on the fact that the given images
are up-side.
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The correct orientation of an image is defined as the orientation in which the scene
originally occurred [21, 23]. When no correction is applied, the orientation of a photograph
is determined by the rotation of the camera at the moment the picture was taken. Even
though any angle is possible, rotations by multiple of 90◦ are the most common. They are
also straightforward to correct once detected. Therefore, it is common to assume that the
images have been taken in one of the four orientations 0◦, 90◦, 180◦, 270◦ (that sometimes
are called ‘North’, ‘West’, ‘South’ and ‘East’).

Information about the orientation of a photograph may be obtained from sensors incorpo-
rated into the camera and recorded in the EXIF [8] meta data tags. However this information
is often missing on low-end digital cameras or could have been removed by photo editing
software. In these cases the user’s intervention is required.

Humans can identify the correct orientation of photographs by exploiting their image
understanding capabilities. An extensive study on the psychophysical aspects on image ori-
entation recognition was presented in [15]. Using a panel of 26 observers that evaluated
1,000 images, the authors gained a number of interesting insights. They observed that for
typical images, accuracy is close to 98 % when using all available semantic cues from high-
resolution images, and 84 % when using only low-level vision features and coarse semantics
from thumbnails. Some semantic cues stood out as being very important for the correct
orientation recognition (e.g. sky, and people). The same study also shows that an image
resolution of 256 × 384 is enough for humans in order to achieve a high accuracy.

The manual correction of image orientation is a tedious, time-consuming and error-prone
activity. This is particularly true when large collections of photographs have to be pro-
cessed. For these cases (digital archives, websites, content-base retrieval systems, workflow
management for professional photographers...) an automatic approach would be helpful.
Devising a computational approach for automatic detection of image orientation mimick-
ing the high-level human understanding capabilities is a challenging task. Several semantic
cues’ detectors would be required to cope with the great variability of image content. There-
fore, this approach tend to be computationally expensive. Moreover, its accuracy would
greatly depend on the capability of bridging the semantic gap between the high-level cues
and low-level features [7].

In this work we show that it is possible to devise an image orientation detection algo-
rithm based purely on low-level features whose performances are comparable with those of
human observers. The features are derived from Local Binary Patterns (LBP) [17], that are
efficiently processed by a linear classifier obtained by logistic regression.

We have used a sub-set of the SUN image database [24] to test our proposal. This set
contains 108,754 images divided into 397 scene categories. The experiments assessed the
performances of our orientation detection algorithm with respect to specific scene types also
taking into account the influence of color, images’ resolution, and size of the training set.
Our algorithm outperforms similar approaches in the state of the art, and shows an accuracy
comparable with that reported by Luo et al. [15] for human observers.

1.1 Related work

Some orientation detection methods in the state of the art rely on low-level features to
represent those cues that can be analyzed by a classifier to predict the most probable orien-
tation. For instance, Vailaya et al. [21] used color moments, color histograms, edge direction
histograms, and MSAR texture features to described the images after their subdivision in
10 × 10 blocks. They used a learning vector quantizer to extract a small codebook that
they used to estimate the class-conditional densities of the observed features needed for the
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Bayesian methodology. They reported 97 % of classification accuracy, obtained on a subset
of high quality images from the Corel photo collection.

Wang and Zhang [23] exploited both chrominance and luminance information. Color
moments are computed over 48 peripheral sub-blocks of a 8 × 8 blocks image subdivi-
sion, while edge direction histogram is used to characterize the image structure and texture.
This information is then processed by different SVM (Support vector Machine) classifiers.
Static classifier combination and hierarchical trainable classifier combination approaches
are investigated. They reported an accuracy of 78 % on another subset of the Corel images.

Lyu et al. [16] proposed a method based on a set of natural image statistics collected from
a multi-scale multi-orientation image decomposition. A two-stage hierarchical classification
with binary SVM classifiers is employed to determine image orientation. Experiments per-
formed on 18,040 natural images of different source and contents showed that the proposed
method achieved about 60 % accuracy.

Lumini and Nanni [13] used color moments, Harris corner, phase symmetry, and edge
direction histograms to describe the images. They then used Borda count to combine
different classifiers based on Support Vector Machines, Parzen windows, and statistical
classifiers. They obtained a 62 % accuracy on 6,000 images scanned from 350 rolls of film.

Baluja [3] used hundreds of classifiers trained with AdaBoost to determine the upright
orientation of an image. 3,930 features related to color and edge information, are extracted
from image subregions. Weak binary classifiers are used each built to compare a pair of fea-
tures. The best set of 1,000 weak classifiers are then selected using the AdaBoost algorithm
and combined to obtain a strong classifier. He reported the results obtained on several data
sets, the accuracy on the largest one (Corel Disk-6, 15,888 images) is 61.9 %. A combina-
tion of 180 different strong classifier is also investigated and the accuracy on the same data
set increased to 65 %. If a rejection rule is introduced, the accuracy on the Corel Disk-6 data
set increases to 80.3 %.

Tolstaya’s [20] approach is based on the assumption that the area in the lower part of an
image has more texture that the other regions. Features are computed on local regions of
the image and comprise luminance, chrominance and texture information. A two stage clas-
sification approach based on AdaBoost is used to detect the image orientation. A rejection
scheme is also introduced. At the lowest rejection rate, the accuracy obtained is 87 % on a
data set of 861 outdoor images.

A method explicitly designed to require low computational resources is the method
proposed by Appia et al. [2]. Their algorithm is based on simple gradient and intensity fea-
tures extracted from peripheral image sub-blocks. The orientation is determined by a set of
heuristic rules, and a rejection threshold is used to discard ambiguous results. A test on 200
consumer images showed an accuracy of 74 % without the rejection threshold and 86 %
with the rejection threshold.

Human observers are clearly more accurate in detecting the correct image orientation
when they are allowed to take into account high-level semantic cues [15]. For this reason,
some works have been proposed to exploit the information obtained by recognizing distin-
guishable elements in the image such as faces, sky, grass, etc. For instance, Lei Wang [22]
used both low-level and high-level features: orientation of faces, position of the sky, brighter
regions, textured objects, and symmetry. The cues are combined in a Bayesian framework
obtaining an accuracy of 94 % on a data set of 1,287 images.

Luo and Boutell [14] developed a probabilistic approach to image orientation detection
via confidence-based integration of low-level and semantic cues within a Bayesian frame-
work. Semantic information is provided by suitable detectors designed to detect faces, blue
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and cloudy sky, grass, and ceilings/walls. They reported 90 % accuracy on a set of 3,652
unconstrained consumer photos.

Ciocca et al. [5] combined both low-level features and faces. The approach uses the
detection of faces as a hint to deem the image to be upward. When the image does not
contain any detectable faces, the orientation is determined by an image classifier based on
three low-level features: edge direction histogram, the first two moments in the YCbCr color
space and a vertical coherence vector. Classifications performed with AdaBoost algorithm
on a set of weak binary classifier. Using a-priori orientation probabilities, on the largest
data set composed of about 4,000 images downloaded from the Web, the overall accuracy
obtained is 86 %.

Borawski et al. [4] use the region of the sky to distinguish the orientation of outdoor
images. The rationale is that the sky visible within an image is different for landscape- and
portrait-oriented images. The localization of the sky within an image is based on the color.
Fourier analysis is carried out to determine the orientation of the texture in the sky region.
The method has been evaluated on 100 digital images containing the sky: 14 images have
been rejected and six have been misclassified.

As it can be seen, the methods proposed in the literature show a wide range of accuracy
values. Certainly a reason for this is the heterogeneous data sets used in evaluating the
methods. Some of these data sets are small or specific for certain image categories that
bias the overall results. For some categories such as landscapes, the correct orientation can
be easily detected. On the other hand, indoor scenes, close-ups, or images with cluttered
background are more difficult to classify since they lack important visual cues. For instance,
Zhang et al. [25] separately tested their orientation detector on indoor and outdoor images.
The accuracy they obtained on indoor images is much lower than that on outdoor images
(48 % vs. 85 %). For this reason they introduced an indoor and outdoor classifier to refine
the orientation detection obtaining an accuracy of 81 %.

Table 1 summarizes the aforementioned orientation detection methods.

2 Proposed algorithm

The method we propose is based solely on the information provided by low-level features,
that is, features that can be reliably extracted from the images without any a-priori knowl-
edge about their content. By not using high-level features, not only we keep manageable the
complexity of the algorithm, but we also avoid the inherent sensitivity to the imaging condi-
tions due to the semantic gap between the features and the image semantics. In other words,
we hypothesize that full image understanding is not required for a reliable detection of the
image orientation, and that the information provided by low-level features, when processed
by a suitable classifier, is enough to obtain a good accuracy for a great variety of image
contents.

In the literature, most of the methods based on low-level features focused on color
and edge/texture information. Intuitively, color distribution is a very useful clue. However,
there are several image categories (e.g. indoor images) where it does not help very much.
Therefore, we decided to concentrate on a texture descriptor. More in detail, we decided
to use features based on the distribution of Local Binary Patterns (LBP). These feature
vectors lie in a high-dimensional space, of the kind for which linear classifiers are a very
common choice. In this work we built a linear classifiers by using a regularized logistic
regression.
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Figure 1 depicts a schematic view of the proposed method that, for the sake of brevity, in
the following we will refer to as LBP-LLR (from Local Binary Patterns and Linear Logistic
Regression).

2.1 Image features

Local Binary Patterns have shown remarkable discriminative power in different domains
due to their invariance with respect to lighting conditions, and robustness with respect to
image noise. For example, LBPs have been used in face recognition [1], multi-object track-
ing [19], and scene classification [11]. For a comprehensive overview about LBP readers
can refer to [18].

The LBP descriptor is defined as a histogram of the local patterns surrounding each pixel.
These patterns are computed by thresholding the intensity of the neighbors of each pixel
with the intensity of the pixel itself (see Fig. 2). More in detail, given a neighborhood size
P and a radius R, for each pixel the numerical code LBPP,R is computed as follows:

LBPP,R =
P−1∑

p=0

s(gp − gc)2
p, (1)

where gc is the gray level of the current pixel, g0, . . . , gP−1 are the gray levels of its neigh-
bors, and s is defined as s(x) = 1 if x ≥ 0, s(x) = 0 otherwise. The P neighbors lie on
a circular neighborhood, of radius R, of the current pixel: the gray value gp is obtained by
interpolating the intensity image at a displacement (R cos(2πp/P ),R sin(2πp/P )).

With P neighbors there are 2P possible patterns, but not all of them are equally signif-
icant. Usually, only patterns describing a somewhat regular neighborhood are considered.
These patterns are called “uniform” and are defined as those patterns for which there are at
most two transitions (bitwise 0/1 changes) between adjacent bits in the code. For instance,
the pattern ‘00011100’ is uniform, while the pattern ‘11001000’ is not uniform because it
includes three transitions. The number of uniform patterns is 2 +P (P − 1). In fact, are uni-
form patterns those consisting of k zeros and P − k ones, where all the zeros or all the ones
are consecutive. There is one pattern for k = 0, and one for k = P . For each value of k in
the range {1, . . . , P − 1} there are P patterns, each one corresponding to a different rotation
of the bits (see [18] for more details).

The circular shape of the neighborhood makes rotation invariance easy to achieve.
However, we decided to not exploit this property of the LBP approach because rotation
invariance would obviously discard important information about the orientation of the
image.

Fig. 1 The proposed LBP-LRR method for the detection of image orientation
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Fig. 2 The first steps of the Local Binary Pattern extraction. For each pixel, a circular neighborhood is
considered. Each neighbor is thresholded by the intensity of the central pixel determining a binary response.
The pattern is formed by concatenating the resulting bits

To form a fixed length feature vector the patterns are aggregated into one or more his-
tograms. Histograms are formed by counting the occurrences of each uniform pattern in a
given region of the image. Non-uniform patterns are not ignored, but they are all accounted
for in a single bin. The final descriptor is the concatenation of the normalized histograms.
With H possibly overlapping regions and with P neighbors, the final descriptor length is
H × (3+P (P −1)). In fact each of the H histograms has 2+P (P −1) bins for the uniform
patterns and one bin for all the non-uniform ones.

2.2 Orientation recognition

Due to their capability in dealing with high-dimensional feature spaces, linear classifiers
have become one of the most popular methods for image classification [6]. In fact, linear
classifiers are very fast and very efficient learning methods exist for their training.

Typically, the learning procedure of a binary linear classifier consists in solving the
following optimization problem:

min
w

1

2
‖w‖2 + C

m∑

i=1

ξ(w; xi , yi), (2)

where xi denote the training samples (i = {1, . . . ,m}) and yi ∈ {−1,+1} are the
corresponding class labels. The optimal w defines a hyperplane that linearly separates pos-
itive from negative instances. The loss function ξ penalizes the errors on the training set,
weighted by the penalization coefficient C. In practice, the parameter C determines a trade-
off between the penalization and the regularization term ‖w‖2 (the norm ‖·‖1 instead of the
Euclidean can be used as well). Linear Support Vector Machines are an example of linear
classifier within this framework.

We used a very fast implementation of a regularized binary linear regression classifier as
implemented in the LIBLINEAR package [9]. The penalization function is defined as

ξ(w; xi, yi) = log
(

1 + e−yiwT xi

)
, (3)

which is derived from a probabilistic model.
The optimization problem (2) is solved by the LIBLINEAR library using a trust region

Newton method [12]. The problem of orientation detection is not binary, since there are
four possible orientations. For multi-class problems LIBLINEAR uses the one-against-all
strategy: for each class a binary problem is built to discriminate between instances of that
class from the instances of all the other classes. Therefore, the classifier consists of the
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hyperplanes w1, w2, . . . wK , one for each of the K classes. Given a new instance x, the
predicted label y ∈ {1, . . . , K} is obtained as:

y = arg max
j

wT
j x. (4)

In the case of orientation detection we have K = 4 classes, corresponding to rotations of
multiples of 90◦.

2.3 Computational complexity

The LBP-LRR algorithm is very fast. When LBP histograms are computed on H disjoint
regions, their computation is linear with respect to the number N of pixels in the image
and to the cardinality P of the neighborhood. As stated before, the dimensionality of the
resulting feature vector is H ×(3+P (P −1)), and classification is linear with respect to the
dimensionality of the feature space. Therefore, the procedure has a complexity in time of
O(N ×P +H ×P 2). Note that the classification of the patterns as uniform or non-uniform
can be obtained very quickly by using a precomputed look-up table with 2P entries.

2.4 Feature selection and tuning of the parameters

The computation of LBP features depends on several parameters: the neighborhood cardi-
nality (P) and size (R), and whether or not they are uniform. Moreover, in order to introduce
some locality into the final descriptor, usually histograms of LBPs are computed on different
regions of the image, and such a subdivision need to be specified as well. These parame-
ters, and those of the classifier (e.g. the penalization coefficient in (2)) have been tuned by
estimating the classification accuracy with a five-fold cross-validation on the training set.

Different combinations of the parameters have been considered, and the best one con-
sisted in using uniform LBPs with a neighborhood of cardinality P = 16, size R = 2. The
best image subdivision resulted in the union of two partitions, one that uniformly divides
the image in six horizontal bands, the other that divides it in six vertical bands. There-
fore, in total 12 histograms are computed and concatenated to form the final descriptor.
During parameters’ selection, we observed a good degree of stability with respect to the
penalization coefficient: the best result has been obtained for C = 1.

One of the possible weaknesses of Local Binary Patterns is that, in their original form,
they do not encode any information about the color distribution. While it is clear that for
most images gray-level information is enough to unambiguously determine their orientation,
color is recognized as an important clue. In fact, most algorithms in the state of the art
heavily rely on the information provided by color distribution [5, 13, 14, 20, 21, 23, 25].

To assess the importance of the color information we tried to complement the LBP his-
tograms with various color features (color moments in different color spaces and various
kind of color histograms). The best results have been obtained by using color moments
(mean and standard deviation) in the YUV color space, with the same image subdivision
used for LBP histograms. An alternative method to include color information is to compute
the LBP histograms independently on the components of a color space. We implemented
this strategy by considering LBPs on the three RGB components (in the following we will
refer to this algorithm as LBP-RGB).
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3 Experimental results

Most existing orientation detection algorithms have been evaluated on small and homoge-
neous data sets (e.g. only outdoors images, all images with visible sky, etc.). An algorithm
designed to be applied in real applications should be proved to be effective on a large,
heterogeneous collection of images. To this end we have chosen to use the SUN image
database [24] for our experiments. The database was collected by selecting from the avail-
able terms of WordNet [10] those describing concrete scenes, places, and environments.
After the removal of synonyms the final set of terms numbered 899 image categories. For
each term, images were retrieved from the Web by using different search engines obtain-
ing a total of 130,519 images. As suggested in [24], we considered only those categories
containing at least 100 images. The final image data set is thus composed of 108,754
images belonging to 397 categories. Figure 3 shows some representative images taken from
different categories in this data set.

We divided the data set into a training and a test set. Starting from the 108,754 images
of the SUN database, we randomly selected 2,500 images (about 2.3 % of the whole data
set, see Section 3.4 for further considerations about the size of the training set) to form the
training set. The remaining 106,254 form the test set, and are used to evaluate the methods.
All the 397 categories are represented in the test set.

The orientation of the images have been already corrected by the authors of the SUN
database and these images may be in the “landscape” layout (i.e. images which are wider
than taller) or in the “portrait” layout. We altered the database to simulate the situation
in which the images are taken with a digital camera that does not feature the automatic
orientation capability. Images with a “landscape” layout retain their original orientation
(i.e. North direction). Portrait images are randomly rotated clockwise or counter-clockwise
by 90◦, and labeled with the East and West orientations, respectively. No image has been
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Fig. 3 Some image categories from the SUN database
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labeled with the south orientation, because this would correspond to a picture taken with the
camera turned upside down (an unrealistic case). Following this procedure all the images
end up having a landscape layout. Of the 2,500 images in the training set 1,841 have been
labeled with the North orientation (73.6 %) while the East and the West labels have been
assigned to 340 (13.6 %) and 319 (12.8 %) images, respectively. Concerning the 106,254
images in the test set, 77,265 have been labeled as North (72.7 %), 14,621 as East (13.8 %),
and 14,368 as West (13.5 %). These figures agree with the distribution reported by other
authors. For instance, for consumer photos scanned from film, Luo and Boutell [14] reported
72 % North, 14 % East, 12 % West, and 2 % South (although uncommon it is possible in
the case of scanned films).

Some other works in the state of the art preferred the generation of a balanced data set,
where each orientation is equally represented. To do so, each image is randomly rotated.
We preferred to keep the data set unbalanced because: (i) it better represents the conditions
found in real applications; (ii) it keeps the correlation between the content and the layout of
the images (after all the “portrait” and “landscape” layout are called this way because they
are typically used for that kind of scenes).

3.1 Results

In the first experiment we compared variants of the proposed LBP-LRR method based on
different features: LBP histograms, YUV moments, their combination, and LBP histograms
on the RGB components. The results are reported in Table 2.

With the combination of LBP histograms and color moments the orientation of 98,200
images, out of the 106,254 images that form the test, has been correctly identified (92.4 %).
Slightly worse results have been obtained without color information (91.0 %). This demon-
strates that color moments, while not very useful when used alone (83.4 % of classification
accuracy), can complement the information encoded by the LBP histograms resulting in a
measurable improvement (even if to a limited extent). The use of LBP histograms on the
RGB components, instead, did not cause any significant improvement (only 0.1 % better
than original LBP histograms).

The SUN database has the advantage of being carefully organized in several semantic
categories, making it possible to analyze in detail the behavior of the algorithms when deal-
ing with different image contents. Figures 4 and 5 report the results obtained on the 397
categories by using LBP histograms combined with the color moments (in the following we
will implicitly refer to this feature combination when not stated otherwise).

For 17 categories (from ‘athletic field’ to ‘volleyball court’ in the figure) the orientation
of all the images has been correctly detected. This is quite remarkable because these cate-
gories are quite heterogeneous, featuring a high degree of intra-class variability. For other 17
categories (including, for instance, ‘cafeteria’, ‘dam’, ‘butte’, ‘planetarium’) only one test
image has been misclassified. At the other end of the spectrum we have the categories for

Table 2 Classification accuracy
obtained on the test set by the
variants of the LBP-LRR method

Features Accuracy (%)

LBP histograms 91.0

Color moments 83.4

LBP hist. + Color mom. 92.4

LBP-RGB histograms 91.1
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Fig. 4 Detail of the classification accuracy obtained on the 397 categories of the SUN database by the LBP-
LRR algorithm (top 200). The categories are listed by decreasing accuracy, and are depicted according to
their macro category (indoor, outdoor man-made, outdoor natural). Some categories belong to more than one
macro category and are indicated by a hatched bar

which the accuracy of the classifier is very low: ‘doorway’, ‘pulpit’, ‘apse/indoor’ obtained
a classification accuracy of less than 60.0 %. These categories contain many images that are
cluttered, or underexposed (see the first row in Fig. 3).
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Fig. 5 Detail of the classification accuracy obtained on the 397 categories of the SUN database by the LBP-
LRR algorithm (bottom 197). The categories are listed by decreasing accuracy, and are depicted according
to their macro category (indoor, outdoor man-made, outdoor natural). Some categories belong to more than
one macro category and are indicated by a hatched bar

Of the best 30 categories 27 are outdoor, and 18 of the worst 30 are indoor. This fact
seems to confirm previous results in the literature [25] where has been shown that the orien-
tation of indoor images is harder to detect than the orientation of outdoor images. However,
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if we look at our results on all the 397 categories we see that the differences between indoor
and outdoor are not very evident.

The SUN database is also hierarchically organized: at the first level we have three macro
categories, namely indoor, outdoor man-made, and outdoor natural. These are then further
divided into several sub-categories. Table 3 reports the results with respect to this catego-
rization. Differently from other studies in the state of the art [25], the performance are quite
stable across the indoor/outdoor macro categories. The highest accuracy has been obtained
on the ‘outdoor man-made’ category (93.5 %). On indoor images the accuracy was 90.9 %,
which is slightly worse than the 92.7 % obtained on ‘outdoor natural’ images.

Even within each macro category the accuracy on the sub categories are quite regular.
Only in two cases the accuracy falls below 90 %: ‘cultural’ (87.5 %) and ‘shops, cities,
towns’ (88.3 %). Nevertheless, the difference between the hardest and the easiest sub cat-
egories is more than 9 %. This fact suggests that results obtained on small data sets, that
hardly cover all the sub categories, are prone to be biased. For large data sets the simple sub-
division into indoor/outdoor man-made/outdoor natural (or even worse, into indoor/outdoor)
is too coarse to fully understand the results.

Figure 6 shows some examples of the errors made by the algorithm. Errors typically
occur when the images contain a large amount of details that make very difficult to iden-
tify, using only low-level features, those patterns which are clear indicators of the correct
orientation. In most cases the correct orientation is difficult to determine “at a glance” even
for human observers; on the contrary, there are images where our high-level understanding
makes it evident and unambiguous.

Table 3 Classification accuracy on the first two levels of categorization. Note that some images belong to
multiple categories and that, to simplify the analysis, they have been ignored, here

Level 1 # Images Acc. (%) Level 2 # Images Acc. (%)

Indoor 46,256 90.9 Shopping and dining 7,152 91.9

Workplace 6,747 90.5

Home or hotel 13,085 91.8

Transportation (interiors) 5,127 92.5

Sports and leisure 4,273 93.6

Cultural 6,005 87.5

Outdoor, 14,090 92.7 Water, ice, snow 6517 91.8

natural Mountains, hills, desert, sky 3,148 93.6

Forest, field, jungle 3,165 92.5

Man-made elements 216 94.9

Outdoor, 35,911 93.5 Transportation 4,663 96.6

man-made Cultural or historical place 8,936 95.3

Sports fields, parks 5,909 94.9

Industrial and construction 2,374 95.9

Houses, cabins, farms 4,282 95.4

Shops, cities, towns 6,844 88.3
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Fig. 6 A random sample of some of the errors made on the test set. Images are rotated according to the
orientation detected

3.2 Comparison with other methods

We computed on the SUN database the performance of a selection of alternative methods
from the state of the art. In particular, we focused on those methods for which the training
procedure can be faithfully replicated without additional information or data. This criterion
excludes the methods relying on the high-level features provided by specific object detec-
tors requiring the use of additional data for training. The methods we considered are those
proposed by Vailaya et al. [21], Tolstaya [20], Ciocca et al. [5], Appia and Narasimha [2].

The comparison has been obtained by using our own implementations of these methods.
See Section 1.1 for a brief description. We used the same experimental protocol described
before: training on 2,500 images (possibly with a five-fold cross validation for the model
selection step) and test on the 106,254 images of the test set. The classification accuracies
obtained are reported in Table 4.

The results are quite clear: the LBP-LRR method outperforms the other methods consid-
ered. Note that the performance reported by the original authors may be quite different. For
instance, Appia and Narasimha [2] reported a higher performance (74 %) than that shown
here. This can be explained by the fact that, in order to achieve a very high processing
speed they based their method on reasonable, but simple assumptions (i.e. that high intensity
regions stay on top, and that high frequency regions lie at the bottom of the image). These
assumptions usually hold for prototypical images (landscapes, indoor images with little or
no clutter), but not for most of the images in the SUN database. Another example is the
method of Vailaya et al. [21], for which the authors reported an accuracy of 98 % on a set
of 8,364 Corel images mostly depicting uncluttered scenes with a clear subject as taken by
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Table 4 Classification accuracy
obtained on the test sets by the
LBP-LRR method, and by four
algorithms from the state of the
art

Method Ref. Acc. (%)

Vailaya et al. [21] 80.1

Tolstaya [20] 85.6

Ciocca et al. [5] 89.3

Appia and Narasimha [2] 54.3

LBP-LRR (this work) 92.4

professional photographers. With this method Luo and Boutell obtained 78 % [14] on a col-
lection of 3,652 personal photographs. This difference depends on the properties of the data
set used for the evaluation. In our experiments we used a much larger test set (more than
100,000 images) of different quality and resolution obtaining for the Vailaya et al. method
a classification accuracy of 80.1 %.

More in detail, Table 5 reports the confusion matrices obtained by the five methods
considered. All but one of the methods biased their decisions towards the ‘North’ orienta-
tion. This behavior has been learned from the training set, without any explicit indication.
Similarly, the ‘South’ orientation has been virtually ignored. The method by Appia and
Narasimha is an exception, since it is based on rules without any training procedure. The
low performance we obtained with their method are also explained by its inability to exploit
uneven prior distributions. The design of the method by Ciocca et al. does not completely
rule out the ‘South’ orientation even if no training image has that orientation. However, the
‘South’ orientation is predicted in less than 1 % of the cases.

Table 5 Confusion matrices of the methods compared in experiments. Results are expressed in percentage.
The diagonal elements (corresponding to correct classifications) are reported in bold

Predicted orientation

Method True or. North West South East

Vailaya et al. [21] North 93.9 3.2 − 2.9

West 49.4 42.7 − 7.9

East 48.8 7.3 − 43.9

Tolstaya [20] North 96.8 1.4 − 1.8

West 53.6 33.2 − 13.2

East 61.1 14.6 − 24.3

Ciocca et al. [5] North 96.3 1.6 0.4 1.7

West 40.1 52.5 0.2 7.2

East 40.1 7.8 0.2 51.9

Appia and Narasimha [2] North 54.3 14.0 18.1 13.6

West 12.8 54.5 13.0 19.7

East 12.7 20.4 12.8 54.1

LBP-LRR North 98.2 1.1 − 0.7

West 10.1 78.1 − 11.8

East 10.7 13.1 − 76.2
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The effectiveness of the proposed approach is mostly due, in our opinion, to the design of
the image descriptor. Local binary Patterns, in fact, are robust against several categories of
image transformations. For instance, they are left unchanged by monotonic transformations
of the pixels (see (1)), such as those caused by changes in the lighting conditions. moreover,
the aggregation of the patterns into histograms makes the descriptor robust against small
translations and scalings.

On the other hand, the descriptor is sensitive to rotations of the image plane. More in
detail, rotations by multiples of 90◦ result in permutations of the feature vectors: the uni-
formity of the patterns is not affected, but the directionality of the uniform patterns changes
according to the angle of rotation (see Fig. 2); due to the way in which the image is subdi-
vided, the order in which the histograms are concatenated also changes in a predictable way
(e.g. the first horizontal band becomes the first vertical after a counter-clockwise rotation of
90◦, the last horizontal after a rotation of 180◦, and the last vertical after a rotation of 270◦).

In our framework, the choice of the classifier is not as important as the design of the
descriptor. To verify this, we repeated the experiment by using different classifiers: linear
and non-linear (Gaussian RBF) Support Vector Machines (SVM), and a nearest neighbor
classifier. Their parameters have been selected by five-fold cross validation in the same way
described before for the logistic linear regression. Table 6 reports the result obtained: with
SVMs the accuracy is just a bit lower than with logistic regression. Clearly worse results
have been obtained, instead, with the nearest neighbor classifier (using a k-NN with k > 1
did not bring any improvement).

3.3 Resolution of the images

Image resolution clearly influences the accuracy of the detection of the correct orientation.
A psychological study about this issue has been conducted by Luo et al. [15]. They asked 26
subjects to detect the orientation of 1,000 images at five different resolution levels (24×36,
64 × 96, 128 × 192, 256 × 384, 512 × 768). They conclude that the performance of human
observers can be considered as an upper bound for computer vision algorithms. This bound
would be 84 % when coarse semantics is used (64×96 pixels, in their experiment) and 96 %
when all the semantics are considered (512 × 768 pixels). Of course these figures depend
on the data set considered.

To verify how much the resolution of the images influences the performance of our algo-
rithm we measured its performance at the same resolution levels used by Luo et al.. Before
training and test, images have been resampled in such a way that their longest side is 36,
96, 192, 384, or 768, according to the resolution level under consideration. The other side
is changed to preserve the aspect ratio. Three variants of the algorithms are considered:
LBP histograms combined with color moments, LBPs only, and color moments only. The
resulting classification accuracies are reported in Fig. 7. To allow a rough comparison with

Table 6 Classification accuracy
obtained on the test set by
different classifiers

Classifier Accuracy (%)

Logistic linear regression 92.4

Linear SVM 91.7

Non-linear SVM 91.2

Nearest neighbor 85.7
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Fig. 7 Performance of the LBP-LRR method, varying the resolution of the images. Three variant are con-
sidered: LBP histograms combined with color moments, LBPs only, color moments only. The plot reports
also the performance obtained by human subjects, as taken from [15]

the performance of human subjects the results obtained by Luo et al. are also shown, even
though they have been obtained on a different data set.

The results clearly show that the LBP-LRR method takes advantage of the additional
information provided by the higher level of resolution. As expected, color moments are
virtually invariant with respect to the image resolution. For the lowest level of resolution,
LBP features perform worse than color moments, but they quickly improve and are clearly
better at medium and high resolutions. At the highest level, the performance of LBPs are
still increasing, even though the behavior of the plot suggest that they are converging to a
maximum. By using a combination of LBPs and color moments better results are obtained
than by using a single feature.

3.4 Size of the training set

One of the advantage of using a large data set is that it allows to reliably assess how the
performance depend on the size of the training set. To do so, we subdivided the data set
into training and test sets of different sizes: the 2,500 images used before are not considered
here (but we use the parameters found with the cross validation on those images). The
remaining 106,254 images have been randomly partitioned into training and test set pairs.
The cardinalities of the training sets are the powers of two from 32 to 65, 536. The test sets
correspond to the complements of the training sets.

Figure 8 reports the results obtained with LBP histograms, color moments, and their
combination. In all the three cases, the classification accuracy increases with the size of the
training set. With color moments, no significant improvement is observed for more than
8,192 images. With LBPs the performance corresponding to the largest training set (65,536
images) are close to 94 %. We believe that an even larger training sets would allow the
combination of the two features to match the performance obtained by human subjects.
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(logarithmic scale). Three variant are considered: LBP histograms combined with color moments, LBPs only,
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4 Conclusions

In this paper we have investigated the automatic detection of image orientation. We have
shown that it is possible to devise an effective algorithm based purely on low-level features
extracted from gray level images. More in detail, we have proposed the use of Local Binary
Patterns for the description of the image content, and of a linear classifier obtained by
regularized logistic regression. With this approach we obtained a remarkable classification
accuracy (91.0 %). Only slightly better results (92.4 %) have been obtained by combin-
ing the LBP features with the color moments. In both the configurations the algorithm
outperformed all the other detection algorithms considered, and it is close to the human per-
formance as reported in the state of the art. Our findings are supported by the use of a large
collection of images (more than 100,000) presenting a wide range of scene categories. The
use of this data set allowed us to obtain reliable and insightful results: the accuracy of the
algorithm is quite stable across the categories of the SUN database. About 75 % of the 397
categories have a detection accuracy above 90 %. In particular, unlike most algorithms in
the state of the art, the performance on indoor and outdoor images are very similar (about
91 % vs. 93 %).

We also investigated the influence of image resolution on the algorithms performance: at
lower resolution (i.e. 36 pixels), color seems to be more important than structure. Notwith-
standing this, even without color, the accuracy is about 80 %. Concerning the size of the
training set, we observed that even with very few (i.e. 32) training samples we can achieve
a detection accuracy of more than 80 %.

The results obtained on the hierarchically organized categories allowed us to identify
those types of scenes that are more problematic for our algorithm. These results are very
insightful in that they provide directions for further improvements of our algorithm.

On the basis of these results we believe that the algorithm is suitable for the application
in a variety of scenarios. We will make available the source code of our algorithms and the
lists of images we used for training and test.
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