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 A B S T R A C T

Accurate color information plays a critical role in numerous computer vision tasks, with the Macbeth 
ColorChecker being a widely used reference target due to its colorimetrically characterized color patches. 
However, automating the precise extraction of color information in complex scenes remains a challenge. 
In this paper, we propose a novel method for the automatic detection and accurate extraction of color 
information from Macbeth ColorCheckers in challenging environments. Our approach involves two distinct 
phases: (i) a chart localization step using a deep learning model to identify the presence of the ColorChecker, 
and (ii) a consensus-based pose estimation and color extraction phase that ensures precise localization and 
description of individual color patches. We rigorously evaluate our method using the widely adopted NUS and 
ColorChecker datasets. Comparative results against state-of-the-art methods show that our method outperforms 
the best solution in the state of the art achieving about 5% improvement on the ColorChecker dataset 
and about 17% on the NUS dataset. Furthermore, the design of our approach enables it to handle the 
presence of multiple ColorCheckers in complex scenes. Code will be made available after pubblication at: 
https://github.com/LucaCogo/ColorChartLocalization.
1. Introduction

Acquiring faithful color information constitutes a basic requirement 
for several digital imaging and recognition tasks, such as color con-
stancy, device colorimetric characterization, faithful color rendering 
and reproduction (as for example skin tones), and color object seg-
mentation and recognition. A commonly adopted approach involves 
employing a standard color target or color chart, that are commonly 
composed of several color patches whose color coordinates in a stan-
dard device-independent color space are known and certified. Usually 
one or more charts are positioned within the scene and their po-
sitions and orientations may be not known in advance. Therefore, 
the user needs to perform two tasks: (i) detect the color chart(s) 
in the scene; (ii) precisely segment the different patches to extract 
their average color in the device color space. At this point it is pos-
sible to establish the mathematical relationship among the extracted 
device-dependent color coordinates and their corresponding tabulated 
device-independent coordinates.

Although extracting color information from these patches is not 
inherently challenging, the repetitive nature of the process for several 
images transforms it into a tedious and time-consuming task; in the 
case of large datasets of images or videos, this approach is clearly 
unfeasible. Consequently, numerous methods have emerged over the 
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years to automate this process. The first approaches were based on a 
semi-automatic methodology, whereas more recent advancements have 
introduced fully-automatic solutions. Despite these advances, many 
existing methods lack robustness and often cannot handle scenes with 
multiple targets. Furthermore, a majority of methods employ color 
information as a cue for target localization, making them less adapt-
able to their use when the images to be processed are acquired with 
cameras having RGB sensors with different transmittances, in situations 
with unconventional lighting conditions (e.g., colored led lights), or 
when imaging devices that do not acquire images in RGB are used 
(e.g., hyperspectral cameras, ir-cameras, etc.).

In this work we propose a fully-automatic method that:

• makes it possible to simultaneously detect multiple targets in the 
same scene;

• accurately segments the color patches within the detected targets 
whatever is their position, orientation and scale in the scene;

• is designed to operate without relying on color information; using 
only grey-scale information it is able to work whatever is the 
imaging device adopted;

• can be adapted to detect and process any color chart (e.g., [1]).
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Fig. 1. Examples of real-world scenes containing a Macbeth ColorChecker, from the 
Shi-Gehler dataset [2] (gamma correction is applied for visibility purposes).

Fig. 2. Flow chart of the entire method.

In this work we limit our investigation to the detection of Mac-
beth ColorChecker since it is the most commonly used color target in 
imaging [3–6][7,8]

Coherently with previous works, our experiments were conducted 
on the standard ColorChecker [2] and NUS [9] datasets, and demon-
strated that our method outperforms existing state-of-the-art techniques 
in both accuracy and reliability. Additional experiments are conducted 
to investigate the effect of image blur and how the size of the color 
target affects the detection performance.

2. Related works

Color targets play a crucial role in color imaging, with numerous 
target designs proposed to meet the diverse needs of the field. Among 
these target designs, the Macbeth ColorChecker (MCC) [10] stands out 
as the most widely recognized and utilized color target. Introduced in 
1976 by the Macbeth Division of Kollmorgen Instruments Corporation, 
the chart is composed by a planar rectangular 4 × 6 array of square 
patches affixed to a black rigid support. The patches, coated with a 
matte paint, feature carefully selected and controlled color coordinates, 
ensuring comprehensive coverage of the CIE 1931 color space, making 
the chart suitable for representing the color gamut of a wide range of 
artificial and natural scenes. Fig.  1 shows some examples of real-world 
scenes containing the chart. The features of the Macbeth ColorChecker 
have  made it a widely adopted tool in industry [11,12], prompting 
researchers to focus on developing detection methods specifically for 
this target.

Jackowski et al. [13] in 1997 presented a unified approach to 
correct color and geometry in images using the Macbeth ColorChecker. 
Their method modeled geometric distortions and color corrections with 
rational Gaussian surfaces and hypersurfaces. However, it required 
manual annotation of the patch corners, then refined automatically 
via template matching. Departing from manual intervention, Kapusi 
et al. [14] introduced a fully-automatic approach for detecting a cus-
tomized color target with MCC’s colors printed on a chessboard pattern. 
52 
Their design allowed them to simply adopt a chessboard detection 
algorithm and region growing for precise reference circles localization. 
However, the approach is constrained by the need for a customized 
color target. Bianco and Cusano [15] proposed a strategy for automatic 
detection of Macbeth ColorCheckers, incorporating SIFT-based feature 
extraction, clustering of matching features, and hypothesis validation 
for pose selection. In their work, different local descriptors are exper-
imented in addition to SIFT, namely rg-SIFT and Opponent-SIFT [16]. 
By considering alternative feature extraction techniques, they show-
cased the potential of different color spaces for increased robustness to 
illumination changes in the scene. In contrast, Hirakawa [17] proposed 
CCFind as an alternative approach that does not explicitly search for 
squares. Instead it learns recurring shapes inside an image and uses 
them to locate the patches. Since the method uses only shape informa-
tion, it eliminates the need for color information, making it applicable 
to unconventional imaging devices and lighting conditions. However, 
Hirakawa’s method on the contrary of ours, is constrained by licensing 
limitations on commercial applications.

The approach by Ernst et al. [18] is camera-dependent and min-
imizes a custom cost function to iteratively refine an initial guess of 
the target corners positions and its patches colors. The cost function 
takes into account the difference between estimated and reference color 
values, as well as the standard deviation of the colors within patch 
regions. The function is minimized using the Levenberg–Marquardt 
algorithm until a specified threshold is reached.

Kordecki et al. [19] suggested a flexible approach for detecting 
color targets. Their method employs a 𝑘-means clustering with 25 
seeds (24 for the patches and one for the background), followed by 
a connected components analysis to keep only elements with a certain 
shape and size. Finally, a bounding parallelogram is constructed around 
the convex hull of the detected connected components.

Garcia et al. [20] introduced a pre-processing step based on saliency 
maps to delineate an approximate Region of Interest (ROI) for the 
color target and thus simplify the detection process. In their work they 
examined the impact of this preliminary step on both CCFind [17] and a 
template matching approach, demonstrating performance improvement 
for both methods.

Fernandez et al. [21] pioneered the integration of deep learning 
into color target detection. Their solution is based on two steps: first a 
deep learning model based on GoogLeNet [22] is trained on synthetic 
data to detect the ROI of the target; subsequently, a pose estimation 
pipeline is employed to extract the color information of the patches. 
Notably, their approach marks a milestone as the first method capable 
of detecting multiple color targets within a single image, showcasing 
the potential of deep learning based detectors in this domain. A version 
of their method is also officially released as part of MATLAB’s Image 
Processing Toolbox. [23]

3. Proposed method

Our approach is designed to be: fully automatic, able to accurately 
detect multiple targets in the scene, camera-independent (being capable 
of operating on grey-scale information only), and fast, robust, and 
accurate. To achieve this, we structured our approach in three distinct 
phases:

1. A deep learning model is employed to detect and segment the 
color target(s) within the scene

2. The coordinates of the centroids the patches are extracted
3. The centroids are refined by using a consensus based approach, 
and the color information of the patches is extracted

The entire method is illustrated in Fig.  2 and described in this section, 
while Fig.  3 shows the results of the steps in phase 2 and phase 3
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3.1. Target localization and segmentation

The localization of the target is accomplished through the use 
the YOLO object detection framework, specifically YOLOv8 [24]. This 
choice was made because of the versatility of the method, which 
supports various vision tasks, including object detection, segmentation, 
pose estimation, tracking, and classification. The authors of YOLO 
adopt a modified version of Darknet53 [25] and, for enhanced com-
putational efficiency, they incorporate a spatial pyramid pooling layer 
that aggregates features into a fixed-size map. The YOLOv8 framework 
is released in five versions, with varying scales: YOLOv8n (nano), 
YOLOv8s (small), YOLOv8 m (medium), YOLOv8l (large), and YOLOv8x
(extra large). For our specific objectives, we opted for the YOLOv8n 
model, recognized as the smallest and fastest variant, with 3.5 million 
parameters and 10.5 GFLOPs. The YOLOv8 framework is at the moment 
the most updated version which permits the training of the nano-scale 
detector on a custom dataset.

In our methodology, the model is employed to identify the presence 
of color targets within the scene. Upon detection of a Region of Interest, 
it is cropped and used as input for a second version of the model, 
whose architecture is dedicated to target segmentation and background 
removal. This two-step process ensures efficient and accurate local-
ization and segmentation of the color target within the given scene. 
For faster inference times, the described step is performed on resized 
images (640 × 640) and the obtained ROIs and masks are then upscaled 
to the original resolution.

3.2. Centroids extraction

Once the target is cropped and segmented, we apply a pipeline to 
extract the centroids’ coordinates of the 24 patches in the Macbeth 
ColorChecker. The pipeline is designed to work on images in the [0-
255] range and  is structured as a sequence of steps in the following 
order:

1. A preprocessing step, aimed to enhance the image quality, that 
involves histogram equalization to enhance contrast, a gaussian 
filter to reduce noise, and unsharp masking to increase image 
sharpness. In details, we adopt a gaussian filter with a 9 × 9 
kernel, while for the unsharp masking we use a 9 × 9 Gaussian 
kernel with 𝜎 = 5 and a multiplicative factor of 2.

2. An Edge detection step, aimed to provide an initial estimation of 
the edges of the color patches, performed using the Canny algo-
rithm [26]. The Canny edge detection algorithm is subsequently 
performed without any additional Gaussian blur, with a 3 × 3 
Sobel kernel for gradients computation. For the hysteresis pro-
cedure that refines the edges based on their gradients intensities 
and directions, we set the minimum and maximum threshold as 
𝑡1 = 80  and 𝑡2 = 170  respectively (additional details about how 
these parameters were chosen can be found in supplementary 
materials).

3. A patches binarization step, aimed to separate the color patches 
from the dark background of the Macbeth ColorChecker, based 
on the application of the Euclidean distance transform [27] 
to the detected edges. This step is needed since the output of 
the edge detection does not guarantee that all the edges of 
the patches have been detected and closed. The usage of the 
Euclidean distance transform allows to obtain a probability map 
of the centroids positions, helping to compensate for eventual 
missed edges. The obtained probability map is finally bina-
rized by keeping only the non-zero values. To further refine the 
binarization results, we filter the connected components, remov-
ing those with non-convex shapes or a total area significantly 
deviating from the average area of the detected patches.

4. A centroids extraction step, based on the computation of the 
center of mass of each binarized patch.
53 
Fig. 3. The steps of the centroids extraction and refinement phases on an example 
image.

3.3. Centroids refinement and color extraction

At this stage, the proposed approach generates a set of coordinates 
corresponding to the centroids of the Macbeth ColorChecker’s patches. 
However, it is not inherently ensured that exactly 24 centroids are 
identified, matching the number of patches in the chart; there may 
be outliers or missing centroids. Additionally, the accuracy of the 
coordinates is not guaranteed. To address these issues, a refinement 
process is implemented to identify missing centroids, eliminate outliers, 
and ultimately produce a 4 × 6 grid of centroids. This refinement 
involves three steps:

1. Computation of 2D Chart Orientation Vectors: We calculate two 
orientation vectors, 𝑣1 and 𝑣2, whose directions and lengths 
correspond to the perspective orientation of the chart and the 
distance between two centroids in the respective directions. In 
more details, to determine the orientation vectors, we begin by 
computing their angles, 𝛼1 and 𝛼2, using a consensus approach. 
For each centroid, we identify the two nearest centroids and 
measure the angles of the connecting vectors. The two most 
frequent angles, with a tolerance of 𝑡𝛼 = ± 𝜋

9 , are selected. The 
chosen tolerance represents the angle between a centroid and 
the edges of a neighboring patch (additional details about this 
choice can be found in the supplementary materials). Then we 
compute the lengths of the vectors, 𝓁1 and 𝓁2, through a similar 
process: for each centroid, we measure the lengths of the shortest 
vectors connecting it to other centroids that have an orientation 
𝛼{1,2}, within an angle tolerance of 𝑡𝓁 = ± 𝜋

9  (this was chosen 
following the same reasoning of 𝑡𝛼). The median values of these 
measured lengths are then retained.

2. Grid Generation: Utilizing the orientation vectors, we generate 
a 4 × 6 grid of coordinates that best fits the initially identified 
centroids.
The orientation vectors 𝑣1 and 𝑣2 are utilized to generate, for 
each centroid, a candidate 4 × 6 grid that provides an inter-
pretation of its position with respect to the others. This is done 
by considering all the possible interpretations, accounting for 
both horizontal and vertical layouts, where each centroid could 
potentially correspond to 24 positions for each layout, totaling 
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Table 1
Comparison of the methods on the ColorChecker and NUS datasets. Cosine similarity is computed only on non-missed detections, while the success rate takes 
into account missed localizations and adopts a threshold of 0.9.
 Method Test dataset # images Missed localizations ↓ Cosine similarity (𝑆) ↑ Succ. rate (𝑅) ↑
 MATLAB ColorChecker 56 35 (62.5%) 98.68% 35.71%  
 CCFind ColorChecker 56 3 (5.36%) 97.84% 94.64%  
 Ours ColorChecker 56 0 (0%) 99.80% 100.00%  
 MATLAB NUS 1853 928 (50.08%) 98.92% 49.43%  
 CCFind NUS 1853 364 (19.64%) 99.82% 80.30%  
 Ours NUS 1853 43 (2.32%) 99.98% 97.67%  
48 possible interpretations per centroid. To each candidate con-
figuration is then assigned a score based on how many grid 
points match the previously extracted centroids. The score is 
determined by counting how many grid points are matched by a 
centroid within a tolerance radius 𝑟 = min(𝓁1,𝓁2)∕4. The candi-
date configurations with the highest scores are then averaged to 
further refine the grid. Subsequently, to disambiguate the grid’s 
orientation and correctly associate colors with each grid point, 
the black patch is identified as the corner grid point with the 
lowest intensity (computed as the average value over its 9 × 9 
neighborhood). By determining the black patch, all the other 
patches are also uniquely identified.

3. Color Information Extraction: The refined coordinates grid is em-
ployed to extract the color information from the patches in the 
original image. In particular, we extract the color information by 
assigning to each point a circular mask with the tolerance radius 
𝑟 defined in the previous step. Each mask is further refined by 
retaining only the pixels with intensity values within the 2nd 
and 3rd quartiles. The color information is finally determined 
by averaging the remaining values.

3.4. Visual summary of the method

A visual summary of the proposed method is depicted in Fig.  3:

(a) The target localization and segmentation phase takes a grayscale 
image as input, identifies the ROI containing a ColorChecker and 
segments it from the background.

(b) The cropped and segmented image is preprocessed using his-
togram equalization, gaussian filter, and unsharp masking. This 
helps to ehnance image quality and make the edges of the 
patches more detectable.

(c) The Canny algorithm detects the edges of the chart. Some edges 
of the patches could be missed, like the top-left patch, the one 
at row one and column four, and the two patches on the bottom 
right.

d-e-f) The Euclidean distance (d) transform helps recovering the pat-
ches with incomplete edges. The thresholding and filtering step 
(e) helps removing eventual outliers, but this operation could 
also cause the loss of some patches. Therefore, when the cen-
troids ere extracted (f), some might be missing.

(g-h) To refine the centroids, the chart orientation vectors are com-
puted (g) and used to generate the best matching grid points (h). 
The missing centroids (e.g. the bottom-right ones) are recovered 
and the misaligned ones (e.g. the top-left one) are fixed.

(i) The orientation of the grid points is disambiguated by identify-
ing the colors of the patches, and the color information is finally 
extracted from the original image.

4. Experiments

4.1. Datasets

For our target detection experiments, we employ two largely used 
datasets for color constancy research featuring the Macbeth Color
54 
Fig. 4. Instances of tested images where only the proposed method correctly localized 
the ColorChecker (gamma correction is applied for visibility purposes).

Checker chart [28–31]: the ColorChecker dataset [32] and the NUS 
dataset [9].

• ColorChecker dataset: Initially introduced by Gehler et al. this 
dataset comprises 568 images taken with two distinct cameras 
: Canon EOS-1Ds (86 images with resolution 2041 × 1359) 
and Canon EOS-5D (482 images with resolution 2193 𝑥 1460). 
The dataset provides for each scene the coordinates of the Col-
orChecker’s corners, the RGB values of its patches and the
groundtruth scene illuminant computed from them. Due to the 
complexity of having a faithful manual annotation of the chart 
position in the scene and of its patches, the dataset has undergone 
several corrections to its ground truth over time, including the 
‘‘reprocessed’’ edition by Shi and Funt [2], and the more recent 
‘‘recommended’’ version by Hemrit et al. [33]. For the purposes 
of our study, we utilized the most recent version.

• NUS dataset: This dataset is a collection of 1853 images curated 
by the National University of Singapore (NUS), captured with 
nine distinct cameras with resolution ranging between 6 Mpx 
and 24 Mpx. All images feature a Macbeth ColorChecker target, 
depicting a variety of scenes including indoor, outdoor, close-
up, and people. The dataset also provides, for each ColorChecker 
chart, the coordinates of its bounding box and the RGB values of 
its patches.

4.2. Experimental setup

For training our target detection and segmentation models (as de-
scribed in Section 3), we fine-tuned them on the ColorChecker dataset, 
starting from weights pre-trained on the COCO dataset [34].

The ColorChecker dataset was randomly split into 80% for training 
(456 images), and two 10% splits (56 images each) for validation 
and testing, respectively. The NUS dataset was reserved solely for 
cross-dataset evaluation, as only the ColorChecker dataset provides the 
required metadata — namely, the exact coordinates of the four chart 
corners — for training the segmentation model.
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Training was conducted over 100 epochs with a batch size of 16, a 
learning rate of 0.01, and weight decay set at 5×10−4. All training and 
evaluation procedures were carried out using a single NVIDIA GeForce 
GTX 1070 GPU with 8 GB of RAM.

For performance comparison, we selected two baseline methods: 
CCFind, proposed by Hirakawa [17], and the MATLAB implementation 
by Fernandez et al. [21]. These methods were chosen because they 
represent the most recent approaches in the state of the art, and they 
provide readily available code for comparison. These were evaluated 
alongside our proposed method.

The results are measured in terms of average cosine similarity 
between the extracted RGB colors of the patches on the detected target 
and the ground-truth RGB colors of the patches. The similarity score, 
denoted as 𝑆, is defined as follows: 

𝑆 = 1
𝑁

𝑁
∑

𝑖=1

𝜇𝑖
𝑔𝑡 ⋅ 𝜇

𝑖
𝑝

‖𝜇𝑖
𝑔𝑡‖ ‖𝜇𝑖

𝑝‖
(1)

where 𝜇𝑖
𝑔𝑡 and 𝜇𝑖

𝑝 are the RGB ground truth and RGB predicted colors 
of the 𝑖th patch, respectively, and 𝑁 is the total number of patches 
(i.e., 24 for the Macbeth ColorChecker).  The values of 𝑆 are in the 
range [0,1], where 1 is the best possible value and 0 is the worst. 
This metric provides an information of how closely the predicted patch 
colors match the actual ground-truth.

We chose this metric for two main reasons:

1. it ensures consistency with the evaluation of Fernandez et al. 
[21]

2. it guarantees a fair comparison between methods, directly eval-
uating how good they are at their final task, which is retrieving 
color information from images containing ColorCheckers.

The so defined cosine similarity score is computed for all the local-
izations, while we separately report the amount of missed localizations, 
as the number of times the methods mistakenly consider the scene as 
having no Macbeth ColorChecker in it. This value is particularly rele-
vant in the context of automatic labeling of color constancy datasets: 
with the process of acquiring real-world scenes being slow and costly, 
each missed localization constitutes a wasted acquisition.

To jointly take into account the two measurements, we also compute 
a success rate 𝑅 as the percentage of non-missed localizations with a 
cosine similarity score greater than 0.9: 

𝑅 =
|𝐸|

𝑁
 where 𝐸 = {𝑒 ∈ 𝑀 ∶ 𝑒 ≥ 0.9} (2)

where 𝑀 is the set of cosine similarities computed on all the localiza-
tions, and 𝑁 is the total number of elements in the test set. This value 
represents the amount of actually usable images after employing the 
methods for automatic labeling.

4.3. Experimental results

The experimental results, summarized in Table  1, demonstrate that 
our method consistently outperforms the compared approaches across 
both datasets. Specifically, a higher cosine similarity score is achieved 
on the correctly localized patches and fewer missed localizations are 
observed.

Fig.  5 presents a visual comparison of the percentage of correct chart 
localizations as a function of the cosine similarity score. As shown, our 
method maintains a higher accuracy throughout the range of similarity 
scores compared to CCFind and Fernandez et al.’s method. Fig.  6 further 
illustrates the superiority of our method through violin plots depicting 
the distribution of cosine similarity scores for all tested images. The 
proposed method consistently produces higher cosine similarities, indi-
cating a more precise retrieval of color information. These results reveal 
that our method not only achieves higher localization accuracy but 
also significantly reduces the number of missed localizations, making it 
55 
Fig. 5. Plot of the rates of correct chart localization as a function of the cosine 
similarity obtained on (a) ColorChecker dataset, (b) NUS dataset.

Fig. 6. Violin plots of the cosine similarities distribution obtained on (a) ColorChecker 
dataset, (b) NUS dataset.
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Table 2
Comparison of the methods on the ColorChecker and NUS datasets with pre-cropped ROIs. Cosine similarity is computed only on non-missed detections, while 
the success rate takes into account missed localizations and adopts a threshold of 0.9.
 Method Test dataset # images Missed localizations↓ Cosine similarity (𝑆) ↑ Succ. rate (𝑅) ↑
 MATLAB ColorChecker 56 38 (67.86%) 98.34% 32.14%  
 CCFind ColorChecker 56 32 (57.14%) 96.34% 37.5%  
 Ours ColorChecker 56 2 (3.57%) 99.80% 96.43%  
 MATLAB NUS 1853 1584 (85.48%) 95.80% 14.52%  
 CCFind NUS 1853 1512 (81.60%) 97.59% 17.91%  
 Ours NUS 1853 62 (3.35%) 99.97% 96.65%  
more suitable for automatic dataset annotation compared to the other 
methods considered.

To further isolate and evaluate the effectiveness of the pose es-
timation step, we conducted an additional set of experiments using 
pre-cropped ColorChecker charts as inputs. The results, summarized 
in Table  2, reveal that our method’s performance remained stable, 
while the other approaches suffered a significant performance drop. 
This highlights the robustness of our approach in scenarios where pose 
estimation plays a crucial role in target detection. Fig.  4 illustrates some 
examples of scenes that were correctly handled by the proposed method 
and missed by the others. While the other approaches happen to miss 
even easy localizations, our approach manages to correctly localize 
even the hardest ones, containing ColorCheckers that are blurred, 
highly skewed or far from the camera.

4.4. Degradation test

In order to further evaluate the performance of the proposed method 
in challenging scenarios, we conducted additional experiments to assess 
its robustness, in terms of localization success rate, with respect to 
image blur and the size of the color target in the scene.

To assess the impact of blur, we applied Gaussian blur with varying 
standard deviations 𝜎 to the input images, and used the corresponding 
kernel size 𝑓𝑠 (calculated via Eq. (3)). 

𝑓𝑠 = 2 ⋅ ⌈2𝜎⌉ + 1 (3)

We then measured the degradation of the localization success rate 
as a function of the blur level.

As shown in Fig.  7, our method exhibits a gradual decrease in 
performance as blur increases, but remains resilient under moderate 
blur levels. This analysis provides insights into the method’s reliabil-
ity under conditions of reduced image clarity, which is particularly 
relevant for real-world applications where images may be affected by 
factors such as motion blur or defocus.

Furthermore, we investigated the influence of the color target size 
on the localization performance. We took into account the size of the 
color targets within the input images and measured the corresponding 
success rate of target localization. The results, depicted in Fig.  8, 
indicate that our method maintains a high level of accuracy across 
a wide range of target sizes, demonstrating its ability to accurately 
detect targets of different scales. This analysis highlights the method’s 
versatility and suitability for applications where color targets may vary 
in size or distance from the camera.

Overall, the results of these experiments further confirm the ro-
bustness and versatility of our method across challenging scenarios, 
validating its adaptability for diverse real-world applications.

5. Conclusions

In this paper, we presented a fully-automatic method for the re-
trieval of color information from color targets, designed to address 
the limitations of existing approaches. Our method employs a two-
phase process: an initial deep learning model for target detection and 
segmentation, followed by a consensus-based methodology for pose 
56 
Fig. 7. Plot of the degradation of the localization performance with increasing blur, 
as function of 𝜎.

estimation and color extraction. The proposed solution demonstrates 
robust performance and can operate on grey-scale images.

Our experiments, conducted on the ColorChecker and NUS datasets, 
show that our method outperforms existing state-of-the-art techniques 
in both accuracy and reliability. Specifically, our method achieves 
higher cosine similarity scores and significantly lower misses in target 
localization compared to other existing methods. Additional experi-
ments were conducted to evaluate the pose estimation step, and to 
assess the method robustness to degradations.

In summary, the proposed method not only advances the automa-
tion of color information retrieval from color targets but also offers 
a robust and versatile solution for a wide range of digital photogra-
phy tasks. Future work could explore further enhancements, including 
optimization for real-time applications and adaptation to a broader 
spectrum of imaging conditions.
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Fig. 8. Plot of the degradation of the localization performance as a function of the 
ColorChecker size.
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