
Pattern Recognition Letters 192 (2025) 51–58

A
0
n

Contents lists available at ScienceDirect

Pattern Recognition Letters

journal homepage: www.elsevier.com/locate/patrec

Robust camera-independent color chart localization using YOLO
Luca Cogo ∗, Marco Buzzelli , Simone Bianco , Raimondo Schettini
Department of Informatics, Systems and Communication, University of Milano-Bicocca, Viale Sarca 336, Building U14, Milan, 20126, Italy

A R T I C L E I N F O

Editor: Song Wang
Keywords:
Object detection
Color target
Pose estimation

 A B S T R A C T

Accurate color information plays a critical role in numerous computer vision tasks, with the Macbeth
ColorChecker being a widely used reference target due to its colorimetrically characterized color patches.
However, automating the precise extraction of color information in complex scenes remains a challenge.
In this paper, we propose a novel method for the automatic detection and accurate extraction of color
information from Macbeth ColorCheckers in challenging environments. Our approach involves two distinct
phases: (i) a chart localization step using a deep learning model to identify the presence of the ColorChecker,
and (ii) a consensus-based pose estimation and color extraction phase that ensures precise localization and
description of individual color patches. We rigorously evaluate our method using the widely adopted NUS and
ColorChecker datasets. Comparative results against state-of-the-art methods show that our method outperforms
the best solution in the state of the art achieving about 5% improvement on the ColorChecker dataset
and about 17% on the NUS dataset. Furthermore, the design of our approach enables it to handle the
presence of multiple ColorCheckers in complex scenes. Code will be made available after pubblication at:
https://github.com/LucaCogo/ColorChartLocalization.
1. Introduction

Acquiring faithful color information constitutes a basic requirement
for several digital imaging and recognition tasks, such as color con-
stancy, device colorimetric characterization, faithful color rendering
and reproduction (as for example skin tones), and color object seg-
mentation and recognition. A commonly adopted approach involves
employing a standard color target or color chart, that are commonly
composed of several color patches whose color coordinates in a stan-
dard device-independent color space are known and certified. Usually
one or more charts are positioned within the scene and their po-
sitions and orientations may be not known in advance. Therefore,
the user needs to perform two tasks: (i) detect the color chart(s)
in the scene; (ii) precisely segment the different patches to extract
their average color in the device color space. At this point it is pos-
sible to establish the mathematical relationship among the extracted
device-dependent color coordinates and their corresponding tabulated
device-independent coordinates.

Although extracting color information from these patches is not
inherently challenging, the repetitive nature of the process for several
images transforms it into a tedious and time-consuming task; in the
case of large datasets of images or videos, this approach is clearly
unfeasible. Consequently, numerous methods have emerged over the

∗ Corresponding author.
E-mail addresses: luca.cogo@unimib.it (L. Cogo), marco.buzzelli@unimib.it (M. Buzzelli), simone.bianco@unimib.it (S. Bianco),

raimondo.schettini@unimib.it (R. Schettini).

years to automate this process. The first approaches were based on a
semi-automatic methodology, whereas more recent advancements have
introduced fully-automatic solutions. Despite these advances, many
existing methods lack robustness and often cannot handle scenes with
multiple targets. Furthermore, a majority of methods employ color
information as a cue for target localization, making them less adapt-
able to their use when the images to be processed are acquired with
cameras having RGB sensors with different transmittances, in situations
with unconventional lighting conditions (e.g., colored led lights), or
when imaging devices that do not acquire images in RGB are used
(e.g., hyperspectral cameras, ir-cameras, etc.).

In this work we propose a fully-automatic method that:

• makes it possible to simultaneously detect multiple targets in the
same scene;

• accurately segments the color patches within the detected targets
whatever is their position, orientation and scale in the scene;

• is designed to operate without relying on color information; using
only grey-scale information it is able to work whatever is the
imaging device adopted;

• can be adapted to detect and process any color chart (e.g., [1]).
https://doi.org/10.1016/j.patrec.2025.03.022
Received 4 October 2024; Received in revised form 28 January 2025; Accepted 19
vailable online 28 March 2025
167-8655/© 2025 The Authors. Published by Elsevier B.V. This is an open access art
c-nd/4.0/).
 March 2025

icle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

https://www.elsevier.com/locate/patrec
https://www.elsevier.com/locate/patrec
https://orcid.org/0009-0001-0056-053X
https://orcid.org/0000-0003-1138-3345
https://orcid.org/0000-0002-7070-1545
https://orcid.org/0000-0001-7461-1451
https://github.com/LucaCogo/ColorChartLocalization
mailto:luca.cogo@unimib.it
mailto:marco.buzzelli@unimib.it
mailto:simone.bianco@unimib.it
mailto:raimondo.schettini@unimib.it
https://doi.org/10.1016/j.patrec.2025.03.022
https://doi.org/10.1016/j.patrec.2025.03.022
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patrec.2025.03.022&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

L. Cogo et al. Pattern Recognition Letters 192 (2025) 51–58
Fig. 1. Examples of real-world scenes containing a Macbeth ColorChecker, from the
Shi-Gehler dataset [2] (gamma correction is applied for visibility purposes).

Fig. 2. Flow chart of the entire method.

In this work we limit our investigation to the detection of Mac-
beth ColorChecker since it is the most commonly used color target in
imaging [3–6][7,8]

Coherently with previous works, our experiments were conducted
on the standard ColorChecker [2] and NUS [9] datasets, and demon-
strated that our method outperforms existing state-of-the-art techniques
in both accuracy and reliability. Additional experiments are conducted
to investigate the effect of image blur and how the size of the color
target affects the detection performance.

2. Related works

Color targets play a crucial role in color imaging, with numerous
target designs proposed to meet the diverse needs of the field. Among
these target designs, the Macbeth ColorChecker (MCC) [10] stands out
as the most widely recognized and utilized color target. Introduced in
1976 by the Macbeth Division of Kollmorgen Instruments Corporation,
the chart is composed by a planar rectangular 4 × 6 array of square
patches affixed to a black rigid support. The patches, coated with a
matte paint, feature carefully selected and controlled color coordinates,
ensuring comprehensive coverage of the CIE 1931 color space, making
the chart suitable for representing the color gamut of a wide range of
artificial and natural scenes. Fig. 1 shows some examples of real-world
scenes containing the chart. The features of the Macbeth ColorChecker
have made it a widely adopted tool in industry [11,12], prompting
researchers to focus on developing detection methods specifically for
this target.

Jackowski et al. [13] in 1997 presented a unified approach to
correct color and geometry in images using the Macbeth ColorChecker.
Their method modeled geometric distortions and color corrections with
rational Gaussian surfaces and hypersurfaces. However, it required
manual annotation of the patch corners, then refined automatically
via template matching. Departing from manual intervention, Kapusi
et al. [14] introduced a fully-automatic approach for detecting a cus-
tomized color target with MCC’s colors printed on a chessboard pattern.
52
Their design allowed them to simply adopt a chessboard detection
algorithm and region growing for precise reference circles localization.
However, the approach is constrained by the need for a customized
color target. Bianco and Cusano [15] proposed a strategy for automatic
detection of Macbeth ColorCheckers, incorporating SIFT-based feature
extraction, clustering of matching features, and hypothesis validation
for pose selection. In their work, different local descriptors are exper-
imented in addition to SIFT, namely rg-SIFT and Opponent-SIFT [16].
By considering alternative feature extraction techniques, they show-
cased the potential of different color spaces for increased robustness to
illumination changes in the scene. In contrast, Hirakawa [17] proposed
CCFind as an alternative approach that does not explicitly search for
squares. Instead it learns recurring shapes inside an image and uses
them to locate the patches. Since the method uses only shape informa-
tion, it eliminates the need for color information, making it applicable
to unconventional imaging devices and lighting conditions. However,
Hirakawa’s method on the contrary of ours, is constrained by licensing
limitations on commercial applications.

The approach by Ernst et al. [18] is camera-dependent and min-
imizes a custom cost function to iteratively refine an initial guess of
the target corners positions and its patches colors. The cost function
takes into account the difference between estimated and reference color
values, as well as the standard deviation of the colors within patch
regions. The function is minimized using the Levenberg–Marquardt
algorithm until a specified threshold is reached.

Kordecki et al. [19] suggested a flexible approach for detecting
color targets. Their method employs a 𝑘-means clustering with 25
seeds (24 for the patches and one for the background), followed by
a connected components analysis to keep only elements with a certain
shape and size. Finally, a bounding parallelogram is constructed around
the convex hull of the detected connected components.

Garcia et al. [20] introduced a pre-processing step based on saliency
maps to delineate an approximate Region of Interest (ROI) for the
color target and thus simplify the detection process. In their work they
examined the impact of this preliminary step on both CCFind [17] and a
template matching approach, demonstrating performance improvement
for both methods.

Fernandez et al. [21] pioneered the integration of deep learning
into color target detection. Their solution is based on two steps: first a
deep learning model based on GoogLeNet [22] is trained on synthetic
data to detect the ROI of the target; subsequently, a pose estimation
pipeline is employed to extract the color information of the patches.
Notably, their approach marks a milestone as the first method capable
of detecting multiple color targets within a single image, showcasing
the potential of deep learning based detectors in this domain. A version
of their method is also officially released as part of MATLAB’s Image
Processing Toolbox. [23]

3. Proposed method

Our approach is designed to be: fully automatic, able to accurately
detect multiple targets in the scene, camera-independent (being capable
of operating on grey-scale information only), and fast, robust, and
accurate. To achieve this, we structured our approach in three distinct
phases:

1. A deep learning model is employed to detect and segment the
color target(s) within the scene

2. The coordinates of the centroids the patches are extracted
3. The centroids are refined by using a consensus based approach,
and the color information of the patches is extracted

The entire method is illustrated in Fig. 2 and described in this section,
while Fig. 3 shows the results of the steps in phase 2 and phase 3

L. Cogo et al.

Pattern Recognition Letters 192 (2025) 51–58
3.1. Target localization and segmentation

The localization of the target is accomplished through the use
the YOLO object detection framework, specifically YOLOv8 [24]. This
choice was made because of the versatility of the method, which
supports various vision tasks, including object detection, segmentation,
pose estimation, tracking, and classification. The authors of YOLO
adopt a modified version of Darknet53 [25] and, for enhanced com-
putational efficiency, they incorporate a spatial pyramid pooling layer
that aggregates features into a fixed-size map. The YOLOv8 framework
is released in five versions, with varying scales: YOLOv8n (nano),
YOLOv8s (small), YOLOv8 m (medium), YOLOv8l (large), and YOLOv8x
(extra large). For our specific objectives, we opted for the YOLOv8n
model, recognized as the smallest and fastest variant, with 3.5 million
parameters and 10.5 GFLOPs. The YOLOv8 framework is at the moment
the most updated version which permits the training of the nano-scale
detector on a custom dataset.

In our methodology, the model is employed to identify the presence
of color targets within the scene. Upon detection of a Region of Interest,
it is cropped and used as input for a second version of the model,
whose architecture is dedicated to target segmentation and background
removal. This two-step process ensures efficient and accurate local-
ization and segmentation of the color target within the given scene.
For faster inference times, the described step is performed on resized
images (640 × 640) and the obtained ROIs and masks are then upscaled
to the original resolution.

3.2. Centroids extraction

Once the target is cropped and segmented, we apply a pipeline to
extract the centroids’ coordinates of the 24 patches in the Macbeth
ColorChecker. The pipeline is designed to work on images in the [0-
255] range and is structured as a sequence of steps in the following
order:

1. A preprocessing step, aimed to enhance the image quality, that
involves histogram equalization to enhance contrast, a gaussian
filter to reduce noise, and unsharp masking to increase image
sharpness. In details, we adopt a gaussian filter with a 9 × 9
kernel, while for the unsharp masking we use a 9 × 9 Gaussian
kernel with 𝜎 = 5 and a multiplicative factor of 2.

2. An Edge detection step, aimed to provide an initial estimation of
the edges of the color patches, performed using the Canny algo-
rithm [26]. The Canny edge detection algorithm is subsequently
performed without any additional Gaussian blur, with a 3 × 3
Sobel kernel for gradients computation. For the hysteresis pro-
cedure that refines the edges based on their gradients intensities
and directions, we set the minimum and maximum threshold as
𝑡1 = 80 and 𝑡2 = 170 respectively (additional details about how
these parameters were chosen can be found in supplementary
materials).

3. A patches binarization step, aimed to separate the color patches
from the dark background of the Macbeth ColorChecker, based
on the application of the Euclidean distance transform [27]
to the detected edges. This step is needed since the output of
the edge detection does not guarantee that all the edges of
the patches have been detected and closed. The usage of the
Euclidean distance transform allows to obtain a probability map
of the centroids positions, helping to compensate for eventual
missed edges. The obtained probability map is finally bina-
rized by keeping only the non-zero values. To further refine the
binarization results, we filter the connected components, remov-
ing those with non-convex shapes or a total area significantly
deviating from the average area of the detected patches.

4. A centroids extraction step, based on the computation of the
center of mass of each binarized patch.
53
Fig. 3. The steps of the centroids extraction and refinement phases on an example
image.

3.3. Centroids refinement and color extraction

At this stage, the proposed approach generates a set of coordinates
corresponding to the centroids of the Macbeth ColorChecker’s patches.
However, it is not inherently ensured that exactly 24 centroids are
identified, matching the number of patches in the chart; there may
be outliers or missing centroids. Additionally, the accuracy of the
coordinates is not guaranteed. To address these issues, a refinement
process is implemented to identify missing centroids, eliminate outliers,
and ultimately produce a 4 × 6 grid of centroids. This refinement
involves three steps:

1. Computation of 2D Chart Orientation Vectors: We calculate two
orientation vectors, 𝑣1 and 𝑣2, whose directions and lengths
correspond to the perspective orientation of the chart and the
distance between two centroids in the respective directions. In
more details, to determine the orientation vectors, we begin by
computing their angles, 𝛼1 and 𝛼2, using a consensus approach.
For each centroid, we identify the two nearest centroids and
measure the angles of the connecting vectors. The two most
frequent angles, with a tolerance of 𝑡𝛼 = ± 𝜋

9 , are selected. The
chosen tolerance represents the angle between a centroid and
the edges of a neighboring patch (additional details about this
choice can be found in the supplementary materials). Then we
compute the lengths of the vectors, 𝓁1 and 𝓁2, through a similar
process: for each centroid, we measure the lengths of the shortest
vectors connecting it to other centroids that have an orientation
𝛼{1,2}, within an angle tolerance of 𝑡𝓁 = ± 𝜋

9 (this was chosen
following the same reasoning of 𝑡𝛼). The median values of these
measured lengths are then retained.

2. Grid Generation: Utilizing the orientation vectors, we generate
a 4 × 6 grid of coordinates that best fits the initially identified
centroids.
The orientation vectors 𝑣1 and 𝑣2 are utilized to generate, for
each centroid, a candidate 4 × 6 grid that provides an inter-
pretation of its position with respect to the others. This is done
by considering all the possible interpretations, accounting for
both horizontal and vertical layouts, where each centroid could
potentially correspond to 24 positions for each layout, totaling

L. Cogo et al.

(

Pattern Recognition Letters 192 (2025) 51–58
Table 1
Comparison of the methods on the ColorChecker and NUS datasets. Cosine similarity is computed only on non-missed detections, while the success rate takes
into account missed localizations and adopts a threshold of 0.9.
 Method Test dataset # images Missed localizations ↓ Cosine similarity (𝑆) ↑ Succ. rate (𝑅) ↑
 MATLAB ColorChecker 56 35 (62.5%) 98.68% 35.71%
 CCFind ColorChecker 56 3 (5.36%) 97.84% 94.64%
 Ours ColorChecker 56 0 (0%) 99.80% 100.00%
 MATLAB NUS 1853 928 (50.08%) 98.92% 49.43%
 CCFind NUS 1853 364 (19.64%) 99.82% 80.30%
 Ours NUS 1853 43 (2.32%) 99.98% 97.67%
48 possible interpretations per centroid. To each candidate con-
figuration is then assigned a score based on how many grid
points match the previously extracted centroids. The score is
determined by counting how many grid points are matched by a
centroid within a tolerance radius 𝑟 = min(𝓁1,𝓁2)∕4. The candi-
date configurations with the highest scores are then averaged to
further refine the grid. Subsequently, to disambiguate the grid’s
orientation and correctly associate colors with each grid point,
the black patch is identified as the corner grid point with the
lowest intensity (computed as the average value over its 9 × 9
neighborhood). By determining the black patch, all the other
patches are also uniquely identified.

3. Color Information Extraction: The refined coordinates grid is em-
ployed to extract the color information from the patches in the
original image. In particular, we extract the color information by
assigning to each point a circular mask with the tolerance radius
𝑟 defined in the previous step. Each mask is further refined by
retaining only the pixels with intensity values within the 2nd
and 3rd quartiles. The color information is finally determined
by averaging the remaining values.

3.4. Visual summary of the method

A visual summary of the proposed method is depicted in Fig. 3:

(a) The target localization and segmentation phase takes a grayscale
image as input, identifies the ROI containing a ColorChecker and
segments it from the background.

(b) The cropped and segmented image is preprocessed using his-
togram equalization, gaussian filter, and unsharp masking. This
helps to ehnance image quality and make the edges of the
patches more detectable.

(c) The Canny algorithm detects the edges of the chart. Some edges
of the patches could be missed, like the top-left patch, the one
at row one and column four, and the two patches on the bottom
right.

d-e-f) The Euclidean distance (d) transform helps recovering the pat-
ches with incomplete edges. The thresholding and filtering step
(e) helps removing eventual outliers, but this operation could
also cause the loss of some patches. Therefore, when the cen-
troids ere extracted (f), some might be missing.

(g-h) To refine the centroids, the chart orientation vectors are com-
puted (g) and used to generate the best matching grid points (h).
The missing centroids (e.g. the bottom-right ones) are recovered
and the misaligned ones (e.g. the top-left one) are fixed.

(i) The orientation of the grid points is disambiguated by identify-
ing the colors of the patches, and the color information is finally
extracted from the original image.

4. Experiments

4.1. Datasets

For our target detection experiments, we employ two largely used
datasets for color constancy research featuring the Macbeth Color
54
Fig. 4. Instances of tested images where only the proposed method correctly localized
the ColorChecker (gamma correction is applied for visibility purposes).

Checker chart [28–31]: the ColorChecker dataset [32] and the NUS
dataset [9].

• ColorChecker dataset: Initially introduced by Gehler et al. this
dataset comprises 568 images taken with two distinct cameras
: Canon EOS-1Ds (86 images with resolution 2041 × 1359)
and Canon EOS-5D (482 images with resolution 2193 𝑥 1460).
The dataset provides for each scene the coordinates of the Col-
orChecker’s corners, the RGB values of its patches and the
groundtruth scene illuminant computed from them. Due to the
complexity of having a faithful manual annotation of the chart
position in the scene and of its patches, the dataset has undergone
several corrections to its ground truth over time, including the
‘‘reprocessed’’ edition by Shi and Funt [2], and the more recent
‘‘recommended’’ version by Hemrit et al. [33]. For the purposes
of our study, we utilized the most recent version.

• NUS dataset: This dataset is a collection of 1853 images curated
by the National University of Singapore (NUS), captured with
nine distinct cameras with resolution ranging between 6 Mpx
and 24 Mpx. All images feature a Macbeth ColorChecker target,
depicting a variety of scenes including indoor, outdoor, close-
up, and people. The dataset also provides, for each ColorChecker
chart, the coordinates of its bounding box and the RGB values of
its patches.

4.2. Experimental setup

For training our target detection and segmentation models (as de-
scribed in Section 3), we fine-tuned them on the ColorChecker dataset,
starting from weights pre-trained on the COCO dataset [34].

The ColorChecker dataset was randomly split into 80% for training
(456 images), and two 10% splits (56 images each) for validation
and testing, respectively. The NUS dataset was reserved solely for
cross-dataset evaluation, as only the ColorChecker dataset provides the
required metadata — namely, the exact coordinates of the four chart
corners — for training the segmentation model.

L. Cogo et al. Pattern Recognition Letters 192 (2025) 51–58
Training was conducted over 100 epochs with a batch size of 16, a
learning rate of 0.01, and weight decay set at 5×10−4. All training and
evaluation procedures were carried out using a single NVIDIA GeForce
GTX 1070 GPU with 8 GB of RAM.

For performance comparison, we selected two baseline methods:
CCFind, proposed by Hirakawa [17], and the MATLAB implementation
by Fernandez et al. [21]. These methods were chosen because they
represent the most recent approaches in the state of the art, and they
provide readily available code for comparison. These were evaluated
alongside our proposed method.

The results are measured in terms of average cosine similarity
between the extracted RGB colors of the patches on the detected target
and the ground-truth RGB colors of the patches. The similarity score,
denoted as 𝑆, is defined as follows:

𝑆 = 1
𝑁

𝑁
∑

𝑖=1

𝜇𝑖
𝑔𝑡 ⋅ 𝜇

𝑖
𝑝

‖𝜇𝑖
𝑔𝑡‖ ‖𝜇𝑖

𝑝‖
(1)

where 𝜇𝑖
𝑔𝑡 and 𝜇𝑖

𝑝 are the RGB ground truth and RGB predicted colors
of the 𝑖th patch, respectively, and 𝑁 is the total number of patches
(i.e., 24 for the Macbeth ColorChecker). The values of 𝑆 are in the
range [0,1], where 1 is the best possible value and 0 is the worst.
This metric provides an information of how closely the predicted patch
colors match the actual ground-truth.

We chose this metric for two main reasons:

1. it ensures consistency with the evaluation of Fernandez et al.
[21]

2. it guarantees a fair comparison between methods, directly eval-
uating how good they are at their final task, which is retrieving
color information from images containing ColorCheckers.

The so defined cosine similarity score is computed for all the local-
izations, while we separately report the amount of missed localizations,
as the number of times the methods mistakenly consider the scene as
having no Macbeth ColorChecker in it. This value is particularly rele-
vant in the context of automatic labeling of color constancy datasets:
with the process of acquiring real-world scenes being slow and costly,
each missed localization constitutes a wasted acquisition.

To jointly take into account the two measurements, we also compute
a success rate 𝑅 as the percentage of non-missed localizations with a
cosine similarity score greater than 0.9:

𝑅 =
|𝐸|

𝑁
 where 𝐸 = {𝑒 ∈ 𝑀 ∶ 𝑒 ≥ 0.9} (2)

where 𝑀 is the set of cosine similarities computed on all the localiza-
tions, and 𝑁 is the total number of elements in the test set. This value
represents the amount of actually usable images after employing the
methods for automatic labeling.

4.3. Experimental results

The experimental results, summarized in Table 1, demonstrate that
our method consistently outperforms the compared approaches across
both datasets. Specifically, a higher cosine similarity score is achieved
on the correctly localized patches and fewer missed localizations are
observed.

Fig. 5 presents a visual comparison of the percentage of correct chart
localizations as a function of the cosine similarity score. As shown, our
method maintains a higher accuracy throughout the range of similarity
scores compared to CCFind and Fernandez et al.’s method. Fig. 6 further
illustrates the superiority of our method through violin plots depicting
the distribution of cosine similarity scores for all tested images. The
proposed method consistently produces higher cosine similarities, indi-
cating a more precise retrieval of color information. These results reveal
that our method not only achieves higher localization accuracy but
also significantly reduces the number of missed localizations, making it
55
Fig. 5. Plot of the rates of correct chart localization as a function of the cosine
similarity obtained on (a) ColorChecker dataset, (b) NUS dataset.

Fig. 6. Violin plots of the cosine similarities distribution obtained on (a) ColorChecker
dataset, (b) NUS dataset.

L. Cogo et al. Pattern Recognition Letters 192 (2025) 51–58
Table 2
Comparison of the methods on the ColorChecker and NUS datasets with pre-cropped ROIs. Cosine similarity is computed only on non-missed detections, while
the success rate takes into account missed localizations and adopts a threshold of 0.9.
 Method Test dataset # images Missed localizations↓ Cosine similarity (𝑆) ↑ Succ. rate (𝑅) ↑
 MATLAB ColorChecker 56 38 (67.86%) 98.34% 32.14%
 CCFind ColorChecker 56 32 (57.14%) 96.34% 37.5%
 Ours ColorChecker 56 2 (3.57%) 99.80% 96.43%
 MATLAB NUS 1853 1584 (85.48%) 95.80% 14.52%
 CCFind NUS 1853 1512 (81.60%) 97.59% 17.91%
 Ours NUS 1853 62 (3.35%) 99.97% 96.65%
more suitable for automatic dataset annotation compared to the other
methods considered.

To further isolate and evaluate the effectiveness of the pose es-
timation step, we conducted an additional set of experiments using
pre-cropped ColorChecker charts as inputs. The results, summarized
in Table 2, reveal that our method’s performance remained stable,
while the other approaches suffered a significant performance drop.
This highlights the robustness of our approach in scenarios where pose
estimation plays a crucial role in target detection. Fig. 4 illustrates some
examples of scenes that were correctly handled by the proposed method
and missed by the others. While the other approaches happen to miss
even easy localizations, our approach manages to correctly localize
even the hardest ones, containing ColorCheckers that are blurred,
highly skewed or far from the camera.

4.4. Degradation test

In order to further evaluate the performance of the proposed method
in challenging scenarios, we conducted additional experiments to assess
its robustness, in terms of localization success rate, with respect to
image blur and the size of the color target in the scene.

To assess the impact of blur, we applied Gaussian blur with varying
standard deviations 𝜎 to the input images, and used the corresponding
kernel size 𝑓𝑠 (calculated via Eq. (3)).

𝑓𝑠 = 2 ⋅ ⌈2𝜎⌉ + 1 (3)

We then measured the degradation of the localization success rate
as a function of the blur level.

As shown in Fig. 7, our method exhibits a gradual decrease in
performance as blur increases, but remains resilient under moderate
blur levels. This analysis provides insights into the method’s reliabil-
ity under conditions of reduced image clarity, which is particularly
relevant for real-world applications where images may be affected by
factors such as motion blur or defocus.

Furthermore, we investigated the influence of the color target size
on the localization performance. We took into account the size of the
color targets within the input images and measured the corresponding
success rate of target localization. The results, depicted in Fig. 8,
indicate that our method maintains a high level of accuracy across
a wide range of target sizes, demonstrating its ability to accurately
detect targets of different scales. This analysis highlights the method’s
versatility and suitability for applications where color targets may vary
in size or distance from the camera.

Overall, the results of these experiments further confirm the ro-
bustness and versatility of our method across challenging scenarios,
validating its adaptability for diverse real-world applications.

5. Conclusions

In this paper, we presented a fully-automatic method for the re-
trieval of color information from color targets, designed to address
the limitations of existing approaches. Our method employs a two-
phase process: an initial deep learning model for target detection and
segmentation, followed by a consensus-based methodology for pose
56
Fig. 7. Plot of the degradation of the localization performance with increasing blur,
as function of 𝜎.

estimation and color extraction. The proposed solution demonstrates
robust performance and can operate on grey-scale images.

Our experiments, conducted on the ColorChecker and NUS datasets,
show that our method outperforms existing state-of-the-art techniques
in both accuracy and reliability. Specifically, our method achieves
higher cosine similarity scores and significantly lower misses in target
localization compared to other existing methods. Additional experi-
ments were conducted to evaluate the pose estimation step, and to
assess the method robustness to degradations.

In summary, the proposed method not only advances the automa-
tion of color information retrieval from color targets but also offers
a robust and versatile solution for a wide range of digital photogra-
phy tasks. Future work could explore further enhancements, including
optimization for real-time applications and adaptation to a broader
spectrum of imaging conditions.

L. Cogo et al. Pattern Recognition Letters 192 (2025) 51–58
Fig. 8. Plot of the degradation of the localization performance as a function of the
ColorChecker size.

CRediT authorship contribution statement

Luca Cogo: Writing – original draft, Software, Methodology, Inves-
tigation. Marco Buzzelli: Visualization, Software, Conceptualization.
Simone Bianco: Writing – review & editing, Supervision, Methodology,
Investigation, Conceptualization. Raimondo Schettini: Writing – re-
view & editing, Supervision, Project administration, Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Appendix A. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.patrec.2025.03.022.

Data availability

Data and code will be published after pubblication on a Github
repository, which is mentioned in the abstract of the manuscript.

References

[1] M.R. Luo, The new preferred memory color (PMC) chart, Color Res. Appl. (2024).
[2] L. Shi, Re-processed version of the gehler color constancy dataset of 568 images,

2000, http://www.cs.sfu.ca/~{}color/data/.
[3] S. Zini, M. Buzzelli, S. Bianco, R. Schettini, COCOA: combining color constancy

algorithms for images and videos, IEEE Trans. Comput. Imaging 8 (2022)
795–807.
57
[4] A. Raza, S. Jost, D. Dumortier, Low light hyperspectral imaging using HDR
methods, in: International Workshop on Computational Color Imaging, Springer,
2024, pp. 105–116.

[5] A. Molada-Tebar, G.J. Verhoeven, D. Hernández-López, D. González-Aguilera,
Practical RGB-to-XYZ color transformation matrix estimation under different
lighting conditions for graffiti documentation, Sensors 24 (6) (2024) 1743.

[6] G.C. Guarnera, S. Bianco, R. Schettini, Turning a digital camera into an absolute
2D tele-colorimeter, in: Computer Graphics Forum, 38, (1) Wiley Online Library,
2019, pp. 73–86.

[7] J. Heagerty, S. Li, E. Lee, S. Bhattacharyya, S. Bista, B. Brawn, B.Y. Feng, S.
Jabbireddy, J. JaJa, H. Kacorri, et al., HoloCamera: Advanced volumetric capture
for cinematic-quality vr applications, IEEE Trans. Vis. Comput. Graphics (2024).

[8] C.-Y. Li, J.-C. Guo, R.-M. Cong, Y.-W. Pang, B. Wang, Underwater image enhance-
ment by dehazing with minimum information loss and histogram distribution
prior, IEEE Trans. Image Process. 25 (12) (2016) 5664–5677.

[9] D. Cheng, D.K. Prasad, M.S. Brown, Illuminant estimation for color constancy:
why spatial-domain methods work and the role of the color distribution, J. Opt.
Soc. Amer. A 31 (5) (2014) 1049–1058.

[10] C.S. McCamy, H. Marcus, J.G. Davidson, et al., A color-rendition chart, J. App.
Photog. Eng 2 (3) (1976) 95–99.

[11] I. ISO, 17321-1: 2012 graphic technology and photography-colour characterisa-
tion of digital still cameras (DSCs)-part 1: Stimuli, metrology and test procedures,
Int. Organ. Stand. (2017).

[12] B. Brown, Cinematography: theory and practice: image making for cinematogra-
phers and directors, Routledge, 2016.

[13] M. Jackowski, A. Goshtasby, S. Bines, D. Roseman, C. Yu, Correcting the
geometry and color of digital images, IEEE Trans. Pattern Anal. Mach. Intell.
19 (10) (1997) 1152–1158.

[14] D. Kapusi, P. Prinke, R. Jahn, D. Vehar, R. Nestler, K.-H. Franke, Simultaneous
geometric and colorimetric camera calibration, in: Tagungsband 16. Workshop
Farbbildverarbeitung, 2010.

[15] S. Bianco, C. Cusano, Color target localization under varying illumination
conditions, in: Computational Color Imaging: Third International Workshop,
CCIW 2011, Milan, Italy, April 20-21, 2011. Proceedings 3, Springer, 2011, pp.
245–255.

[16] S. Bianco, D. Mazzini, D.P. Pau, R. Schettini, Local detectors and compact
descriptors for visual search: a quantitative comparison, Digit. Signal Process.
44 (2015) 1–13.

[17] K. Hirakawa, ColorChecker finder, 2024, (Accessed: 15 April 2024)https://sites.
google.com/a/udayton.edu/issl/software/macbeth-colorchecker-finder.

[18] A. Ernst, A. Papst, T. Ruf, J.-U. Garbas, Check my chart: A robust color
chart tracker for colorimetric camera calibration, in: Proceedings of the 6th
International Conference on Computer Vision/Computer Graphics Collaboration
Techniques and Applications, 2013, pp. 1–8.

[19] A. Kordecki, H. Palus, Automatic detection of colour charts in images, Prz.
Elektrotech. 90 (2014) 197–202.

[20] L.E. García Capel, J.Y. Hardeberg, Automatic color reference target detection,
in: Color and Imaging Conference, 2014, (2014) Society for Imaging Science
and Technology, 2014, pp. 119–124.

[21] P.D.M. Fernández, F.A.G. Peña, T.I. Ren, J.J. Leandro, Fast and robust multiple
colorchecker detection using deep convolutional neural networks, Image Vis.
Comput. 81 (2019) 15–24.

[22] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V.
Vanhoucke, A. Rabinovich, Going deeper with convolutions, in: Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, 2015, pp.
1–9.

[23] MATLAB, Image Processing Toolbox version: 9.9 (R2020b), The MathWorks Inc.,
Natick, Massachusetts, United States, 2020, URL https://www.mathworks.com.

[24] G. Jocher, A. Chaurasia, J. Qiu, Ultralytics YOLOv8, 2023, URL https://github.
com/ultralytics/ultralytics.

[25] J. Redmon, A. Farhadi, Yolov3: An incremental improvement, 2018, arXiv
preprint arXiv:1804.02767.

[26] J. Canny, A computational approach to edge detection, IEEE Trans. Pattern Anal.
Mach. Intell. (6) (1986) 679–698.

[27] G. Borgefors, Distance transformations in digital images, Comput. Vis. Graph.
Image Process. 34 (3) (1986) 344–371.

[28] S. Bianco, C. Cusano, R. Schettini, Color constancy using CNNs, in: Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition Workshops,
2015, pp. 81–89.

[29] Y. Hu, B. Wang, S. Lin, Fc4: Fully convolutional color constancy with confidence-
weighted pooling, in: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2017, pp. 4085–4094.

[30] S. Bianco, C. Cusano, Quasi-unsupervised color constancy, in: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019, pp.
12212–12221.

https://doi.org/10.1016/j.patrec.2025.03.022
http://refhub.elsevier.com/S0167-8655(25)00113-8/sb1
http://www.cs.sfu.ca/~color/data/
http://refhub.elsevier.com/S0167-8655(25)00113-8/sb3
http://refhub.elsevier.com/S0167-8655(25)00113-8/sb3
http://refhub.elsevier.com/S0167-8655(25)00113-8/sb3
http://refhub.elsevier.com/S0167-8655(25)00113-8/sb3
http://refhub.elsevier.com/S0167-8655(25)00113-8/sb3
http://refhub.elsevier.com/S0167-8655(25)00113-8/sb4
http://refhub.elsevier.com/S0167-8655(25)00113-8/sb4
http://refhub.elsevier.com/S0167-8655(25)00113-8/sb4
http://refhub.elsevier.com/S0167-8655(25)00113-8/sb4
http://refhub.elsevier.com/S0167-8655(25)00113-8/sb4
http://refhub.elsevier.com/S0167-8655(25)00113-8/sb5
http://refhub.elsevier.com/S0167-8655(25)00113-8/sb5
http://refhub.elsevier.com/S0167-8655(25)00113-8/sb5
http://refhub.elsevier.com/S0167-8655(25)00113-8/sb5
http://refhub.elsevier.com/S0167-8655(25)00113-8/sb5
http://refhub.elsevier.com/S0167-8655(25)00113-8/sb6
http://refhub.elsevier.com/S0167-8655(25)00113-8/sb6
http://refhub.elsevier.com/S0167-8655(25)00113-8/sb6
http://refhub.elsevier.com/S0167-8655(25)00113-8/sb6
http://refhub.elsevier.com/S0167-8655(25)00113-8/sb6
http://refhub.elsevier.com/S0167-8655(25)00113-8/sb7
http://refhub.elsevier.com/S0167-8655(25)00113-8/sb7
http://refhub.elsevier.com/S0167-8655(25)00113-8/sb7
http://refhub.elsevier.com/S0167-8655(25)00113-8/sb7
http://refhub.elsevier.com/S0167-8655(25)00113-8/sb7
http://refhub.elsevier.com/S0167-8655(25)00113-8/sb8
http://refhub.elsevier.com/S0167-8655(25)00113-8/sb8
http://refhub.elsevier.com/S0167-8655(25)00113-8/sb8
http://refhub.elsevier.com/S0167-8655(25)00113-8/sb8
http://refhub.elsevier.com/S0167-8655(25)00113-8/sb8
http://refhub.elsevier.com/S0167-8655(25)00113-8/sb9
http://refhub.elsevier.com/S0167-8655(25)00113-8/sb9
http://refhub.elsevier.com/S0167-8655(25)00113-8/sb9
http://refhub.elsevier.com/S0167-8655(25)00113-8/sb9
http://refhub.elsevier.com/S0167-8655(25)00113-8/sb9
http://refhub.elsevier.com/S0167-8655(25)00113-8/sb10
http://refhub.elsevier.com/S0167-8655(25)00113-8/sb10
http://refhub.elsevier.com/S0167-8655(25)00113-8/sb10
http://refhub.elsevier.com/S0167-8655(25)00113-8/sb11
http://refhub.elsevier.com/S0167-8655(25)00113-8/sb11
http://refhub.elsevier.com/S0167-8655(25)00113-8/sb11
http://refhub.elsevier.com/S0167-8655(25)00113-8/sb11
http://refhub.elsevier.com/S0167-8655(25)00113-8/sb11
http://refhub.elsevier.com/S0167-8655(25)00113-8/sb12
http://refhub.elsevier.com/S0167-8655(25)00113-8/sb12
http://refhub.elsevier.com/S0167-8655(25)00113-8/sb12
http://refhub.elsevier.com/S0167-8655(25)00113-8/sb13
http://refhub.elsevier.com/S0167-8655(25)00113-8/sb13
http://refhub.elsevier.com/S0167-8655(25)00113-8/sb13
http://refhub.elsevier.com/S0167-8655(25)00113-8/sb13
http://refhub.elsevier.com/S0167-8655(25)00113-8/sb13
http://refhub.elsevier.com/S0167-8655(25)00113-8/sb14
http://refhub.elsevier.com/S0167-8655(25)00113-8/sb14
http://refhub.elsevier.com/S0167-8655(25)00113-8/sb14
http://refhub.elsevier.com/S0167-8655(25)00113-8/sb14
http://refhub.elsevier.com/S0167-8655(25)00113-8/sb14
http://refhub.elsevier.com/S0167-8655(25)00113-8/sb15
http://refhub.elsevier.com/S0167-8655(25)00113-8/sb15
http://refhub.elsevier.com/S0167-8655(25)00113-8/sb15
http://refhub.elsevier.com/S0167-8655(25)00113-8/sb15
http://refhub.elsevier.com/S0167-8655(25)00113-8/sb15
http://refhub.elsevier.com/S0167-8655(25)00113-8/sb15
http://refhub.elsevier.com/S0167-8655(25)00113-8/sb15
http://refhub.elsevier.com/S0167-8655(25)00113-8/sb16
http://refhub.elsevier.com/S0167-8655(25)00113-8/sb16
http://refhub.elsevier.com/S0167-8655(25)00113-8/sb16
http://refhub.elsevier.com/S0167-8655(25)00113-8/sb16
http://refhub.elsevier.com/S0167-8655(25)00113-8/sb16
https://sites.google.com/a/udayton.edu/issl/software/macbeth-colorchecker-finder
https://sites.google.com/a/udayton.edu/issl/software/macbeth-colorchecker-finder
https://sites.google.com/a/udayton.edu/issl/software/macbeth-colorchecker-finder
http://refhub.elsevier.com/S0167-8655(25)00113-8/sb18
http://refhub.elsevier.com/S0167-8655(25)00113-8/sb18
http://refhub.elsevier.com/S0167-8655(25)00113-8/sb18
http://refhub.elsevier.com/S0167-8655(25)00113-8/sb18
http://refhub.elsevier.com/S0167-8655(25)00113-8/sb18
http://refhub.elsevier.com/S0167-8655(25)00113-8/sb18
http://refhub.elsevier.com/S0167-8655(25)00113-8/sb18
http://refhub.elsevier.com/S0167-8655(25)00113-8/sb19
http://refhub.elsevier.com/S0167-8655(25)00113-8/sb19
http://refhub.elsevier.com/S0167-8655(25)00113-8/sb19
http://refhub.elsevier.com/S0167-8655(25)00113-8/sb20
http://refhub.elsevier.com/S0167-8655(25)00113-8/sb20
http://refhub.elsevier.com/S0167-8655(25)00113-8/sb20
http://refhub.elsevier.com/S0167-8655(25)00113-8/sb20
http://refhub.elsevier.com/S0167-8655(25)00113-8/sb20
http://refhub.elsevier.com/S0167-8655(25)00113-8/sb21
http://refhub.elsevier.com/S0167-8655(25)00113-8/sb21
http://refhub.elsevier.com/S0167-8655(25)00113-8/sb21
http://refhub.elsevier.com/S0167-8655(25)00113-8/sb21
http://refhub.elsevier.com/S0167-8655(25)00113-8/sb21
http://refhub.elsevier.com/S0167-8655(25)00113-8/sb22
http://refhub.elsevier.com/S0167-8655(25)00113-8/sb22
http://refhub.elsevier.com/S0167-8655(25)00113-8/sb22
http://refhub.elsevier.com/S0167-8655(25)00113-8/sb22
http://refhub.elsevier.com/S0167-8655(25)00113-8/sb22
http://refhub.elsevier.com/S0167-8655(25)00113-8/sb22
http://refhub.elsevier.com/S0167-8655(25)00113-8/sb22
https://www.mathworks.com
https://github.com/ultralytics/ultralytics
https://github.com/ultralytics/ultralytics
https://github.com/ultralytics/ultralytics
http://arxiv.org/abs/1804.02767
http://refhub.elsevier.com/S0167-8655(25)00113-8/sb26
http://refhub.elsevier.com/S0167-8655(25)00113-8/sb26
http://refhub.elsevier.com/S0167-8655(25)00113-8/sb26
http://refhub.elsevier.com/S0167-8655(25)00113-8/sb27
http://refhub.elsevier.com/S0167-8655(25)00113-8/sb27
http://refhub.elsevier.com/S0167-8655(25)00113-8/sb27
http://refhub.elsevier.com/S0167-8655(25)00113-8/sb28
http://refhub.elsevier.com/S0167-8655(25)00113-8/sb28
http://refhub.elsevier.com/S0167-8655(25)00113-8/sb28
http://refhub.elsevier.com/S0167-8655(25)00113-8/sb28
http://refhub.elsevier.com/S0167-8655(25)00113-8/sb28
http://refhub.elsevier.com/S0167-8655(25)00113-8/sb29
http://refhub.elsevier.com/S0167-8655(25)00113-8/sb29
http://refhub.elsevier.com/S0167-8655(25)00113-8/sb29
http://refhub.elsevier.com/S0167-8655(25)00113-8/sb29
http://refhub.elsevier.com/S0167-8655(25)00113-8/sb29
http://refhub.elsevier.com/S0167-8655(25)00113-8/sb30
http://refhub.elsevier.com/S0167-8655(25)00113-8/sb30
http://refhub.elsevier.com/S0167-8655(25)00113-8/sb30
http://refhub.elsevier.com/S0167-8655(25)00113-8/sb30
http://refhub.elsevier.com/S0167-8655(25)00113-8/sb30

L. Cogo et al. Pattern Recognition Letters 192 (2025) 51–58
[31] M. Afifi, J.T. Barron, C. LeGendre, Y.-T. Tsai, F. Bleibel, Cross-camera convolu-
tional color constancy, in: Proceedings of the IEEE/CVF International Conference
on Computer Vision, 2021, pp. 1981–1990.

[32] P.V. Gehler, C. Rother, A. Blake, T. Minka, T. Sharp, Bayesian color constancy
revisited, in: 2008 IEEE Conference on Computer Vision and Pattern Recognition,
IEEE, 2008, pp. 1–8.
58
[33] G. Hemrit, G.D. Finlayson, A. Gijsenij, P. Gehler, S. Bianco, B. Funt, M. Drew,
L. Shi, Rehabilitating the colorchecker dataset for illuminant estimation, 2018,
arXiv preprint arXiv:1805.12262.

[34] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, C.L.
Zitnick, Microsoft coco: Common objects in context, in: Computer Vision–ECCV
2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014,
Proceedings, Part V 13, Springer, 2014, pp. 740–755.

http://refhub.elsevier.com/S0167-8655(25)00113-8/sb31
http://refhub.elsevier.com/S0167-8655(25)00113-8/sb31
http://refhub.elsevier.com/S0167-8655(25)00113-8/sb31
http://refhub.elsevier.com/S0167-8655(25)00113-8/sb31
http://refhub.elsevier.com/S0167-8655(25)00113-8/sb31
http://refhub.elsevier.com/S0167-8655(25)00113-8/sb32
http://refhub.elsevier.com/S0167-8655(25)00113-8/sb32
http://refhub.elsevier.com/S0167-8655(25)00113-8/sb32
http://refhub.elsevier.com/S0167-8655(25)00113-8/sb32
http://refhub.elsevier.com/S0167-8655(25)00113-8/sb32
http://arxiv.org/abs/1805.12262
http://refhub.elsevier.com/S0167-8655(25)00113-8/sb34
http://refhub.elsevier.com/S0167-8655(25)00113-8/sb34
http://refhub.elsevier.com/S0167-8655(25)00113-8/sb34
http://refhub.elsevier.com/S0167-8655(25)00113-8/sb34
http://refhub.elsevier.com/S0167-8655(25)00113-8/sb34
http://refhub.elsevier.com/S0167-8655(25)00113-8/sb34
http://refhub.elsevier.com/S0167-8655(25)00113-8/sb34

	Robust camera-independent color chart localization using YOLO
	Introduction
	Related works
	Proposed method
	Target localization and segmentation
	Centroids extraction
	Centroids refinement and color extraction
	Visual summary of the method

	Experiments
	Datasets
	Experimental setup
	Experimental results
	Degradation test

	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Appendix A. Supplementary data
	Data availability
	References

