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3D face detection using curvature analysis
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Abstract

Face detection is a crucial preliminary in many applications. Most of the approaches to face detection have focused on the use of two-
dimensional images. We present an innovative method that combines a feature-based approach with a holistic one for three-dimensional
(3D) face detection. Salient face features, such as the eyes and nose, are detected through an analysis of the curvature of the surface. Each
triplet consisting of a candidate nose and two candidate eyes is processed by a PCA-based classifier trained to discriminate between faces
and non-faces. The method has been tested, with good results, on some 150 3D faces acquired by a laser range scanner.
� 2005 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Face detection and recognition have attracted the atten-
tion of many research groups. Recent key applications in
fields such as human–computer interface, identity verifica-
tion, criminal face recognition, and surveillance systems re-
quire the detection, and sometimes the recognition, of hu-
man faces.

In this paper, we propose an innovative approach to face
detection which, as stated in Ref. [1], can be defined as
follows: “Given an arbitrary image, the goal of face detection
is to determine whether or not there are any faces in the
image and, if present, return the image location and extent
of each face”. Face detection is therefore more challenging
than face localization in which we assume that the image
contains only one face.

Most of the literature concerned face detection investi-
gates face detection in two-dimensional (2D) images [1].
An example is the popular work of Turk and Pentland [2].
The so-called “eigenfaces approach” projects face images
onto the feature space (“face space”) that best encodes the

∗ Corresponding author. Tel.: +39 02 6448 7480; fax: +39 02 6448 7839.
E-mail addresses: colomboal@disco.unimib.it (A. Colombo),

cusano@disco.unimib.it (C. Cusano), schettini@disco.unimib.it
(R. Schettini).

0031-3203/$30.00 � 2005 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
doi:10.1016/j.patcog.2005.09.009

variation among faces. The difference between an image and
its projection in that space is used as a measure of “faceness”:
high values of faceness indicate the presence of a face. The
effectiveness of this and many other methods exploiting only
2D images is curtailed by the variability frequently found in
imaging conditions (lighting, scale, occlusion. . .) as well as
in the subject’s expression, pose and orientation.

The decreasing cost of three-dimensional (3D) acquisi-
tion systems and their increasing quality, together with the
greater computational power available nowadays, will make
real-time 3D systems for face recognition a commonplace in
the near future. 3D data is already widely used for this pur-
pose. Apart from being less sensitive to viewpoint and light-
ing conditions, 3D data exploit information which is comple-
mentary to gray-level based approaches, enabling the fusion
with those techniques. Beumier and Acheroy [3] present a
surface analysis approach based on face profile extraction,
registration and comparison. Similar approaches, working
only with the central face profile, are proposed by Cartoux
et al. [4] and Pan et al. [5]. Hesher et al. [6] investigate
the use of eigenfaces with automatically registered range
images. Similarly, Chang et al. [7] propose a 2D+3D mul-
timodal approach applying eigenfaces to range images and
2D images. Lee and co-workers [8] extract depth areas of 3D
face images using the contour line of the same depth value.
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These are resampled and stored in consecutive locations in
feature vectors using a statistical multiple feature method.
The comparison between two faces is based on their Eu-
clidean distance in the feature space. Gordon [9] presents
an accurate analysis of the face based on curvatures. She
extracts features (nose tip, nose bridge, eyes corners etc. . .)
for alignment purposes; the faces are then compared us-
ing their volume difference as a similarity measure. Moreno
et al. [10] also segment the faces using surface curvatures.
Feature vectors are formed using the extracted regions, and
then compared. Wang et al. [11] use “point signature” rep-
resentation [12] to code 3D surface information in a pose-
invariant way. These signatures are combined with 2D in-
formation extracted using Gabor filters in order to construct
a feature vector. The results are classified by support vec-
tor machines. In the great majority of publications concern-
ing 3D face recognition, faces are manually detected and
registered in a standard position (sometimes referred to as
“normal position”) using some ad hoc interactive tools that
allow the selection of predefined landmark points, such as
the position of the eyes (see for example Ref. [7]). In some
cases face localization is automated on the basis of strong
assumptions about position and orientation with respect to
the imaging device, such as assuming that the subject’s nose
is the point nearest to the camera [6,8]. We must conclude
that the problem of detecting faces in 3D acquisitions has
yet to be thoroughly explored.

In this paper we propose an innovative 3D approach: our
method assumes that the faces, if any, may be freely oriented
with respect to the camera plane, the only restriction being
that no self-occlusions and/or face camouflage hide the cen-
tral part of the face containing the eyes and the nose of the
subjects in the acquired scene. In Section 2, we present an
overview of our face detection method which combines cur-
vature surface analysis for face feature detection with eigen-
faces classification for non-face discrimination. We then ex-
plain each processing steps in detail. The method has been
tested on some 140 3D scenes acquired by a laser range
scanner and containing 150 faces as well as several confus-
ing, i.e. non-face, elements. The results, reported in Section
3, demonstrate the robustness of this approach even in the
presence of a great variability of facial expressions and pro-
nounced occlusions due to scarves, hats, etc. Our conclu-
sions and plans for future work are discussed in Section 4.

2. Method description

Our method assumes that a 3D shot of a real world scene
is available as a range image, i.e. an image where for each

Fig. 1. Schematic diagram of our face detection method. Only the major steps are shown.

location (i, j ) the coordinates (x, y, z) of the 3D scene are
expressed with respect to the camera reference system. Some
acquisition devices return data in the form of a polygonal
model, usually a triangular mesh. In this case, the range im-
age can be obtained using the well known z-buffer algorithm
[13].

Fig. 1 shows the major steps used. We assume we have no
knowledge about the contents of the scene that is acquired;
the resulting image may therefore contain any number of
faces, and these may be freely located and oriented with
respect to the imaging device. To render the problem less
computationally intensive we search initially for single facial
features such as eyes and noses. Consequently, this first step
results in an image segmentation in regions corresponding
to candidate facial features. No relationships are established,
for the moment, between the segmented elements. In the
next step, a “face triangle”, a potential face, is created from
a candidate nose and two candidate eyes. Our goal now is
to discriminate between face triangles that correspond to
actual faces and those that do not. The method now registers
each candidate face in a standard position and orientation,
reducing intra-class face variability. We further analyze the
areas of the range image covered by each face triangle by
applying a face versus non-face classifier based on a holistic
approach. Knowledge about the structure of the face is used
therefore only in the generation of a list of candidate face
regions, while the actual classification of these regions as
faces is purely holistic. For these reasons, we define our
method a combination of a feature-based approach and a
holistic one.

Fig. 2 presents a more detailed description of the pro-
cessing steps. Once the scene is acquired, surface curvature,
which has the valuable characteristic of being viewpoint
invariant, is exploited to segment candidate eyes and noses.
In greater detail: (i) the mean (H ) and Gaussian (K) cur-
vature maps are first computed from a smoothed version
of the original range image; (ii) a simple thresholding seg-
ments regions of high curvature which might correspond to
eyes and noses; (iii) a HK classification, based on the signs
of Gaussian and mean curvature, divides the segmented
regions into four types: convex, concave, and two types of
saddle regions. Regions that may contain a nose and eyes
are then characterized by their type and by some statistics
of their curvature. The output of the processing step may
contain any number of candidate facial features. If no nose
or less than two eyes are detected we assume that no faces
are present in the acquired scene, while there are no upper
bounds on the number of features that can be detected and
further processed. Each triplet of a candidate nose and two
candidate eyes, forming a face triangle, is used to select the
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Fig. 2. Detailed diagram of the face detection method.

corresponding 3D surface region including the eyes and the
nose, but excluding the mouth and part of the cheeks. This
region is rotated and translated into a standard position, and
a new depth image of the area containing the candidate facial
features is computed. In order to select only the rigid part of
the face, the image is cropped with a binary mask. Finally,
a face vs. non-face PCA-based classifier, which has been
trained on several examples, processes the candidate depth
image. The final output of the procedure is a list containing
the location and extension of each detected face.

2.1. Face curvatures

To analyze the curvature of 3D faces we let S be the
surface defined by a twice differentiable real valued function

f : U → R, defined on an open set U ⊆ R2:

S = {(x, y, z) | (x, y) ∈ U ; z ∈ R; f (x, y) = z} .

For every point (x, y, f (x, y)) ∈ S we consider two curva-
ture measures, the mean (H ) and the Gaussian (K) curvature
[14]:
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(

1 + f 2
y

)
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2
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Fig. 3. Top row, left to right: polygonal model, projected range image and its smoothed version. Second row: mean and Gaussian curvature map (the
darker zones are high curvature regions, and lighter low curvature regions); sign of mean and Gaussian curvature map (white zones are negative curvature
regions; gray zones are positive curvature regions). Third row: thresholded mean and Gaussian curvature map; sign of thresholded mean and Gaussian
curvature map. Last row: the HK-classification map and its thresholded version. From darker to lighter shades: hyperbolic concave, hyperbolic convex,
elliptical concave and elliptical convex regions.

where fx, fy, fxy, fxx, fyy are the first and second deriva-
tives of f in (x, y). In our approach, a face is initially rep-
resented by a range image of N × M points. Since we have
only a discrete representation of S, we must estimate the
partial derivatives. For each point (xi, yj ) on the grid we
considered a biquadratic polynomial approximation of the
surface:

gij (x, y) = aij + bij (x − xi) + cij (y − yj )

+ dij (x − xi)(y − yj ) + eij (x − xi)
2

+ fij (y − yj )
2, i = 1 . . . N, j = 1 . . . M ,

where the coefficients aij , bij , cij , dij , eij , fij are obtained
by least squares fitting of the points in a neighborhood of
(xi, yj ) . The derivatives of f in (xi, yj ) are then estimated

by the derivatives of gij :

fx(xi, yj ) = bij , fy(xi, yj ) = cij , fxy(xi, yj ) = dij ,

fxx(xi, yj ) = 2eij , fyy(xi, yj ) = 2fij .

Since the second derivative is very sensitive to noise, a
smoothing filter must be applied to the surface. Before com-
puting the curvature, we apply a Gaussian filter to the depth
image, discarding high-frequency fluctuations of the surface,
while the salient facial features, such as the eyes and nose,
are still clearly distinguishable.

By analyzing the signs of the mean and the Gaussian
curvature, we perform what is called an HK classification of
the points of the surface to obtain a concise description of the
local behavior of the surface (Fig. 3). HK classification was
introduced by Besl in 1986 [15]. Image points can be labeled
as belonging to a viewpoint-independent surface shape class
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Table 1
HK classification

K < 0 K = 0 K > 0

H < 0 Hyperbolic concave Cylindrical concave Elliptical concave
H = 0 Hyperbolic symmetric Planar Impossible
H > 0 Hyperbolic convex Cylindrical convex Elliptical convex

type based on the combination of the signs from the Gaussian
and mean curvatures as shown in Table 1.

2.2. Eyes, noses and “face triangles”

As suggested by Gordon [9] we use a thresholding pro-
cess to isolate regions of high curvature. Points with low
curvature values are discarded:

|H(u, v)|�Th, |K(u, v)|�Tk ,

where Th and Tk are predefined thresholds. These thresholds
were experimentally tested, before choosing values similar
to those used by Moreno et al. [10] (Th=0.04; Tk =0.0005).
If we consider a smoothed face surface, those regions with
the highest curvature values are the nose and the inside cor-
ners of the eyes. In all our experiments these regions were
always well-isolated by using the proposed thresholding pro-
cess. As other regions, like the mouth, or cheeks, or fore-
head, do not present particular or simple curvature charac-
teristics that allow robust automatic detection, we decided
to consider only the nose and the two inside corners of the
eyes. More in detail, we search for the nose region in the
thresholded mean curvature map; only positive (convex) re-
gions are considered. We look for the eyes, instead, in the
thresholded HK-classified map considering only the ellip-
tical concave regions (Fig. 4). Observing the curvature in-
side the regions of interest we found that possible eyes and
noses were well described by statistical descriptors such as
the mean. Consequently, we could reduce the number of
candidates by filtering each candidate region i, considering

Fig. 4. From left to right: a range image generated by an orthographic projection of a polygonal model; the image used to localize nose candidates; the
image used to localize eye candidates; the regions selected for generation of the face triangle.

average mean and Gaussian curvature (Hi and Ki , respec-
tively):

Hi �Hmin

for noses and

Ki �Kmin

for eyes. The thresholds Hmin and Kmin have been exper-
imentally tuned to consider a smaller number of cases and
reduce the system pipeline overhead. The output of this pro-
cess is then a list of potential noses and eyes (Fig. 4). We
now take the face triangles, that is, the triplets (left eye,
right eye, nose), generated by combining all the candidate
regions. For each nose we compute its principal direction
and use that to cut the image plane in half; we then com-
bine the left eye region with the right eye region to build the
face triangle, checking the direction in which the triangle is
turned: only face triangles having normals pointing towards
the camera are considered.

Further filtering again reduces the number of candidates:
each face triangle (el, er, n) is described by the distances
between the three regions composing it; face triangles with
abnormal distances are rejected:

LRmin �d(el, er)�LRmax,

LNmin �d(el, n)�LNmax,

RNmin �d(er, n)�RNmax,

where d(x, y) is the relative distance between regions x

and y, and LRmin, LRmax, LNmin, LNmax, RNmin, RNmax
are predefined thresholds. Since such distances refer
to the actual distances between the features in the ac-
quired scene, it is possible to tune the thresholds in
order to retain only triangles compatible with the size
and proportions of the human face. This significantly
reduces the computational burden of the following
steps.
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Fig. 5. The reference system used to register a face triangle and its corresponding face surface.

2.3. Registration

Face triangles are freely oriented on the image plane, with
some degrees of freedom on the other two rotation planes.
We decided to use them as a reference to register the surface
of potential faces (Fig. 5). The reference system is built as
follows:

• The x-axis is oriented from the right eye to the left one.
• The z-axis is oriented in the same direction as the normal

vector of the face triangle.
• The y-axis is computed using the cross product between

the other two axes.
• The origin of the axes is translated to the tip of the

nose.
• Finally the system is rotated about the x-axis by 45◦.

Using this reference system, a transformation matrix, T, is
built and the 3D model of the face is registered, applying the
transformation T on all the vertices of the model. Denoting
the axes of the new reference system as the vectors u, v, w
with origin o, the matrix T can be seen as the product of the

translation matrix S and the rotation matrix R:

T = S · R,

R =
⎡
⎢⎣

ux uy uz 0
vx vy vz 0
wx wy wz 0
0 0 0 1

⎤
⎥⎦ , S =

⎡
⎢⎣

1 0 0 ox

0 1 0 oy

0 0 1 oz

0 0 0 1

⎤
⎥⎦ ,

where the subscripts x, y, and z indicate the components of
the vectors.

Using column vector notation, a vertex p is transformed
into a vertex p′ using:

p′ = T · p.

An orthographic projection makes it possible to generate a
registered range image corresponding to the surface of the
face triangle. Finally, the range image is cropped with a mask
to eliminate errors on face borders, so that all the images
are equal in shape and size, and only the rigid portion of the
face, including eyes and nose (Fig. 6) is considered.
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Fig. 6. From left to right: a face range image; the detected face triangle; the same face triangle drawn on the polygonal mesh; the polygonal model
registered using the face triangle as a reference; the registered model projected on a range image and cropped with a mask.

Fig. 7. An example of an eigenface base. Top left, the mean vector; the remaining images are the first seven eigenvectors ordered by variance from left
to right, and from top to bottom.

2.4. Face validation

The input of the classifier is the registered and cropped
range image of the surface behind each detected face tri-
angle. We have used the eigenfaces technique proposed by
Turk and Pentland [2] to classify input patterns as faces or
non-faces. In this approach, each registered depth image is
used to construct an n-dimensional vector, built by linking
together each row of the image. An initial set of M training
vectors (�1, . . . ,�M) is used to construct the “face space”;
first, the mean vector is computed:

� = 1

M

M∑
n=1

�n.

Then, the covariance matrix C is built:

C = 1

M

M∑
n=1

(�n − �)(�n − �)T.

The eigenvectors ui of C form an orthogonal base for the
n-dimensional space where the axes are oriented toward the
directions of maximum variance (Fig. 7). Each eigenvalue

�i represents the variance associated with the direction in-
dicated by the corresponding eigenvector. The dimension is
reduced by selecting the first M ′ eigenvectors with greater
variance, that is, we selected the smallest number of vec-
tors for which the retained variance is greater, or equal to a
predefined threshold Trv:

r(M ′)�Trv, r(k) =
∑k

i=1 �i∑M
i=1 �i

.

The retained variance represents the percentage, not less
than 90% in our experiments, of the original information
preserved in the reduced space.

We call U = (u1, . . . , uM′) the base of the reduced space
thus computed. A new test face vector can be projected in
the reduced space as follows:

� = UT(� − �).

Similarly, with some loss of information, the projected
vector can be re-projected in the original space (Fig. 8):

��� + U�.
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Fig. 8. Some examples of compressed range images using the eigenfaces technique. Top: the original image; and left to right, top to bottom, the same
image compressed using 1, 5, 15 and 21 eigenvectors.

Fig. 9. Left: example of a non-face range image. Right: the same image compressed using the eigenface approach with 21 eigenvectors.

The amount of information lost is used as a measure of
“faceness” because it represents the distance of the im-
age from the face space. The idea behind this technique
is that a non-face image is not well represented using the
face space base as a decomposition base. An example of

this is shown in Fig. 9. The reconstruction error is the
distance between the original vector and the reconstructed
vector:

�(�) = ‖� − (� + U�)‖2.
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Table 2
The threshold Threshf used for PCA classification, showing the different
threshold values, the resulting false positives and false negatives, and the
total error (EER = equal error rate, OPT = optimal value)

Threshf (x105) False False Error
positives (%) negatives (%) sum (%)

1.1752 0 5.56 5.56
1.2149 0 4.44 4.44
1.2963 1.11 4.44 5.56
1.3148 1.11 3.33 4.44
1.4013 2.22 3.33 5.56
1.4752 2.22 2.22 4.44 (EER)
1.6909 2.22 1.11 3.33
2.0661 2.22 0 2.22 (OPT)
4.4262 3.33 0 3.33

Vectors with a high reconstruction error are classified as
non-faces; otherwise they are recognized as faces:

�(�)�Threshf .

The threshold Threshf must be determined experimentally;
in Table 2 we report the false positives and false negatives
obtained by varying the threshold. The equal error rate (EER)

Fig. 10. An example of the system in action. Top row: input polygonal mesh, projected range image and eyes and noses candidates. Second row: a candidate
face triangle and the associated range image that was classified as non-face. Third and fourth rows: the two face triangles correctly classified as faces.

is reached when the false positives and false negatives are
both 2.22%. The optimal overall error (OPT) obtained is
2.22%.

3. Results

We tested our system on 140 acquisitions of 55 subjects.
In 10 of these acquisitions two subjects were present at the
same time, while in 24 acquisitions some distracting, i.e.
non-face, objects were present. In 20 acquisitions, the sub-
jects were wearing hats, scarves and so on, or assumed a
non-neutral facial expression. All the acquisitions were ob-
tained using a Minolta Vivid 900 laser range scanner. Sub-
jects were positioned 3 m away from the device and the range
images resolution used was 640 × 480. Our method is rea-
sonably independent from image resolution: low resolution
images can also be used if the facial features (i.e. the eyes
and the nose) are clearly distinguishable.

Fig. 10 presents an example of a scene containing two
people. As can be seen, the localization of eyes and noses
has generated several false hits. Three face triangles have
been generated; and one of these is a non-face. The classifier
has rejected the registered range image associated with the
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Fig. 11. Some significant examples of detection successes, showing the robustness of the system in the presence of marked occlusions, rotations, and
non-neutral facial expressions.

false face triangle and accepted the other two. Fig. 11 shows
some challenging examples when the method has correctly
classified: in two of them, the subject has a little statue near
his face; the system has not identified the statue’s face as
a candidate because the distances between its features are
smaller than those of humans, and do not satisfy the con-
straints described in Section 2.2. This is one of the advan-
tages in using real world 3D reference system and data. In

another acquisition the subject is showing his tongue with
the mouth open wide. The variation from a neutral expres-
sion in the 3D sense is very great, but the system shows the
robustness which comes from using only the rigid part of
the face for classification. In two other acquisitions, the sub-
jects have fingers, hands, or arms near the face, sometime
occluding part of it. In these cases, the facial feature detec-
tor has generated some false noses, but the filtering process
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Table 3
Experimental results

Number of acquisitions 140
Number of subjects 55
Total faces 150
Errors due to holes 23
Other errors 4
Total errors 27
Successes 82%
(calculated on all images)
Successes 96.85%
(calculated only on images
without artifacts)

Fig. 12. An example of a hole in the eyebrows region. The projected range image contains points of null information that the classifier is not able to handle.

Fig. 13. Two examples of the overlapping face triangle problem. As can be seen, in each case a small candidate eye is generated near the true eyes; as
a consequence more than one candidate face is generated for the same real face.

described in Section 2.2 has prevented the generation of any
face triangles. In some acquisitions the subjects are wearing
hats and scarves, occluding the mouth and forehead; again,
the choice of using only the rigid part of the face has allowed
the system to do its work correctly. Finally, in some cases
the subjects are not in an upright position, but as our facial
feature detector is rotation-invariant, and the face vs. non-
face classifier is applied after face registration, this did not
present a problem.

The experimental results are summarized in Table 3. Most
of the failures were caused by holes introduced by the scan-
ner (Fig. 12 shows an example). These holes correspond to
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points of null information within range images, which the
classifier has not been able to deal within its present version.
These holes were usually located on the eyebrows or simi-
lar regions because laser technology has some difficulty in
capturing that type of surface. In two cases we encountered
the problem of overlapping face triangles: the segmentation
step produced small regions near the eyes with curvature
characteristics similar to those of the eyes. This generated
more than one face triangle which was then classified as a
face (see Fig. 13). The problem can be handled by intro-
ducing an overlapping check and selecting the face triangle
with the highest faceness. In only one case was a non-face
classified as a face, and in only one other case did a face go
undetected, because the nose region was not well segmented
by thresholding.

4. Conclusions and future work

We present an innovative approach to the problem of rec-
ognizing faces in frontal 3D acquisitions. The results are
quite satisfactory: only a small number of faces were missed
in a test set of 150 faces, and no false positives occurred.
Moreover, since our method is based only on geometrical
information, it has proved very reliable even in the presence
of variations in the lighting and pose of subjects. Invariance
with respect to facial expressions is achieved by consider-
ing only an almost rigid part of the face, a feature of the
method confirmed by tests on several examples of highly
emphasized expressions. Most failures are due to artifacts
introduced in acquisition. We plan to reduce the possibility
of such errors by adding a pre-processing module that will
reduce the noise in raw data and eliminate artifacts (e.g. re-
placing the holes in the model with an interpolated surface).
To further improve classification accuracy, we plan to ex-
tend the method integrating the geometrical features with
pictorial information as well. Finally, in order to provide a
better estimate of the performance of the method, we intend
to amplify the dataset used to date.
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