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Abstract This paper presents an innovative approach
for the detection of faces in three dimensional scenes.

The method is tolerant against partial occlusions pro-

duced by the presence of any kind of object. The detec-

tion algorithm uses invariant properties of the surfaces
to segment salient facial features, namely the eyes and

the nose. At least two facial features must be clearly

visible in order to perform face detection. Candidate

faces are then registered using an ICP (Iterative Corre-

spondent Point) based approach aimed to avoid those
samples which belong to the occluding objects. The

final face versus non-face discrimination is computed

by a Gappy PCA (GPCA) classifier which is able to

classify candidate faces using only those regions of the
surface which are considered to be non-occluded. The

algorithm has been tested using the UND database ob-

taining 100% of correct detection and only one false

alarm. The database has been then processed with an

artificial occlusions generator producing realistic acqui-
sitions that emulate unconstrained scenarios. A rate of

89.8% of correct detections shows that 3D data is par-

ticularly suited for handling occluding objects. The re-

sults have been also verified on a small test set contain-
ing real world occlusions obtaining 90.4% of correctly

detected faces. The proposed approach can be used to

improve the robustness of all those systems requiring a

face detection stage in non-controlled scenarios.
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1 Introduction

The real challenge in face detection and recognition

technologies is the ability to handle all those scenar-

ios where subjects are non-cooperative and the acqui-
sition phase is unconstrained. In the last few years a

great deal of effort has been spent to improve the per-

formances where cooperative subjects are acquired in

controlled conditions. However, in those scenarios other

biometrics, such as fingerprints, have already proved to
be well suited. The performances obtained using them

are good enough to implement effective commercial sys-

tems.

In all those cases where the application requires no

constraints during the acquisition phase, face is one of
the best candidates among biometrics. Face is a non-

touch biometrics; for this reason it is more accepted by

the final users. Face is also the natural way people use

to recognize each other. The fundamental problem in
recognizing people in unconstrained conditions is the

great variability of the visual aspect of the face intro-

duced by various sources. Given a single subject, the

appearance of the face image is disturbed by the light-

ing conditions, the head pose and orientation of the
subject, the facial expression, aging and, last but not

least, the image may be corrupted by the presence of

occluding objects. This great variability is the reason

that make face detection and recognition two of the
toughest problems in the fields of pattern recognition,

computer vision and biometrics.

Actually, commercial 3D scanners are not yet ready

to be employed in completely unconstrained scenarios.

Laser scanners, for example, require subjects to stand
still for few seconds in front of the device. Although, 3D

acquisition technology is rapidly converging to realtime

scanners (e.g. see [29]) and in the next years 3D cameras
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will be ready to be adopted for real unconstrained appli-

cations. The algorithm presented here can be adopted

in scenarios where nowadays instruments are applica-

ble and is ready to be employed on future acquisition

devices.

Many works in the face related literature focus on

the detection or recognition of faces even in presence

of some source of variability. For instance, lighting has

been approached using fisherfaces [1] or the relighting
technique [2]. Facial expressions, instead, are the main

focus of many works employing 3D data (see for exam-

ple [3, 4, 27]). Pose and orientation normalization are

considered an essential part and for this reason all de-

tection and recognition systems include dedicated algo-
rithms for this task.

One of the less studied problems seems to be the

presence of occluding objects. In unconstrained real-

world applications it is not an uncommon situation to

acquire subjects wearing glasses, scarves, hats etc.; or
subjects talking on the phone or having for some rea-

son, their hands between their face and the camera. In

all these kinds of situations most of the proposed algo-

rithms are not able to grant acceptable performances or
to produce any kind of response at all. Some approaches

(for example [5, 6]) propose the detection of partially

occluded faces in two dimensional images using Sup-

port Vector Machines (SVM ) or a cascade of classifiers

trained to detect subparts of the face. For recognition,
few approaches working on 2D data are able to recog-

nize people using only the visible parts of the face. For

example, Park et al. have proposed a method for remov-

ing glasses from a frontal image of the human face [7].
A more general solution is needed, however, when the

occlusions are unforeseen and the characteristics of the

occluding objects are unconstrained. The problem has

been addressed using local approaches which divide the

face into parts which are independently compared. The
final outcome is determined by a voting step. For an ex-

ample, see [8], [9], [10]. A different approach has been

investigated by Tarrés and Rama [11]. Instead of search-

ing for local non-occluded features, they try to elimi-
nate some features which may hinder recognition accu-

racy in the presence of occlusions or changes in expres-

sion. De Smet et al. [23] proposed a morphable models

based approach. The parameters of a 3D morphable

model are estimated in order to approximate the ap-
pearance of a face in a 2D image. Simultaneously, a

visibility map is computed which segments the image

into visible and occluded regions. Gross et al. [28] pro-

posed the use of an occlusion tolerant Active Appear-
ance Models (AAM) for 2D face tracking. Alyüz et al.

developed a system invariant from expressions and oc-

clusions [31]. Their approach is based on Average Re-

gional Models (ARMs) i.e. matching subparts of the

face via ICP. Since their focus is on recognition, de-

tection and coarse alignement is based on manually se-

lected landmarks.

In this paper we try to address the occlusion prob-
lem for face detection in three dimensional images. De-

tecting faces in depth images is not a common task.

One of the first algorithms has been proposed by the

authors of this paper [12]. The known advantages in
using 3D data for detection are the independency from

the lighting condition and scale (if the target faces have

human sizes). Here we will try to demonstrate a third

advantage of 3D data: having depth information avail-

able, it is easier to detect and isolate occluding objects;
this makes it possible to detect and recognize partially

occluded faces.

Intuitively, an occluding object in a 2D image is

something which has a different luminance/colour pat-
tern from a typical face image. This is also true for the

three-dimensional case if we consider the depth compo-

nent. But here we have another important advantage

because an occluding object is something between the

camera and the face. This additional information is en-
coded in the 3D data itself. For example, in a range

image a hat is far away from the facial surface. Con-

sidering the depth, this can be detected using simple

geometric tests.

Our approach is based on the general idea behind
the algorithm presented in [12], which was able to detect

the presence of multiple faces in a single image and was

also able to determine a normalized position for each

face. The main advantages of the algorithm were its
independence from scale, lighting condition and orien-

tation on the image plane. Although, the algoritm was

not able to detect faces in case of strong occlusion; i.e

occlusions wich cover a large portion of the face or one

of the most important features such as the eyes or the
nose. There were also problems in dealing with missing

data due to self occlusions or acquisition errors.

In this paper we propose a new algorithm which

mantain only the main structure of our previous one,
adding the capability to detect faces even in presence

of self occlusions, occlusions generated by any kind of

objects, and missing data. The algorithm is also able to

determine a rough mask indicating the regions covered

by the occluding objects and it is also able to give a
better estimation of the face pose and orientation. In-

variant properties of the surfaces are used to segment

salient facial features, namely the eyes and the nose. At

least two facial features must be clearly visible in order
to perform face detection (this excludes, for instance the

case of sunglasses). Candidate faces are then registered

using an ICP [16] based approach aimed to avoid those
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samples belonging to the occluding objects. The final

face versus non-face discrimination in computed by a

GPCA [13] classifier which is able to classify candidate

faces using only those regions of the surface which are

considered to be part of the face.

Pose and orientation normalization is a crucial step

in a face recognition system. In particular, misaligned

faces in 3D systems produce big performance degenera-

tion [14]. There are two kinds of approaches in the liter-
ature: normalization to a canonical position or face-to-

face registration. In the first case, a canonical position

is defined a-priori; then each face is rotated and trans-

lated in order to assume the desired position. Some-
times the final position is represented by a mean model

computed from a training set. In the second case, each

face reaches the matching phase in its original pose and

orientation. During matching, faces are registered one-

to-one against the faces composing the database known
subjects (e.g. [15]).

In our approach we have chosen to adopt the pre-

matching strategy for face normalization. The face de-

tector itself needs to compute surface registration in
order to give the final face/non-face classification re-

sponse. Moreover, it is in the authors opinion that pre-

matching strategies are less time consuming and can

easily implement more complex matching criteria dur-
ing recognition, since matching does not have to cope

with minimization processes which are typically involved

in global registration algorithms. Our normalization al-

gorithm uses global registration through ICP against a

mean face model computed from the training set. Since
we have to deal with the presence of occluding objects,

the registration process has been customized in order to

reject all those points which apparently do not belong

to the facial surface.

Since no occluded 3D face database is publicly avail-

able, we built an artificial occlusion generator for our

experiments. The generator is able to combine a set of

occluding objects and an existing database. The out-

put is an artificially occluded database presenting one
occluding object for each face. We captured a set of

scanned real world objects for building the dataset used

in our experiments. The resulting occluded acquisitions

have a realistic visual aspect and are quite undistin-
guishable from real occluded acquisitions.

The paper is organized as follows. Section 2 de-

scribes the detection algorithm in details. Section 3 de-

scribes the artificial occlusion generator and the database
used for training and testing.Finally, Section 4 presents

experimental results while Section 5 summarizes con-

clusions and future work.

Fig. 1 The face detection algorithm: main diagram.

2 Detection algorithm

The face detection algorithm is based on the approach

presented in [12]. The input of the algorithm is a single

range image of the scene. If other representations are
available, a range image can be generated using simple

and well known rendering techniques, such as variants

of the Z-Buffer algorithm. Figure 1 shows a diagram

representing the main steps of the algorithm. The idea

consists in generating hypothesis about the presence of
faces. These hypothesis are generated starting from the

position of potential facial features, namely the eyes and

the nose. These regions are, among other facial features,

the most stable and they can be well isolated using cur-
vature analysis segmentation. For more details about

the procedure used for the extraction of candidate eyes

and nose regions see [12].
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Given the set of all candidate facial features, hy-

pothesis about the presence of faces are generated com-

bining eyes and noses in a coherent way. Once the set

of hypothesis is built, for each element of the set a reg-

istration followed by face vs. non-face discrimination is
performed.

In Figure 2 a more detailed description of the pro-

cessing steps is shown. The image is initially analyzed

exploiting curvature characteristics, namely the gaus-
sian and mean curvature. Candidate regions are gen-

erated through HK classification and curvature thresh-

olding (see [12]).

Combinations of candidate features are used to se-

lect the corresponding 3D surface region including the
eyes and the nose, but excluding the mouth and part

of the cheeks. Each region is then rotated and trans-

lated into a standard position using a rough followed

by a fine registration approach (rough+fine) based on
an occlusions-tolerant version of the ICP algorithm [16],

and a new depth image of the area containing the can-

didate facial features is computed. In order to select

only the rigid part of the face, the image is cropped

with a binary mask. Then, the image is analyzed in
order to find occluding objects: if present, occluding

objects are eliminated from the image invalidating the

corresponding pixels. Finally, a face vs non-face GPCA

based classifier, which has been trained on several ex-
amples, processes the candidate depth image. The final

output of the procedure is a list containing the location

and orientation of each detected face.

2.1 Candidate face generation

The generation of candidate facial features results in a

set composed by two kinds of features: eyes and noses.

A single candidate faces is generated combining two

eyes, or an eye and a nose, or two eyes and one nose.
This cases can handle occlusions in some parts of the

face; for example a hand on an eye or a scarf in front of

the tip of the nose. The regions generating a candidate

face must satisfy some constraints about distances be-
tween themselves ( [12]). Figure 3 shows an example of

a candidate face generation.

From an actual face multiple candidates could be

generated. Moreover, in the case of eye pairs or nose-

eye pairs, double candidate faces are generated because
of the ambiguities regarding the actual face orientation.

For example, from a pair of eyes, either an upward or a

downward face might be present. Multiple, spurious de-

tections are eliminated as a final step by a filtering pro-
cess (see Section 2.5). When a candidate is composed of

a nose and one eye, two hypothesis are generated. The

wrong hypothesis will be registered in a wrong way and

Fig. 3 An example of candidate face generation. The image on
top shows the selected candidate features (light gray for noses,
dark gray for eyes). Below, all the candidate faces generated by
the algorithm are shown. In the case of eye pairs and eye-nose
pairs, two candidate faces are generated for each pair because of
the impossibility of determining the actual face orientation.

then it will be discarded by the GPCA classifier. This

allows to determine if the eye is the left or the right

one.

2.2 Candidate face rough registration

Candidate faces are freely oriented in 3D space. In order
to obtain registered depth images ready for classifica-

tion a rough+fine normalization approach is adopted.

Rough registration is computed starting from the
reference points of the regions, which are the points of

maximum curvature within each region (mean curva-

ture for the nose, gaussian curvature for the eyes). The

normalized reference position is defined starting from

the three points case (left eye, right eye and nose) as-
sociated with each candidate face triangle. A reference

system is built as follows (Figure 4):

– the x axis is oriented from the right eye to the left

one;
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Fig. 2 The face detection algorithm: detailed diagram.

(a) (b)

Fig. 4 The reference face position used for rough normalization.
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– the z axis is oriented in the same direction as the

normal vector of the face triangle;

– the y axis is computed using the cross product be-

tween the other two axes;

– the origin of the axes is translated to the tip of the
nose;

– finally the system is rotated about the x axis by 45

degrees.

Using this reference system, a transformation matrix
S is built. The 3D model of the face is registered ap-

plying the transformation S on all the vertexes of the

model. Denoting the axes of the new reference system

as the vectors u,v,w with origin o, the matrix S can
be seen as the product of the rotation matrix R and the

translation matrix T :

S = R · T, (1)

R =









u 0

v 0
w 0

0 1









(2)

T =

[

I3 o

0 1

]

(3)

Using column vector notation, a vertex p is trans-

formed into a vertex p′ using:

p′ = Sp. (4)

When only two feature points are present, one de-
gree of freedom is left undetermined and only a partial

rough registration is computed. In application scenar-

ios where the variability around the missed degree of

freedom is small, this is not a problem because ICP is

able to converge. In general, these are the cases when
subjects are supposed to look approximatively toward

the camera. However, in case of less constrained sce-

narios, the initial guess for the ICP could be not good

enough and this could lead to registration errors. In
these cases, the local surface information can be used

to approximate the surface orientation. For example,

it is possible to compute a mean normal vector using

small regions around the detected points. This normal

can be used to determine an orientation for the final
degree of freedom. In our experiments, ICP produced

good results without using local surface properties.

In the case of two-eyes, rough registration is sim-

ply computed bringing only the eyes to the reference

position. Head pitch angle is left undetermined. The

reference system is computed in this way:

– the x axis is oriented from the right eye to the left

one;

Fig. 5 The mean face template used for fine registration. The
surface, composed of approximatively 600 vertexes, corresponds
to the mean surface of the training set.

– the z axis is oriented in the same direction as the

scene z axis.
– the y axis is computed using the cross product be-

tween the other two axes;

– the origin of the axis is translated so that the middle

point of the eyes corresponds to a reference point

computed from a training set of normalized faces.

Finally, in the case of eye-nose pairs, the reference
system is computed as follows:

– the origin of the axes is translated to the tip of the
nose;

– the axes are rotated so that the eye-nose vector is in

the same direction as the reference eye-nose vector

computed on a training set of normalized 3D faces.

In this case, the correct rotation about the eye-nose

vector is not determined.

2.3 Candidate face fine registration

Fine registration is accomplished using a variant of the

popular ICP (Iterative Closest or Correspondent Point)

algorithm [16] applied to the rough registered candidate
faces through a mean face template. Figure 5 shows

the template used for this scope. The algorithm has

been inspired by the analysis of ICP variants conducted

in [22].

The ICP algorithm requires a matching criteria in

order to find correspondences between the points of the

surfaces to be registered. In our implementation we used
a projective matcher [18]. Based on the assumption that

the rough registration computes a good registration (i.e.

with a low error) between the mean face and the can-

didate face surface, the projective matcher tries to find
correspondences using orthographic projections of each

vertex. More precisely, at each iteration of the main ICP

loop, the mean face template and the candidate face are
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orthographically projected using the same camera, re-

sulting in a pair of 3D images Id (data image) for the

mean face and Im (model image) for the candidate face.

For each point located at coordinates (i, j) in the data

image space, the correspondent point is searched in the
model image space in locations (i±r, j±r); where r ≥ 1

is an integer defining a square region around the cur-

rent location. The correspondence criterion is the point

at minimum 3D Euclidean distance. In our experiments
we adopted a mean face model composed of a grid of

51x51 vertexes. All the vertexes has been used in the

ICP matching phase.

In order to deal with the presence of occlusions,

ICP has been customized by including a correspon-

dence rejector which allows the registration process to

avoid the use of those points which probably belong
to the occluding objects. Given a correspondence c =

(pd,pm,nd,nm), where pd and pm are, respectively,

the 3D model and data points while nd and nm are

the surface normals to those points, the rejector veri-

fies that the following conditions are satisfied:

arccos(nd · nm) ≤ α, (5)

‖pd − pm‖
2

< Tdist. (6)

The first condition checks if the angle between the
two normals is inferior to a predefined threshold α. We

have chosen a value of 90 degrees; so the check filters

out all those matches that are clearly wrong because

the orientation of the surfaces is very dissimilar.

The second conditions assures that the distance be-

tween the two correspondent points must be below a
predefined threshold Tdist. The value of this threshold

has been computed considering the variations between

the normalized non-occluded faces from the training set

and the mean face template. In Figure 6 is presented the

histogram of the differences in depth computed at pixel
level. As can be seen, a distance greater than 15mm

is very improbable and thus we have chosen this value

for Tdist. In Figure 7 is presented the cumulative his-

togram of the difference in depth between occluding
objects and faces evaluated at pixel level. As can be

seen, approximatively 10% of the occluded pixels are

below the selected value of Tdist.

If at least one of the two conditions is not satisfied

then the correspondence is rejected. Only the filtered

correspondences are used to compute the registration.

In each ICP iteration, the transformation can be cal-
culated by different methods; we used the quaternion

method of Horn [25]. For more details and for an in-

depth description of the ICP algorithm see [16].

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

-20 -15 -10 -5  0  5  10  15  20

fr
eq

ue
nc

y

difference (mm)

Fig. 6 The histogram of the differences in depth between the
mean face template and the normalized faces from the training

set.
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Fig. 7 The cumulative histogram of the difference in depth be-
tween occluding objects and faces. The distances are computed
at pixel level. The dotted line shows the value of the threshold
Tdist used to discriminate occluded pixels.

2.4 Candidate face classification through GPCA

Once registration is computed for each candidate face,

depth images are generated using orthographic projec-

tions of the original acquisition. Only the depth infor-

mation is retained. The images are then cropped; i.e.
the borders of the candidate faces are invalidated using

a fixed shaped mask in order to reduce irregularities

and to make all the images equal in size and shape. At

this point, each image is compared with the mean face

in order to detect occluding objects. For each pixel (i, j)
the following condition is checked:

|I(i, j) − M(i, j)| ≤ Tdist, (7)

where I is the candidate face depth image while M is

the mean face depth image. Tdist is the same threshold

used in 6. If the check fails, the pixel is invalidated. In
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this way, large parts of occluding objects can be elimi-

nated. Those non-face pixels passing the check are as-

sured to be limited in depth by Tdist. Since large regions

of the image may be invalid, a check on the fraction of

valid pixels is performed:

nv

N
≥ Tv (8)

where N is the number of total pixels in the image and
Tv is the valid pixel threshold. Images with a low num-

ber of valid pixels are more difficult to classify because

of the lack of information. The check is also used to

avoid degenerative cases; i.e. images composed of only

a few pixels.
At this point, images present invalid regions of pix-

els due to occlusion detection or holes generated by ac-

quisition artifacts. In order to classify them, a GPCA

classifier has been adopted. The classifier is based on
Principal Component Analysis for gappy data [13].

GPCA extends PCA to data sets that are incom-

plete or gappy. When the intrinsic dimension is smaller

than that of its representation, some of the information

in the original representation is redundant and it may
be possible to fill in the missing information by exploit-

ing this redundancy. The procedure requires knowledge

of which parts of the data are available and which are

missing.
Gappy Principal Component Analysis addresses two

scenarios: the case where an incomplete pattern is re-

stored with an existing PCA basis, constructed from

complete data, and the case in where only incomplete

data is available. The second scenario is more challeng-
ing and is not considered here, since it is assumed that

at least a set of non-occluded faces is available (usually

those acquired for the training step).

Assuming the first scenario, a set of N patterns
{x1, · · · ,xN} ⊂ R

n is used to determine the PCA basis

in such a way that a generic pattern x can be approxi-

mated using a limited number, M , of eigenvectors:

x ≃ µ +

M
∑

i=1

αivi, (9)

where µ is the mean vector, vi is an eigenvector, and αi

is a coefficient obtained by the inner product between

x and vi.

Suppose there is an incomplete version y of x and
suppose that the location of missing components en-

coded in the vector m (mi = 0 is the i-component,

otherwise mi = 1) is missing. GPCA seeks for an ex-

pression similar to Equation 9 for the incomplete pat-

tern y:

y = y′ ≃ µ +

M
∑

i=1

βivi, (10)

note that y′ has no gaps since the eigenvectors are com-

plete. To compute the coefficients βi the square recon-

struction error E must be minimized:

E = ‖y − y′‖2. (11)

However, this expression includes the missing compo-

nents, while only the available information must be con-
sidered. To do so, it is useful to introduce the gappy in-

ner product (v,u)m and the corresponding gappy norm

‖v‖m =
√

(v,v)m:

(v,u)m =
n

∑

i=1

viuimi. (12)

Now the error E can be redefined in such a way that

only the available components are considered:

E = ‖y − y′‖2

m
. (13)

Rewriting E in terms of gappy inner products, and us-

ing the equation 10:

E = ‖y‖2

m
− 2

M
∑

i=1

βi(y,vi)m +

M
∑

i=1

M
∑

j=1

βiβj(vi,vj)m.

(14)

Differentianting E with respect to each βi yields a sys-

tem of M linear equations:

∂E

∂βi

= −(y,vi)m +

M
∑

j=1

βj(vi,vj)m = 0. (15)

By defining Aij = (vi,vj)m, for i, j = 1, · · ·M , and

zi = (y,vi)m, for i = 1, · · ·M , the system of linear
equations can be rewritten as:

Aβ = z. (16)

The gappy pattern y can be reconstructed as y′ us-

ing the expansion 10, where the coefficients β are found

by solving the system 16. Figure 8 shows an example of

a reconstructed gappy face image.
The classifier used for the face detector constructs

the vector m considering all the invalidated or holes

pixels. The error defined in equation 13 is used as mea-

sure of faceness (i.e. how much a test is similar to a
face). Thus, a candidate face is classified as a face if the

following condition is satisfied:

E

nv

≤ Tf . (17)

where nv is the number of valid pixels and Tf is a pre-

defined threshold. The error E needs some kind of nor-

malization because the number of valid components is

not fixed. Here the most simple normalization, the divi-
sion by the number of valid pixels nv, has been adopted

but other kinds of normalization approaches could be

experimented with as well.
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(a) (b)

(c)

Fig. 8 Example of a reconstruction of a gappy image: (a) the
original depth image; (b) the same image with a region of invali-
dated pixels; (c) the reconstruction of (b) through GPCA.

2.5 Multiple detection filtering

The patterns classified as faces are finally filtered in or-
der to eliminate multiple detections for the same face.

Multiple detections derive from the generation of multi-

ple candidate faces starting from the same candidate fa-

cial features, as already explained in previous sections.

As an example, in Figure 3 there are four correct can-
didates for the actual face. Moreover, sometimes false

candidate facial features generated from curvature anal-

ysis are located close to real facial features; this also

leads to the generation of unnecessary candidate faces.

Multiple detection filtering is performed using the

following criteria:

– if a subset of detected faces have at least one facial

feature in common, the face having minimum resid-
ual reconstruction error E is selected as the repre-

sentative while the others are invalidated;

– if two faces overlap, the face with minimum residual

reconstruction error E is selected as the representa-
tive while the other one is invalidated. The overlap-

ping check is approximated using bounding spheres

of radius d centered on the face tip of the nose. So, if

the bounding spheres of two detected faces overlap,

then the faces overlap.

3 Artificial Occlusion Generation

The first big problem in dealing with occlusions is how

to produce them in order to test algorithms. Acquiring

faces with real occlusions such as eyeglasses, scarves,

hats, hands, cellular phones etc. presents some disad-

vantages. First of all, face related algorithms must be

tested on a large number of subjects. For each subject, a

considerable number of acquisitions with different kinds

of occlusions in different positions is needed. Acquir-
ing such a big dataset requires a great effort. Second,

real occlusions do not allow accurate tests because the

ground truth cannot always be determined easily. For

example, feature points in occluded parts cannot be de-
termined. Accurate pose normalization cannot be com-

puted with precision. Moreover, the manual selection

of the occluding objects requires a great deal of work

because this must be done at the pixel level. Consider-

ing a dataset composed by hundreds or even thousands
of acquisitions, real occlusions results in an unpractical

solution.

In this paper the artificial occlusion generation solu-

tion has been adopted. It consists in taking an existing
database of non-occluded faces and adding occluding

3D objects in each acquisition. This is a low-cost and

effective solution because no effort is required to acquire

new images, and the ground truth can be determined

easily with automatic procedures.
Occluding objects are real world objects captured

at the IVL Laboratory at the University of Milano Bic-

occa. Figure 9 shows the entire set of objects, which

includes plausible objects such as a scarf, a hat, two
types of eyeglasses, a newspaper and hands in different

configurations. There is also an unusual object; i.e. a

pair of scissors. Its complex shape has been considered

a good test for the proposed detection algorithm. The

eyeglasses are composed only of the frame; no lenses
are considered. 3D acquisition devices usually introduce

some kind of artifacts in the area of the lenses. We have

not included lenses in our models because the artifacts

are not easily reproducible. To test the algorithm with
real glasses we have captured a small dataset of real

occlusions, as described in Section 4.

The set of occluding objects has a good variability in

shape and the set of target regions that will be possibly

occluded covers all the extent of the face. For these
reasons, we consider our choice a good test for detection

algorithms.

3.1 Occluded acquisition generation

Occluded acquisitions are generated inserting the ob-

jects in the acquisition space in plausible positions. This

means, for example, that the eyeglasses are placed in

the eyes region, the scarf in front of the mouth and
so on. So, for each type of object, a starting position

and orientation (To, Ro) is manually predefined consid-

ering the normalized mean face template as a reference.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 9 The objects acquired at the IVL laboratory and used as artificial occlusions:(a) hat, (b) scissors, (c) newspaper, (d,e) hands
with different gestures, (f,g) eyeglasses, (h) scarf, (i) hand with a teacup, (j) hand with a phone.

Then, for each acquisition i the following steps are ap-

plied:

– Given the feature points placed on the nose and

on the corners of the eyes (which are part of the

dataset ground truth), compute a rough registra-
tion (Tr, Rr) of the face, as described in more detail

in section 2.2.

– Compute the fine registration (Tf , Rf ) starting from

the rough registration (Tr, Rr) using the ICP algo-
rithm, as described in more detail in section 2.3.

– Choose a random occluding object o.

– Add a random noise (Nt(λot
), Nr(λor

)) to the ob-

ject starting position and orientation (To, Ro). Nt

and Nr are functions generating noise in ranges spec-
ified by the object o range vectors λot

and λor
.

– Compute the final position of the object in the orig-

inal acquisition space:

(T, R) = (Tf , Rf )−1 × (To + Nt(λot
), Ro + Nr(λor

)).

(18)

– Generate a range image using an orthographic pro-

jection of the acquisition i in its original position

and of the object o transformed by (T, R). Ortho-

graphic projection is computed using variants of the
Z-buffer algorithm [24].

In Figure 10 some examples of automatically oc-

cluded acquisitions are shown. As can be seen, the 3D

component of the acquisitions have a realistic aspect.

(a) (b) (c)

(d) (e) (f)

Fig. 10 Some examples of artificially occluded faces. (a,b,c) The
original UND acquisitions; (d,e,f) the occluded faces. Note that
automatic preprocessing is applied to the occluded faces, i.e.
smoothing and simple holes closure via linear interpolation.

In Figure 11 the histogram of the fraction of the face

(in percent) covered by artificial occlusions is reported.

4 Experimental results

The proposed method has been tested on the artificially

occluded UND database [17], a publicly available 3D
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Fig. 11 Histogram of the fraction of face (in percent) covered
by artificial occlusions.

face database from the University of Notre Dame. It is

composed of 951 multimodal 2D + 3D acquisitions from

275 subjects. The ground truth included in the database
distribution is composed of manually selected feature

points; in particular we used the corners of the eyes, the

tip of the nose and the pogonion. For the experiments

conducted in this paper we used all the 951 acquisitions

occluded using the technique explained in section 3.

For the training set we used the 100 neutral acqui-

sitions (i.e no expressions) from the BU3DFE database

[30]. The training set, once normalized, it has been used

to build the face space for the GPCA classifier and for
computing the mean face template. The normalization

procedure is the same rough+fine approach described in

Sections 2.2 and 2.3 using the manually selected feature

points given with the DB ground truth. For the GPCA

classifier we used only 16 eigenvectors, wich corresponds
to 90% of the retained variance. Table 1 summarizes the

thresholds values used during tests.

Table 1 Thresholds used in the experiments

Name Meaning Value

α maximum normal angle difference 90 degrees
between two correspondant points
during ICP

Tdist maximum distance between two 15mm
correspondant points during ICP
and occlusion detection

Tv fraction of valid pixels accepted by 50%
the GPCA classifier

Figure 13 shows the precision-recall curves for the

GPCA classifier at different values of the valid pixel
threshold Tv. The curves has been computed consider-

ing only the candidate faces produced by the hypothesis

generation phase of the algorithm. As can be seen, ac-

cepting larger occlusions (i.e. decreasing the threshold

Tv) the performances of the classifier decrease.

In order to understand the quality of the registration

process, we computed the registration error produced

by the ICP; Table 2 shows the results. The ground truth
has been computed in this way: we used the feature

points included in the UND DB distribution to com-

pute the rough registration. Then, ICP ha been applied

on non-occluded acquisition. The mean errors has been
computed measuring the angles between the ground

truth reference system axis and the axis of the com-

puted reference system. The distance between the refer-

ence systems origins is also reported. We also compared

the rough registration and the registration ground truth.
This gives an idea of the initial guess performed by

rough registration before ICP is computed.

Since the GPCA approach is based on reconstruc-

tion we evaluated the quality of the reconstructed pat-

terns in the case of the artificially occluded UND database.
In particularly, we computed the mean reconstruction

error for each face evaluated on the occluded pixels. We

obtained a mean error over all the faces of 2.59mm. As

a term of comparison, we computed on manually nor-
malized faces the average difference between two non-

occluded acquisitions. We obtained a mean difference

of 1mm.

In Table 3 are reported the results obtained choosing

a value for the classifier threshold Tf aimed to reduce
false positives and a value of Tv of 0.5 (i.e. at least half

of the face image must be non-occluded). In this case,

tests were also performed on the original non-occluded

test set. A fraction of 89.8% of the total number of oc-
cluded faces has been successfully detected, generating

135 false alarms. The results are satisfactory consid-

ering the toughness of the problem and the fact that

a large number of the acquisitions would be missed

by most of the conventional 3D systems. The detec-
tor performs very well on non-occluded faces, reaching

100% of detected faces and 18 false alarms. In order

to understand the impact of the occlusion type on de-

tection performances, we reported in Table 4 the de-
tection results for each object type. Errors are more

frequent with objects wich usually cover a large por-

tion of the face (i.e. newspaper, scarf and free hands).

Figure 14 presents some examples of successfully de-

tected faces. Figure 12 shows some examples of errors
produced by the algorithm. Both figures refer to the oc-

cluded dataset. Usually, false negatives are due to the

absence of the fundamental features needed to gener-

ate the candidate. False positives, instead, are usually
generated by the GPCA classifier when large portion

of the face is occluded. The first example in figure 12

is a frequent error in case of a scarf. The eyes are usu-
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ally detected and two candidates are generated; i.e one

candidate for the upright face and one candidate for

the downright face. Since the mouth region of the face

is occluded, sometime the GPCA classifier generate a

lower reconstruction error for the wrong candidate (the
downright one). In the second and third case, wrong

facial features are detected. The corresponding candi-

date range image is reconstructed by the GPCA with a

low error because large parts of the image is considered
occluded. For example, the reconstructed image (l) ap-

pears very similar to the input pattern (j). In the last

example, the reconstructed image (r) has an error very

close to the rejection threshold Tf .

In order to verify the results obtained with artificial
occlusions we have captured a small set of acquisitions

containing real occlusions (see Figure 15 for some ex-

amples). This test set (IVL test set) is composed of 102

acquisitions containing 104 faces (in two acquisitions
there were two subjects at the same time). We used

the same device adopted in the UND database, the Mi-

nolta Vivid 900 laser range scanner. The occlusions are

of the same kind as the artificial occlusions used with

the UND Database and we used the same parameters
as those selected in the previous experiments. As Table

3 shows, 90.4% of faces have been correctly detected

producing 16 false alarms. Figure 16 shows two exam-

ples of false alarms. These results are in line with those
obtained with the artificial dataset.

Since the eyeglasses case is very frequent in real-

world applications, we collected an additional test set

(IVL-EG) containing real occlusions. This test set is

composed by 50 acquisition of 50 different subjects wear-
ing eyeglasses. We obtained a detection accuracy of

100% and 6 false alarms. This shows the robustness

of the method against the artifacts introduced by the

laser scanner in the lenses regions.
To understand the advantages of the GPCA over a

typical PCA approach, we have substituted the GPCA

classification stage with a PCA classifier. In Table 5 we

reported comparative results obtained with the UND

database. As expected, in the non occluded case the
performance of the two classifier are similar. However,

in the occluded case the PCA classifier performances

drop down to 49.2% of correctly detected faces against

89.9% of the GPCA classifier. The presence of occluding
objects does not allow a correct reconstruction of the

face pattern using standard PCA techniques.

5 Conclusions and Future work

The presented algorithm is a first attempt to solve the

occluding objects problem in 3D face detection and

normalization. The algorithm is primarily aimed to be

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.4  0.5  0.6  0.7  0.8  0.9  1

P
re

ci
si

on

Recall

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Fig. 13 The GPCA classifier Precision-Recall curves varying the
value of the threshold Tv.

adopted in biometric recognition systems. The experi-

ments were conducted on an artificially occluded database
presenting very difficult cases were the objects occlude

fundamental facial features. These occluded parts are

often considered necessary by a great number of detec-

tion algorithms. Our approach is based on simple geo-
metrical considerations about the depth nature of the

problem. This clearly shows the advantage in adopting

3D data to deal with occlusions.

The detection and normalization solution presented

here has been developed as the first step of a complete

recognition system. Recognition algorithms may take
advantage of our solution adopting partial matching

strategies or using local features, like those described

in [26], for example.

We are considering to approach the problem of de-

tection in presence of emphasized facial expressions us-

ing similar strategies. Part of the face presenting large
differences from the neutral face may be detected and

GPCA could be used to neutralize facial expression.

We plan to extend the generator of artificial test

cases. For example it should be useful to add cluttered

backgrounds, to generate different head pose variations

and to add a simulator of eyeglasses artifacts. We are
also working on the acquisition of a larger dataset with

real occlusions that could be make available to the re-

search community.
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