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We introduce a method that enhances RGB color constancy accuracy by combining neural network and k-means
clustering techniques. Our approach stands out from previous works because we combine multispectral and color
information together to estimate illuminants. Furthermore, we investigate the combination of the illuminant esti-
mation in the RGB color and in the spectral domains, as a strategy to provide a refined estimation in the RGB color
domain. Our investigation can be divided into three main points: (1) identify the spatial resolution for sampling
the input image in terms of RGB color and spectral information that brings the highest performance; (2) deter-
mine whether it is more effective to predict the illuminant in the spectral or in the RGB color domain, and finally,
(3) assuming that the illuminant is in fact predicted in the spectral domain, investigate if it is better to have a loss
function defined in the RGB color or spectral domain. Experimental results are carried out on NUS: a standard
dataset of multispectral radiance images with an annotated spectral global illuminant. Among the several consid-
ered options, the best results are obtained with a model trained to predict the illuminant in the spectral domain
using an RGB color loss function. In terms of comparison with the state of the art, this solution improves the recov-
ery angular error metric by 66% compared to the best tested spectral method, and by 41% compared to the best
tested RGB method. ©2024Optica PublishingGroup

https://doi.org/10.1364/JOSAA.510159

1. INTRODUCTION

Color constancy is the human visual system’s ability to per-
ceive objects’ colors as relatively constant even when the color
of the illuminant changes [1]. Human color constancy is
achieved through a combination of mechanisms including
chromatic adaptation, color contrast, and spatial filtering [2].
Computational color constancy, on the other hand, refers to
the process of designing algorithms that enable digital cam-
eras to achieve color constancy, and it is typically addressed as
a two-step process, composed of illuminant estimation and
illuminant correction [3]. Computational color constancy, from
now on referred to as “color constancy” for brevity, is an active
area of research in computer vision and digital photography, and
many algorithms have been proposed to address this problem.
However, achieving human-like color constancy in machines
remains a challenging task.

Color constancy is formulated as an inverse problem that
aims at reversing the commonly accepted imaging model and
separating the reflectance of the object from the illumination:

Ik(x , y , λ)=
∫
ω

L(λ)R(x , y , λ)Sk(λ)dλ, (1)

where R(x , y , λ) is the surface reflectance, L(λ) the illu-
mination property, and Sk(λ) the sensor characteristics, as a
function of the wavelength λ, over the visible spectrum ω. The
subscript k represents the sensor’s response in the kth channel
and Ik(x , y , λ) is the image corresponding to the kth channel
(k = R,G, B). Color constancy algorithms must rely on addi-
tional assumptions, constraints, or information in order to select
a valid solution to estimate the illuminant given the input image
Ik . Low-level, statistics-based algorithms make explicit assump-
tions about the statistical properties of natural scenes, such as
the assumption that the color of the light source is typically
mostly achromatic. These algorithms estimate the color of the
illuminant as the deviation from these assumptions, and they
tend to rely on simple statistical operations on the image, such
as computing the mean of the color values in the image [4]. In
contrast, more recent and effective algorithms are learning based
and exploit models trained on handcrafted features extracted
from the input image, or deep learning models [5]. These meth-
ods make higher-level reasoning about the relationship between
image features and illuminant estimation and are expected to
rely on assumptions based on the distribution of the training
data [6,7]. They tend to be more complex and computationally
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intensive but can lead to more accurate and robust illuminant
estimation as they can effectively learn and model the complex
relationship between image features and illuminant estimation.

Nowadays smartphones may embed spectral sensors that
are able to capture the spectral average radiance of the scene.
A recent patent from Apple [8], for example, describes an elec-
tronic device that includes control circuitry that gathers ambient
light measurements using a color ambient light sensor. Sensor
responses are processed to generate a color rendering index
for the ambient light, which is used to correct the color of the
captured images via a color correction matrix. This leads to more
accurate and faithful color reproduction in the captured images.
Hybrid-resolution spectral imaging systems have also been pro-
posed [9–11], where a conventional high-resolution RGB color
camera is combined with a low-resolution spectral imaging
sensor, producing a high-resolution spectral image. Our work
focuses on investigating how low-resolution spectral radiance
can be combined with high-resolution RGB color information
to produce a properly white-balanced RGB color image.

Unlike previous works that only consider either the RGB or
the spectral information, we combine them both to improve
the accuracy of illuminant estimation. Although presented as
an investigation, we have developed a method to carry out the
work at hand. Our approach involves a neural network that
combines spectral and color information through convolutional
and feedforward layers. In addition, we have implemented a
selection module that uses clustering techniques to extract the
best estimation from the one proposed by the network. In this
paper we show that, by incorporating both the RGB and spectral
domains, we are able to capture a more comprehensive set of
features related to the illuminant, which improves the accuracy
of the estimation. In particular, we conduct an investigation
divided into three points: (1) we want to identify which resolu-
tion of color and spectral information brings the higher benefit,
(2) we want to investigate whether it is more beneficial to predict
the illuminant in the spectral or color domain, and finally, (3) we
want to discover if it is better to provide the illuminant target in
the color or spectral domain, for the training phase.

The paper is structured as follows: Section 2 introduces the
related scientific literature, covering both illuminant estimation
in RGB images as well as illuminant/reflectance separation in
spectral images. Section 3 describes our proposed method for
illuminant estimation exploiting both RGB and spectral average
radiance. Section 4 presents the experimental setup and results.

2. RELATED WORKS

Through the years, several methods have been proposed for
illuminant estimation in the RGB domain. Statistical methods,
such as Grey World [4], White Patch [12], Shades of Grey [13],
and Gray Edge [14], use the statistical properties of the scene.
While these methods are simple and efficient, they often fail in
the presence of non-gray objects in the scene or non-uniform
illumination [14,15].

Forsyth [16], and later Gijsenij et al. [17], introduced gamut-
based methods for color constancy. These are based on the
assumption that in real-world images, for a given illuminant,
one observes only a limited number of colors. Consequently,
any variations in the colors of an image (i.e., colors that are

different from the colors that can be observed under a given
illuminant) are caused by a deviation in the color of the light
source. This limited set of colors that can occur under a given
illuminant is called the canonical gamut image. Gamut-based
methods have a sensitivity to the scene content similar to that of
methods based on lower-level statistics, combined with a non-
negligible computational complexity, especially when handling
large-resolution images.

More recently, deep-learning-based methods have been
proposed for illuminant estimation. Bianco et al. [6] proposed
a color constancy method using convolutional neural networks
(CNNs). They trained a CNN on a large dataset of images
with ground truth illuminant color information to estimate the
illuminant color from an input image. Hu et al. [7] proposed a
fully convolutional color constancy method called FC4. Their
method uses a fully convolutional neural network to estimate
the illuminant color spatial distribution of an input image that
is used to correct the input image for color constancy. More
recently, alternative approaches for convolution-free deep
learning have been applied to illuminant estimation as well: Li
et al. [18] proposed a transformer-based multiple illuminant
color constancy method called TransCC. The method uses a
transformer-based network to estimate the illuminant color
distributions of an input image under multiple illuminants.
The generative nature of the method is what enables the han-
dling of multiple illuminant sources, at the same time however
introducing potential artifacts in the output white-balanced
images.

These approaches, traditionally applied in RGB imaging, are
also at the basis of several works that treat spectral information.

Zheng et al. [19] proposed a method that models the sep-
aration of illuminant from reflectance as a low-rank matrix
factorization task, and developed a scalable algorithm that works
in the presence of model error and image noise. They demon-
strated that taking advantage of the greater color variety offered
by hyperspectral images can improve separation accuracy, and
relax the restrictive subspace illumination assumption in the
existing literature, thus providing supporting evidence for the
method proposed in this work.

Khan et al. [20,21] illustrate the potential benefits of using
multispectral imaging in computer vision applications, but also
acknowledging that multispectral imaging can still be sensitive
to changes in illumination. To address this problem, the authors
propose directly extending computational color constancy
algorithms to multispectral imaging, including edge-based
methods [14] as well as highlight-based methods [22]. In sub-
sequent works [23,24] they then developed a spectral adaptation
transform to bring the multispectral image data into a canonical
representation, effectively performing illuminant correction.

Su et al. [25] proposed a separation of the reflectance and
illumination components using a weight scheme, factorizing
the weighted specular-contaminated pixels to estimate the
illumination spectrum. Despite the demonstrated robustness
in both simulation and real experiments, it is computationally
expensive, since this approach requires a number of iterations
for the spectral illuminant estimation of a single image.

Robles-Kelly and Wei [26] proposed using a convolutional
neural network to estimate the illuminant in spectral images.
The network takes an input tensor constructed from an image
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patch at different scales, which allows it to predict the illuminant
per-pixel using locally supported multiscale information.

More recently, Kitanovski et al. [27] developed an imag-
ing pipeline for a spectral filter array camera to estimate scene
reflectances in the absence of knowledge about the scene
illuminant. The proposed approach involves estimating the
illuminant’s spectral power radiance, which is shown to stabilize
and marginally improve the estimation accuracy compared to
the method that estimates the illuminant in the RGB domain
only.

Li et al. [28] formulated the problem of multispectral illu-
mination estimation as a matrix factorization task, and used
the alternating direction method of multipliers optimization
algorithm to solve it, by unrolling it into a multi-stage network.

Unlike more traditional computational color constancy algo-
rithms that estimate illuminants from RGB images, Koskinen
et al. [29] propose to use the average color spectra of a scene.
They tested several regression functions (such as kernel ridge,
random forest, and multilayer perceptron) to map the spectral
pixel to the white point. They demonstrate that the method is
effective even with as few as 10–14 spectral channels.

3. METHOD

Our work poses itself with the purpose of providing a color
illuminant estimation method that combines RGB color and
spectral information. Assuming the availability of an RGB color
image and the spectral average distribution of its corresponding
radiance scene, the combination is performed by means of a
suitably designed neural network. According to our method, we
divide the input image into patches, and we train our designed
neural network having as input the RGB color image patch,
and its corresponding spectral average distribution. The size of
the patch may vary, and its tuning is discussed in Section 4.B.
The process for each single patch is visually depicted in Fig. 1,
where we illustrate in parallel the process of RGB color illumi-
nant estimation and spectral illuminant estimation. These two
options will be compared in Section 4.B. Given an input image,
the individual patch estimations are combined with a suitable
selection module, as described in Section 3.A.

The neural network architecture depicted in Fig. 2 is com-
posed of two branches. The first branch takes as input the RGB
color patch having size w× h × 3, and a suitably designed

convolutional neural network (CNN) extracts a feature vector
of size N, where N is the same as the spectral resolution. The
second branch takes as input an N-dimensional vector of the
spectral average distribution, and a feed-forward neural network
(FFNN) extracts a feature vector of the same size N. The two
vectors are then concatenated into a vector of size 2N, which
is fed to the final block of the neural network, which differs in
structure and in terms of the final output:

• an encoder for the case of RGB color illuminant esti-
mation produces as output a three-dimensional vector
corresponding to the RGB coordinates of the illuminant;

• a feed-forward neural network (FFNN) for the case of
spectral illuminant estimation produces an N-dimensional
vector corresponding to the spectrum of the illuminant.

The choice of the convolutional part of the network architec-
ture takes into consideration the scarce availability in the state
of the art of spectral datasets that provide illuminant targets of
spectral radiance images. Due to this circumstance, we opted
for a shallow convolutional neural network architecture with
a small number of trainable parameters. This implementation
choice is carried out additionally to the fact that the images are
divided into smaller patches, which already increases the num-
ber of input images, both for the training and testing phases.
More precisely, we selected the convolutional mean architecture
[30], which consists of two convolutional layers (the first being
3× 3× 3× 7 and the second one 3× 3× 7× 14, both of
them having stride and padding set to one) each followed by a
max pooling layer (2× 2) and the activation function, next the
weighted global average pooling layer, which in turn is com-
posed by the third convolutional layer (1× 1× 14× 3 with
stride set to one and padding set to zero) followed by a ReLu and
a per-channel global average pooling. While the per-channel
global average pooling layer returns the feature map averaged
by a channel, we only reduce by half the feature map dimension
with an average pooling layer and then we feed the resulting
feature map to a fully connected layer to return a vector equal in
size to the number of channels of the spectral input. The purpose
of using a 1× 1 block is to apply weights to each output feature
channel after Conv2 and obtain a three-channel output, in the
case of the convmean network, and a 31-channel output in
ours. We replaced ReLu layers with leaky ReLu [31], which has
proven to be capable of solving the “dead neuron” problem and

Fig. 1. RGB color and N-dimensional spectral images are divided into patches of Pw × Ph pixels. The RGB color patch and the spectral average
distribution are fed to the neural network. In (a) the network returns an RGB color illuminant estimation while in (b) it returns a spectral illuminant
estimation.
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Fig. 2. (a) Color architecture; (b) spectral architecture. The two architectures are identical except for the last block. The network gets in input a
color patch (of dimension h ×w× 3) and its spectral average distribution. The color patch is fed to the convolutional neural network, which returns
a 1× N feature map. In the same way, the spectral average distribution is fed to a feed forward neural network that elaborates it and returns a 1× N
feature map. The two feature maps get concatenated into a unique feature map. In (a) the resulting feature map gets fed to another feed forward neural
network that finally returns a 1× N spectral illuminant estimation. In (b), instead, the resulting future map gets fed to an encoder, which returns the
color illuminant estimation.

Fig. 3. Convolutional neural network block architecture contains two 3× 3 filter convolutional layers (Conv1/2), which are followed by a 2× 2
max pooling and a leaky ReLU. In the end, there is a final layer that is implemented as a 1× 1 convolutional layer (Conv3) with leaky ReLU, an aver-
age pooling layer that reduces the feature map dimension, and finally a fully connected layer (FC). In this diagram, P and S denote padding and stride,
respectively. The other four numbers shown in the Conv box represent “Filter Size 1× Filter Size 2× #Input Channel× #Output Channel” whose
product is the total number of filter parameters. The activation function is displayed assuming a patch size of 512.

is more effective than ReLu. Although leaky ReLu can return
negative values, we chose it because it facilitates gradient back-
propagation during the initial stages of training. As the training
progresses, the network learns to estimate positive outputs from
the provided ground truth data. The diagram of the CNN block
is shown in Fig. 3.

In Fig. 4 we show the FFNN structures identified in dark gray
in Fig. 2. This consists of three fully connected layers followed
by the leaky ReLu activation function. The first and second
layers of the first structure map the N-band spectral input (or

feature map) to 60 values, while the first and second layers of the
second structure map a 2N-band spectral vector to 60 values.
Finally, the last layer in both structures maps them back to N
values.

In Fig. 5 we show the encoder architecture that produces
the RGB illuminant estimation for an input patch. It consists
of three fully connected layers: the first one maps the N input
values to 15 values, the second one maps them to five, and the
final layer maps them to three, obtaining, therefore, a color

Fig. 4. Feed forward neural network block architecture consists of three hidden layers. The rectangles with round edges indicate the layers used; in
this specific case “FC” stands for fully connected layers, which are then followed by a leaky ReLu activation function.

Fig. 5. Encoder block architecture consists of three hidden layers. As for Fig. 4, the rectangles with round edges indicate the fully connected layers,
which are again followed by a leaky ReLu activation function.
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illuminant estimation. For the activation function, we select the
leaky ReLu, for the same reasons previously explained.

A. Selection Module

Our model provides several illuminant estimations corre-
sponding to the patches of a single input image. Assuming
that the illumination is uniform across the scene, we exploit
a further module in the inference phase with the purpose of
selecting the best color estimation among the several color
estimates corresponding to the analyzed patches. Although
the network’s illuminant estimations can be fused to solve the
multi-illuminant estimation problem, the main focus is on a
global illuminant. The intuition behind this module is that,
among the suggested estimations, some are to be considered
outliers, which we want to eliminate, leaving us with those
estimations that are supposedly closer to the actual illuminant
in the scene. In order to implement this intuition, we exploit a
k-means clustering [32] to assess a consensus among the estima-
tions. We carry out this process in the inference phase, after the
multispectral-RGB conversion step; therefore, the clustering is
computed in the RGB color domain. The number of clusters is
automatically determined by computing the silhouette coeffi-
cient [33]. The populousness of the clusters determines which
are to be considered outliers and which one is to be taken into
consideration to determine the most likely solution. We propose
two alternative selection strategies to determine such solution:
the cluster centroid, and the individual patch estimation that is
closest to the cluster centroid. These two strategies are compared
in Section 4.B.

4. EXPERIMENTS

This work focuses on the development of a neural network
able to estimate the RGB color of the illuminant of a scene by
combining spectral and RGB color information. To this end,
the image is divided into patches, and for each patch we used
the average radiance and the RGB data of the patch itself. In the
inference phase the patches’ color estimations are further pro-
cessed to produce a single illuminant estimation in the case of
using of our selection module.

In our experiments, not only do we want to investigate
whether the average spectral distribution of the scene can
improve the RGB illuminant estimation, but we also want to
investigate the influence of the input patch size. This section
also revolves around another turning point: whether predicting
the illuminant in the RGB color or spectral domain is more
valuable as input for RGB color correction. The second option,
which consists of predicting a spectral illuminant, brings up two
training strategies: (1) training the spectral prediction with the
spectral expected illuminant or (2) converting the prediction
to RGB color and then training it with the RGB color expected
illuminant (ground truth). To this end, a straightforward
solution for the multispectral-to-raw conversion consists of
integrating the multispectral illuminant estimation with the
camera sensitivity functions. This section will show and analyze
the results obtained from these three “implementation choices.”
From now on we will refer to them as:

1. RGB color architecture (CA);

2. spectral architecture trained on spectral (SATOS);
3. spectral architecture trained on RGB color (SATOC).

The performance of the model is evaluated through the recov-
ery angular error metric [34] defined as follows:

e rec(U , V )= arccos

(
U · V
|U ||V |

)
, (2)

where “·” indicates the dot product, |x | is the euclidean norm, U
denotes the RGB illuminant target, and V is the RGB estimated
illuminant.

A. Dataset

This work requires a dataset that contains both spectral and
RGB color images in full resolution and the corresponding
target illuminant in both representations. Although multiple
datasets in the state of the art provide both spectral images
and the ground truth illuminant, we limit our experiments
to the NUS dataset since it is the only one that acquires
images in real-world scenarios. The NUS dataset [35] con-
tains 64 spectral radiance images, of which 24 are reserved for
testing and 42 for training. The images have dimensions of
1312×W × 31 pixels, where W varies from 951 to 2374. For
each spectral image, a total of 31 bands were captured at 400–
700 nm, with a spacing of 10 nm. The scenes’ subjects include
outdoor and indoor images and natural and man-made objects.
For illumination sources, the dataset varies from natural sun-
light and shade conditions, additionally considering artificial
wide-band lights obtained from metal halide lamps of different
color temperatures (2500 K, 3000 K, 3500 K, 4300 K, 6500 K)
and a commercial off-the-shelf LED E400. Furthermore, the
dataset is provided with the spectral radiance of the scenes and
the camera sensitivity function, which allows for spectral to
color conversion. The target illuminant is retrieved from color-
checker targets present in the spectral radiance images. The
dataset is provided under the assumption that the illuminant is
global over the entire scene.

According to our method, the input RGB and spectral images
are divided into patches. Given the unequal width dimen-
sions of the dataset elements, to prove the effectiveness of our
approach we decided to limit our analysis to a 512× 512 central
crop of the image. These images are further divided into patches
of sizes: 4× 4, 8× 8, 16× 16, 32× 32, 64× 64, 128× 128,
256× 256, and finally 512× 512. The RGB color patches and
the corresponding average spectral radiance are used to train our
model, as shown in Fig. 2. The performances for the different
patch sizes are discussed in the next sections.

B. Experimental Results

The investigation hereby conducted mainly focuses on the
resolution of color and spectral information, and which combi-
nation of these two domains best benefits the color illuminant
estimation problem.

1. Patch Illuminant Estimation

Given the 24 test images, we will assess the network’s capabil-
ity to accurately estimate the illuminant of the single image
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Table 1. Performance of the Three Methods
Measured in Terms of Recovery Error

a

Method Patch Size Min Mean Median ple95 Max

CA 4 0.03 1.92 0.68 9.37 26.85
8 0.03 1.71 0.37 7.16 15.41

16 0.03 1.93 0.18 7.52 16.96
32 0.03 1.80 0.20 7.58 17.25
64 0.03 1.81 0.55 6.72 15.91
128 0.03 2.04 1.12 6.34 15.53
256 0.06 1.98 1.09 6.36 15.96
512 0.08 2.52 1.94 4.90 13.86

SATOS 4 0.03 2.34 0.32 9.44 39.72
8 0.03 2.10 0.47 8.24 29.14

16 0.03 2.29 0.21 12.16 17.26
32 0.03 1.93 0.22 9.17 15.50
64 0.03 1.97 0.31 10.20 15.52
128 0.03 1.84 1.06 7.65 15.02
256 0.03 2.30 1.65 6.81 16.74
512 0.76 2.90 1.79 6.92 12.31

SATOC 4 0.03 1.90 0.04 10.07 45.25
8 0.03 2.21 0.10 9.45 21.22

16 0.03 1.91 0.13 8.20 17.39
32 0.03 1.84 0.37 7.60 15.46
64 0.03 1.67 0.73 6.56 14.07
128 0.03 1.77 0.80 6.42 15.40
256 0.03 1.80 0.83 7.09 16.26
512 0.69 2.80 1.87 6.40 11.80

aThe recovery error is in degrees (the lower, the better). In bold we
highlighted the best results based on the method.

patches. The estimated illuminants are compared with the target
illuminants (i.e., the illuminant associated to the image), and
the resulting recovery angular errors across all patches from
all test images are synthesized in Table 1 with several statistics:
min, mean, median, percentile 95, and max. As explained in
Section 3, we proposed two different architectures (one that
estimates the illuminant in the RGB color domain, and one in
the spectral domain) and two training strategies (one provides
a color target illuminant, while the other provides a spectral
target illuminant). For the sake of simplicity, we sum up these
training strategies as (1) color architecture (trained on a color
target) (CA), (2) spectral architecture trained on a spectral target
(SATOS), and (3) spectral architecture trained on a color target
(SATOC).

As we can see in Table 1 the mean recovery error values go
from 1.67◦ to 2.9◦, respectively achieved by the SATOC on
patch size 64 and the SATOS for patch size 512. We can notice
from the metrics illustrated in Table 1, and even more evidently

in Fig. 6, that spectral and color resolution greatly impact the
performance of the methods. The patch of 512× 512, which
has the highest color resolution and the lowest spectral res-
olution, performs the worst. At the same time, though, the
best-achieving patch sizes are not the ones with the highest spec-
tral resolution (from 4× 4 to 16× 16), but the mid-size ones
(from 32× 32 to 128× 128). In Fig. 6 the continuous lines
represent the mean recovery angular error values for different
patch sizes. The colored areas indicate the 95% confidence
interval, which means that there is a 95% probability that the
estimation for a given patch size falls within that range. It was
expected that one of the methods would perform better than
the other two for each patch size. However, the average values
indicate that there is no clear winner between CA and SATOC,
while SATOS is the least effective option except for patch sizes
of 8× 8 and 128× 128. Method CA, instead, performs best
for patch sizes 8× 8 and 512× 512, while from patch sizes
64× 64 to 256× 256 the SATOC method performs the best;
the performance for the remaining patch sizes is very similar.
The confidence interval gets smaller as the patch size decreases;
however, it is important to highlight that the smaller patch sizes
have a very large number of estimations, making it easier for the
estimation to fall within a restricted interval.

The median values analysis confirms the results obtained
with the mean values. The patch size 512× 512 is the worst-
performing patch, while the best-performing patch size for
both CA and SATOS is 16× 16. For the SATOC method,
the best-performing patch size is 4× 4. It is also peculiar that
patch size 512× 512 is the best-performing patch size for the
max metric. However, we do not consider it to be statistically
relevant. As the 512× 512 patch size corresponds to the entire
image, it contains more information for estimation. Patch size 4
has the highest error rate, which means it is easier for the method
to receive an unhelpful patch for that particular estimation.
For example, the global illumination assumption might be
incorrect, and a patch with a different illuminant from the one
measured through the color checker may be used. Moreover, a
white patch may be more useful than a black patch.

To help the reader in understanding the results of patch illu-
minant estimation using the SATOC method, we have included
an example image in Fig. 7. This image is divided into patches of
varying sizes, and each patch is color-coded based on its recovery
angular error value. The figure also provides a visual representa-
tion of the selection module process.

2. Image Illuminant Estimation

According to the proposed method, we have several candidates
for illuminant correction in a given image, corresponding to the

Fig. 6. Accuracy of the CA, SATOS, and SATOC methods, in terms of mean recovery angular error in degrees (◦) varying the patch size with their
confidence interval. The lower the result, the better.
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Fig. 7. Visual demonstration of the SATOC illuminant estimation method for a given image. We have overlaid a heatmap on the image to indicate
the recovery angular value for each patch. The patches with lower errors appear bluish, while those with higher errors appear reddish. (a) Patch size 4,
(b) patch size 8, (c) patch size 16, (d) patch size 32, (e) patch size 64, (f ) patch size 128, (g) patch size 256, and (h) patch size 512.

image patches. For this reason, we provided the method of an
additional selection module, which has the purpose of identi-
fying a single illuminant estimation among the ones estimated
from the patches. As explained in Section 3.A we achieve this by
relying on a simple clustering technique.

In Table 2 the results of the proposed selection module are
shown, based on multiple criteria. First, we investigate whether
the centroid of the most populated cluster is the one closest to
the ground truth. The assumption behind the selection module
is that the majority of estimations proposed by the network are
close to the target illuminant. The clustering process serves as a
voting mechanism; therefore, the cluster containing the major-
ity of the estimations also supposedly contains the estimation
closest to the ground truth. Therefore, we included an accuracy
metric to investigate the veracity of this assumption: the metric
is defined as the number of selected centroids that actually con-
tain the estimation closest to the ground truth, normalized by
the number of images N and expressed as a percentage. We can
see from Table 2 that the selection cluster accuracy goes from
44% to 88%. Overall the assumption is verified in more than
60% of the cases.

We then evaluate the performance of the two different
proposed illuminant selections: centroid and estimation clos-
est to the centroid. As also shown in both Figs. 8 and 9, the
performances of the two selection strategies are almost identical.
From the graph, it is easy to see that the CA model overall has the
best performance, except for patch sizes 4, 8, and 32. The best
performance overall is achieved by the CA model for patch size
8 with a recovery error of 1.33◦. The graph also confirms that
the SATOS model is the worst-performing among the proposed
ones. Figure 9 shows the performance of the selection module

Table 2. Selection Module Performance
a

Method
Patch
Size

Selection
Cluster

Accuracy

Centroid
Recovery

Error
Closest to Centroid

Recovery Error

CA 256 64% 1.82 1.82
128 56% 1.98 2.00
64 76% 1.57 1.58
32 72% 1.53 1.52
16 64% 1.76 1.75
8 88% 1.33 1.33
4 80% 1.58 1.58

SATOC 256 76% 1.78 1.80
128 56% 1.83 1.83
64 68% 1.56 1.57
32 72% 1.75 1.74
16 80% 1.46 1.46
8 76% 1.90 1.90
4 80% 1.63 1.64

SATOS 256 44% 2.28 2.22
128 48% 1.78 1.76
64 60% 1.62 1.63
32 64% 1.89 1.89
16 64% 2.31 2.31
8 68% 1.86 1.86
4 64% 2.04 2.05

aThe selection cluster accuracy is expressed in percentage, where 100% is the
best result. Centroid recovery error and closest to centroid recovery error are
expressed in degrees; the lower, the better. In bold we highlight the best results
based on the selection method.

compared to the patch illuminant estimation average perform-
ance. The results show that the selection module improves the
average performance of the method for all the training strategies.
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Fig. 8. Comparison between the centroid and the estimation closest to the centroid performance. The comparison is performed in terms of recov-
ery error in degrees (◦); the lower, the better.

Fig. 9. Comparison of performance for the three models (CA, SATOS, and SATOC) with centroid selection, estimation closest to the centroid,
and performance before the estimate selection. The comparison is performed in terms of recovery error (in ◦; the lower, the better) based on the patch
size.

We present some visual examples of the testing images in
Fig. 10 after they have been color-corrected using the illuminant
estimations obtained with the selection module. The images are
accompanied by their respective recovery error values for better
interpretation. We also included the original images and their
corrected versions using the ground truth for visual compari-
son. The visual examples confirm the results presented in the
previous table. SATOS is the least-performing model among the
three, and the performance decreases as the patch size increases.

C. State of the Art Comparison

In this section, we aim to compare the performance of our
method with state-of-the-art methods. Our research examines
whether the combination of spectral and color information is
advantageous in solving the RGB illuminant estimation prob-
lem. To achieve this, we will compare our method with both
spectral-based and RGB-based methods. For spectral-based
methods, we have selected Robles-Kelly’s [26] and Khan’s [24]
methods, which have been extensively discussed in Section 2.
As the focus of this work is on spectral-based methods, we will

introduce RGB-based methods in this section, but they are
beyond the scope of this research.

We offer a range of AWB methods, which include both tra-
ditional solutions based on handcrafted features, and newer
data-driven approaches based on deep learning. All the meth-
ods we analyze are sensor-independent. If training is required,
we make use of official pre-trained models to ensure optimal
conditions.

Van de Weijer [14] proposed a framework in 2007 to gener-
alize multiple algorithms based on low-level image statistics. By
adjusting parameters, several known algorithms can be derived.
For this study, six different automatic white balance algorithms
were selected by varying the configurations of parameters
(Minkowski norm p and standard deviationσ ):

• Grey World (GW): p = 1, σ = 0;
• White Point (WP): p =∞, σ = 0;
• Shades of Grey (SoG): p = 4, σ = 0;
• General Grey World (GGW): p = 9, σ = 9;
• First Order Grey Edge (GE1): p = 1, σ = 6;
• Second Order Grey Edge (GE2): p = 1, σ = 1.
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(a) Acquired Image

CA

(b) 1.65

SATOC

(c) 1.32

SATOS

(d) 9.05

(e) 1.10 (f) 8.76 (g) 1.60

(h) 1.44 (i) 6.97 (j) 12.15

(k) 2.5 (l) 1.10 (m) 9.12

(n) Image corrected with ground truth

(o) 2.76 (p) 1.65 (q) 0.35

(r) 5.47 (s) 0.63 (t) 0.82

(u) 6.61 (v) 7.07 (w) 1.34

(x) 4.87 (y) 3.54 (z) 4.68

Fig. 10. Images on the right are obtained by applying the illuminant estimation for the color correction. We report the recovery error in degrees in
the caption below the images. The images are arranged in three columns, each representing a different model (CA, SATOC, SATOS), and eight rows,
each representing a different patch size ranging from 4 to 512.

Among the handcrafted methods we have selected the work
of Qian et al. [36]. This work proposed a learning-free method
called grayness index (GI), which can be used to identify neutral
surfaces in an image. They used the dichromatic reflection
model [37] to estimate single and multiple illuminants. We have
used the default parameters in our implementation, as suggested
by the authors.

We chose four data-driven methods for our comparison.
Afifi and Brown [38], instead, developed a learnable sensor-

independent pseudo-RAW space to map the RGB values of

any given camera, under the explicit assumption of input linear
RAW-RGB images. The method is called sensor-independent
illumination estimation (SIIE).

Akbarinia and Parraga [39] introduced adaptive surround
modulation (ASM), a method that models visual neurons using
two overlapping asymmetric Gaussian kernels and weighs their
contributions based on center-surround contrast. We used the
default parameters provided by the authors.

In their paper, Cheng et al. [40] proposed an auto white bal-
ance (AWB) algorithm that uses principal component analysis
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Table 3. Mean Recovery Angular Error on NUS
Dataset [35]

a

Method
Mean Recovery
Angular Error

% Improvement
Mean Recovery

Error

Our baseline (CA8) 1.33 \

Robles-Kelly et al. [26] 12.56 89%
Khan et al. [24] 3.96 66%
First Order Grey-Edge
(GE1) [14]

5.46 76%

Second Order Grey-Edge
(GE2) [14]

5.55 76%

General Grey World
(GGW) [14]

3.67 64%

Grey World (GW) [14] 3.81 65%
Shades of Grey (SoG) [14] 3.84 65%
White Point (WP) [14] 4.81 72%
Grayness index (GI) [36] 2.41 45%
PCA [40] 3.12 58%
Quasi-unsupervised (QU) [41] 2.25 41%
SIIE [38] 6.19 79%
Adaptive surround modulation
(ASM) [39]

3.69 64%

aThe mean recovery angular error is in degrees (the lower, the better). For our
method we selected the C A8, being the best-performing one. In bold the best
results.

(PCA). The method involves selecting a certain percentage of
dark and bright pixels for the calculation. The authors achieved
the best results with a percentage parameter of 3.5%, which we
have adopted as well.

Convolutional neural networks (CNNs) have proven to be
effective in various applications. In one instance, Bianco and
Cusano [41] created a CNN-based quasi-unsupervised color
constancy (QU) algorithm that identified achromatic pixels in
color images. The network was trained without explicit AWB
annotation. The only assumption made was that the images
were roughly balanced.

To make the comparison process easier, Table 3 is divided
into three sections. The first row displays the performance of
the best model presented in this work. We selected it by choos-
ing the model with the lowest mean recovery angular error
value. The second section presents the spectral-based methods,
and the third section shows the RGB-based methods. Our best-
performing solution (CA on image patches of size 8× 8 pixels)
was compared to the works of Khan and Robles-Kelly [24,26].
The results show that our method outperforms Khan’s and
Robles-Kelly’s work, respectively, by 66% and 89% for the
mean recovery angular error metric. The comparison with the
RGB-based methods shows that our method still performs
better than the selected methods; more precisely, our method
improves the performance for the RGB illuminant estimation
problem from 41% for the quasi-unsupervised method to 79%
for the SIIE method.

1. Considerations andObservations

Our work shows that the patch size that leads to the best per-
formance is patch size 8× 8, and overall, the mid-size patches
are the most suited for the problem, indicating that the problem

benefits the most from mid-resolution both for color and spec-
tral information. The network that provides estimations in the
spectral domain and receives the target in the spectral domain
(SATOS) is the worst-performing one. However, no precise
pattern was identified in the results, namely, no method seems
to perform clearly better for each patch size. Figure 8 and Table 2
show that the CA approach shows a tendency to perform better
with smaller patch sizes (4, 8, 32, except for 16) and SATOC
shows a tendency to perform better for the larger patch sizes
(64, 128, 256, except for 16). We also proved that the selection
module performs better than the average of the result, meaning
that it can extract an illuminant estimation closer to the target
illuminant most of the time. We also show that the potential
for improvement is very large; in fact, the error of the models
with patch size 4× 4 is close to zero. This result also proves how
spectral information may be beneficial for the color illuminant
estimation problem.

5. CONCLUSION

Spectral sensors are becoming every day cheaper and more
available on the market, so much so that they are making their
first appearances in digital imaging acquisition tools. This work
poses itself as an investigation option to verify if the combina-
tion of spectral and RGB color information can improve the
result for the RGB color constancy problem.

Our investigation has been performed on the standard NUS
dataset. The best results, as identified in this experimental setup,
are obtained with a model trained to predict the illuminant in
the spectral domain using an RGB color loss function. During
the investigation, we focused on three main points. Firstly, our
observation was that processing data in the form of mid-size
image patches generally yields better results compared to using
the whole image or smaller patches. However, the investigation
results for the second point were not conclusive as both CA and
SATOC models performed similarly well. Lastly, we found that
estimating and training in the multispectral domain are not
effective for estimating RGB illuminants.

We further evaluated our method against other solutions
from the state of the art. To ensure a fair comparison, we selected
methods that were trained and optimized on the same exper-
imental setup, as well as sensor-independent methods. Our
method demonstrated superior performance within this exper-
imental setup, in terms of RGB illuminant estimation. These
results should be further confirmed by future experiments,
extending the investigation to a larger properly annotated
dataset. Nonetheless, our experiments show in practice the
potential of combining spectral and RGB color information to
improve RGB illuminant estimation.

Future developments may focus on neural network architec-
tures that not only provide an illuminant estimation but also a
level of confidence, as well as spatially varying multi-illuminant
estimation.
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