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Multispectral imaging is a technique that captures data across several bands of the light spectrum, and it can be
useful in many computer vision fields, including color constancy. We propose a method that exploits multispec-
tral imaging for illuminant estimation, and then applies illuminant correction in the raw RGB domain to achieve
computational color constancy. Our proposed method is composed of two steps: first, a selected number of exist-
ing camera-independent algorithms for illuminant estimation, originally designed for RGB data, are applied
in generalized form to work with multispectral data. We demonstrate that the sole multispectral extension of
such algorithms is not sufficient to achieve color constancy, and thus we introduce a second step, in which we
re-elaborate the multispectral estimations before conversion into raw RGB with the use of the camera response
function. Our results on the NUS dataset show that an improvement of 60% in the color constancy performance,
measured in terms of reproduction angular error, can be obtained according to our method when compared to the
traditional raw RGB pipeline. ©2024Optica PublishingGroup

https://doi.org/10.1364/JOSAA.506186

1. INTRODUCTION

The human eye has the ability to partially discount for the
change in the illumination of a scene, allowing for a coherent
perception of color in different lighting conditions: this ability
is often referred to as human color constancy [1]. Transferring
the same ability to digital camera sensors is often referred to as
computational color constancy: this problem has been vastly
explored in the raw RGB domain with a variety of approaches
[2]; however, a discrepancy between human and computa-
tional color constancy still persists [3,4]. Computational color
constancy is commonly addressed as a two-stage operation:
the former is specialized in estimating the color of the scene
illuminant, and the latter corrects the image on the basis of
this estimate to generate a new rendering of the scene as if it
was taken under a reference illuminant [5]. A large portion
of the scientific literature on computational color constancy
applies to raw RGB image data [6–10], producing as output
RGB illuminant estimations to be typically applied with a von
Kries-like transform [11] in the form of a diagonal 3× 3 matrix
in the device’s raw acquisition space. In this work, we address
the problem of RGB color constancy by exploiting richer mul-
tispectral input image data, motivated by the ever-increasing
availability of multispectral imaging devices [12–23], which
are applied in a variety of computer vision, remote sensing, and
medical imaging applications [24,25]. Multispectral recon-
struction methods [26,27] are also gaining traction by the
scientific community, further incentivizing working in this
domain. However, spectral reconstruction is not yet considered

to be a mature field, with several open issues [28,29]. In order
to investigate the practical utility of multispectral information,
we develop our research under the assumption of data that
either come from a multispectral acquisition device, or from
a hypothetical perfect multispectral reconstruction method.
Khan et al . [30,31] demonstrated the advantages of estimating
and processing illuminants in the multispectral domain. Taking
this work as inspiration and as a starting point, our final color
correction takes place in the RGB domain instead, since this is
the underlying color model of many viewing devices for end-
user consumption, and the von Kries-like transform is among
the most basic and widely supported correction models in color
imaging pipelines and in color management systems [32,33].

Color constancy is formulated as an ill-posed problem: in
its most common RGB configuration, it requires to decom-
pose each input RGB image pixel into the contribution of an
RGB illuminant and an RGB of the surface. There is no unique
solution to a problem formulated in this way (unless additional
constraints are put in place), since different combinations of
illuminant and surface would lead to the same observed RGB
triplet. The same ambiguity holds true in the case of multispec-
tral data, where illuminant and reflectance must be separated
from the observed radiance. In this case, however, the higher
cardinality of the input data (N channels, with N� 3) reduces
the number of possible combinations of illuminant and surface
that would lead to the same radiance, if one assumes a limited
set of plausible illuminant sources. Although such a limit is not
explicitly formulated in our work, it may be implicitly modeled
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Fig. 1. Pipeline used to retrieve the multispectral estimations
and their re-elaborated version starting from the multispectral data
provided by the dataset.

by data-driven re-elaboration strategies, which exploit biases
from the observed training set. Our work is consequently posed
as an investigation to verify whether multispectral information
is useful to improve traditional RGB color constancy methods.
To this end, we investigate how to extend a selected number of
sensor-independent color constancy methods from the RGB
domain to an N-dimensional multispectral domain. Showing
that this extension is not sufficient to achieve computational
color constancy, we then convert the resulting multispectral
estimations to the RGB domain: under the assumption that
re-elaborating the multispectral illuminant estimation may
improve the raw RGB converted result, we investigate several re-
elaboration methods. The proposed method for color constancy
using multispectral pixel information reaches an improvement
of 60% in mean reproduction error on the NUS dataset by
Nguyen et al . [12], when compared to the corresponding RGB
methods. In Fig. 1 the pipeline for the extraction and the re-
elaboration of the multispectral and raw RGB estimations is
shown.

2. RELATED WORKS

Computational color constancy is a deeply explored field. A
large section of the scientific literature approaches the prob-
lem in the RGB domain, for which we present here a synthetic
general overview. Given our focus on the use of multispectral
information, we then specifically address works that connect
spectral imaging (including multispectral and hyperspectral)
with illuminant estimation.

A. RGB Illuminant Estimation

Over the decades numerous methods [6–10] have been pro-
posed for RGB illuminant estimation; however, no unique
solution has been identified. Due to the ill-posed nature of
the problem, in fact, color constancy requires the formu-
lation of specific assumptions on the imaged content or the
reliance on data-driven biases. To this extent, different methods
adopt different strategies. Color constancy methods can be
mainly classified into statistical and machine learning methods.
Statistical methods [6,8] estimate the illuminant of the image by
making assumptions about the color features of the image itself.
For example, the max-RGB algorithm assumes the presence of a
white surface object in the scene [34]. These methods have fast
execution times; however, the resulting performance is heavily
dependent from the underlying assumptions. Machine learning
algorithms [7,9,10], instead, establish the relationship between
the image color distribution and the illuminant through a
supervised learning process, meaning they do not need to rely

on statistical assumptions and therefore they are more adaptive.
However, one of the shortcomings of supervised algorithms
is that they are highly dependent on the dataset used to train
them [2]. Potentially, they may need to be re-trained on different
datasets to overcome data-related bias.

B. Spectral Illuminant Estimation

The use of spectral imaging techniques increased in the last years
and their involvement has proven to be beneficial for several
fields related to computer vision. Spectral imaging can be cat-
egorized in multispectral and hyperspectral imaging. The main
difference resides in the spectral resolution; in fact, multispec-
tral imaging captures a small and limited number of spectral
bands, while hyperspectral imaging collects the complete and
continuous spectrum.

Lenz et al . [35] investigated the tasks of illuminant estimation
and color correction with the aid of multispectral representa-
tion. Specifically, they approximate the spectral description of
the scene pixels with a linear combination of bases from a dataset
of known spectra. They then characterize the image through
the mode of such combination coefficients, which is assumed to
represent the global illuminant change.

Li et al . [36] proposed an end-to-end unrolling network
architecture to estimate both single and multiple illuminants in
the input image, casting the problem as a constrained matrix fac-
torization. They also constructed a large spectral image dataset
for training and evaluation. Zheng et al . [37] modeled the
illumination and reflectance spectra separation problem into a
low-rank matrix factorization and proved that the illumination–
reflectance separation is unique up to an unknown scale under
the assumption that reflectance can be approximated with a
low-dimensional model. Su et al . [38] proposed a general frame-
work to estimate the spectrum of the illumination from specular
information in a single hyperspectral image. By utilizing a
specular independent subspace they separated the reflectance
components and shaped a weighting scheme in order to find
specular-contaminated pixels so that the illumination can be
directly estimated by factorizing them. Robles-Kelly and Wei
[39] presented a convolutional neural network to recover pixel-
wise illuminant in multispectral images. The network takes in
input a tensor that is constructed by making use of an image
patch at different scales in order to allow the network to predict
the pixel-wise illuminant using locally supported multiscale
information. The relationship between illuminant estimation
and multispectral imaging was also explored in a recent paper by
Kitanovski et al . [40], within the context of reflectance estima-
tion for a spectral filter array camera. The authors investigated
the estimation of spectral illuminant from sensor-space illumi-
nant, obtained via measurement or illuminant estimation, as
support for the subsequent reflectance estimation. Khan et al .
[30] investigated the use of illuminant estimation algorithms for
multispectral imaging systems to overcome the difficulty in the
calibration of multispectral devices. They extended the illumi-
nant estimation algorithms from three channels to N channels.
In a subsequent work [31] they then developed a spectral adap-
tation transform to bring the multispectral image data into a
canonical representation. Inspired by the works of Khan et al .
[30,31], we investigate whether multispectral information may
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improve the raw RGB color constancy problem. Specifically, we
analyze the impact that the multispectral estimation on different
wavelengths has on the application to the raw RGB domain. We
show that not all the information contained in the multispectral
estimations is beneficial for the conversion to the raw RGB
domain; therefore we design and evaluate several re-elaboration
methods to better fit the correct illuminant.

3. PROPOSED METHOD FOR
MULTISPECTRAL-BASED RGB ILLUMINANT
ESTIMATION

In this section, we describe our method to exploit multispectral
information for raw RGB illuminant estimation. To do so we
extend a set of camera-independent color constancy algorithms,
originally devised for the raw RGB domain, to the multispec-
tral domain. This has been done consistently with what was
proposed by Khan et al [30]. Multispectral estimation of the
illumination should be then mapped into raw RGB for per-
forming color correction. To this end, a straightforward solution
for the multispectral-to-raw conversion consists of exploiting
the camera sensitivity function to the multispectral illuminant
estimation.

Alternatively, we may assume that an unequal contribution
of the estimated multispectral illuminant bands may benefit
the eventual raw RGB estimation. This process, which from
now on we will refer to as “multispectral illuminant estimations
re-elaboration” is discussed mainly in Section 3.B. The concept
that is shared among the multispectral illuminant estimations
re-elaboration methods is that there exists a mapping (e.g., in
the form of weights or biases) that, applied to the multispec-
tral estimation, reduces the distance between the converted
multispectral-based raw RGB estimation and the expected raw
RGB illuminant.

A. Multispectral Illuminant Estimation Algorithms

In this work, we consider six algorithms belonging to the edge-
based color constancy framework (EB), introduced in 2007 by
van de Weijer et al . [6] as a generalization of multiple algorithms
based on low-level image statistics. The general equation for
estimation of the illuminant, according to this framework, is(∫ ∣∣∣∣∂n f σ(x )

∂x n

∣∣∣∣p

dx
) 1

p

= ke n,p,σ . (1)

This operation is executed on the separate RGB channels:

(∫ ∣∣∣ ∂n f σ(x )
∂xn

∣∣∣p
dx
) 1

p
=

((∫ ∣∣∣ ∂n Rσ(x )
∂xn

∣∣∣p
dx
) 1

p
,

×

(∫ ∣∣∣ ∂n Gσ(x )
∂xn

∣∣∣p
dx
) 1

p
,

×

(∫ ∣∣∣ ∂n Bσ (x )
∂xn

∣∣∣p
dx
) 1

p

)
.

(2)

This framework generates different estimations for the
illuminant color, based on three variables.

• n identifies the spatial derivatives order, which is typically
set between zero (no derivative, as in the case of the gray world
algorithm) and two (for second order derivative).

• p is the Minkowski norm, which determines the relative
weights of the multiple measurements from which the final
illuminant color is estimated. For example, with p = 1, the illu-
minant is derived by an averaging operation over the derivatives
of the channels. For p =∞, the illuminant is computed from
the maximum of the derivatives in the scene.

• σ denotes the scale of the local measurements, specifying
the intensity of the smoothing operation via Gaussian filtering.

The three parameters of these methods (the spatial derivatives
order n, the Minkowski norm p , and standard deviationσ ) have
been set as proposed in [41]:

• gray world (GW): n = 0, p = 1,σ = 0;
• white point (WP): n = 0, p =∞,σ = 0;
• shades of gray (SoG): n = 0, p = 4,σ = 0;
• general gray world (GGW): n = 0, p = 9,σ = 9;
• first order gray edge (GE1): n = 1, p = 1,σ = 6;
• second order gray edge (GE2): n = 2, p = 1,σ = 1.

We extend the RGB color constancy algorithms described in
Eq. (2) to operate on an arbitrary number of dimensions N, so
that they can be applied to multispectral images, producing a
multispectral illuminant estimation. In the following, we refer
to these algorithms as the spectral counterpart of EB algorithms
(e.g., gray world becomes spectral gray world).

B. Multispectral and RGB Illuminant Estimations
Re-elaboration

Anticipating the experimental results, we note that the sole
multispectral extension of raw RGB illuminant estimation
algorithms is not sufficient to achieve color constancy. We
hypothesize that the multispectral-to-raw conversion may
improve the raw RGB estimation by adopting an unequal
contribution from the N multispectral bands. Our approach
consists of learning an N-channel modifier to apply to the mul-
tispectral illuminant estimation, before converting it through
the camera sensitivity function. To verify that the improvement
derived from the re-elaboration of the multispectral estima-
tion is due to the multispectral information and not to the
re-elaboration method itself, we also apply the re-elaboration
methods to the raw RGB estimations. For a clearer understand-
ing of the process steps, we show the baseline of re-elaboration
on raw RGB illuminant estimation in Fig. 2.

1. AverageMultiplicativeWeight

Let IERAW ∈R3 be the illuminant estimation in raw RGB
for a single image, and IEMS ∈RN be the illuminant

Fig. 2. Pipeline used to retrieve the raw RGB estimations and their
re-elaborated version starting from the multispectral data provided by
the dataset.
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estimation in the multispectral domain. Let GT{RAW,MS} be
the corresponding ground truth information.

We express the relationship between estimated illumi-
nant (IE) and ground truth illuminant (GT) by means of a
multiplicative weight (W):

IEMS ∗WMS =GTMS,

IERAW ∗WRAW =GTRAW.
(3)

From this relationship, given an image we can define the W fac-
tor by dividing the ground truth by the illuminant estimation:

WMS =
GTMS
IEMS

,

WRAW =
GTRAW
IERAW

.
(4)

Given a training set having cardinality C , we obtain C × N
multispectral weights and C × 3 raw RGB weights, and we
subsequently average them along the cardinality dimension.
We replicate this process for each one of the six selected color
constancy algorithms, estimating in total 6× N multispectral
weights and 6× 3 raw RGB weights.

2. AverageAdditiveBias

The average additive bias method is based on a similar idea to
the one of the average multiplicative weight. In this case, instead
of a multiplicative weight, we model the re-elaboration through
an additive bias (B). The relationship between estimated and
ground truth illuminant is expressed as

IEMS + BMS =GTMS,

IERAW + BRAW =GTRAW.
(5)

We compute the bias B by simply subtracting the illuminant
estimation from the ground truth:

BRAW =GTRAW − IERAW,

BMS =GTMS − IEMS.
(6)

As for the previous approach, given a training set of cardinality
C , we average the C × N multispectral biases and the C × 3
raw RGB biases, and we replicate the process for each algorithm,
resulting again in 6× N multispectral biases and 6× 3 raw
RGB biases. We apply each bias to the testing set estimations of
the corresponding algorithm coherently with the relationship
expressed in Eq. (6).

3. Optimization-DrivenMultiplicativeWeight

The search of the weight W from Eq. (3) is here carried out
through a direct search method for multidimensional uncon-
strained minimization [42]. This is obtained by optimizing the
end result in terms of raw RGB recovery angular error, between

the expected RGB illuminant and the estimated illuminant after
the application of the weights:

WMS = argminw{e rec(GTRAW, c s f × (IEMS ∗w))},

WRAW = argminw{e rec(GTRAW, IERAW ∗w},
(7)

where e rec is the recovery error, csf is the camera sensitivity
function,w denotes a possible set of weights, and× is the matrix
multiplication. The recovery error [43,44] is defined as

e rec(U , V )= arccos

(
U · V
|U ||V |

)
, (8)

Where “·” indicates the dot product, “||” is the Euclidean norm,
and U denotes the actual measured light and V the estimated
light by an illuminant estimation algorithm. The direct search
method for the multidimensional unconstrained minimization
method is known as the Nelder–Mead simplex algorithm [42],
for which we use the MATLAB implementation known as
“fminsearch.” All weights are initialized as ones, indicating no
re-elaboration.

4. Feed-ForwardNeural Network

For the fourth multispectral illuminant re-elaboration method,
we decided to take on a learning-based approach. We designed
a topologically simple neural network, based on a feed-forward
multilayer perceptron [45], consisting of only three fully con-
nected layers with a sigmoid activation function, as shown in
Fig. 3. The first fully connected layer maps the N-band multi-
spectral input to a 60-dimensional latent space, while the last
layer maps the result back to N values. Assuming that the input
consists of 31-band multispectral data, we have heuristically
defined the dimension of the latent space. The multispectral
output of the third fully connected layer is converted into raw
RGB exploiting the camera sensitivity function. The conversion
to raw RGB makes it possible to use as a loss function the recov-
ery error between the raw-converted illuminant estimation and
the expected raw illuminant, as defined in Eq. (8).

For sake of comparison, we also apply the same re-elaboration
method to the estimated raw RGB illuminants. In this case, the
input dimension N is three; we have not modified the dimen-
sionality of the latent space, which is kept to 60. The output of
the last fully connected layer is already in raw RGB format, and
can be directly used in the computation of the loss function.

4. EXPERIMENTAL SETUP

A. Dataset

The focus of our investigation resides in the use of multispectral
imaging to improve raw RGB illuminant estimation; therefore
we selected the NUS [12] dataset by Nguyen et al . from the

Fig. 3. Feed forward neural network architecture is composed of three hidden layers. The rectangles with round edges indicate the layers used, in
this specific case “FC” stands for fully connected layers, which are then followed by a sigmoid activation function. The network re-elaborates the given
estimation to better fit the expected illuminant.
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National University of Singapore, which contains multispectral
data along with the ground truth of their radiance information
and the camera sensitivity functions. Having this information
it is possible to compute raw RGB data by multiplying the mul-
tispectral data by the camera sensitivity functions. The same
process of raw RGB computation is also applied to the ground
truth multispectral illuminant data. The dataset contains 64
multispectral images along with the corresponding illuminant
spectra, which have been acquired using Specim’s PFD-CL-65-
V10E (400–1000 nm) spectral camera with a Specim OLE23
fore lens. For light sources, the dataset varies from natural sun-
light to shade conditions, additionally considering artificial
wide-band lights obtained from metal halide lamps of different
color temperatures (2500, 3000, 3500, 4300, and 6500 K) and a
commercial off-the-shelf LED E400. The subjects of the scenes
include both outdoor and indoor images and both natural and
man-made objects. Furthermore, a few images of buildings at
very long focal lengths were also included. For each spectral
image, a total of 31 bands were considered at 400–700 nm, with
a spacing of about 10 nm. Of the total 64 multispectral images
in the dataset, 24 are reserved for testing and the remaining 40
for training. One or multiple color targets are present in the
acquired scenes.

In order to reduce computational complexity, we prepro-
cess the dataset by re-scaling the multispectral images to a
tenth of their original size, resulting in 24 testing images of
132×W × 31, and in 40 training images of 132×W × 31,
where W is the width size that varies between 95 and 237.

5. EXPERIMENTAL RESULTS

This section is divided into four parts. In the first part, we ana-
lyze the performance of multispectral extension color constancy
algorithms as defined in Section 3.A, compared to the perform-
ance of their raw RGB counterpart. The second part is reserved
for the assessment of the four re-elaboration techniques exten-
sively discussed in Section 3.B. In order to return a clear idea of
how the estimations resulting from these methods and pipelines
perform in the color correction step we show some visual exam-
ples for a visual comparison. The third part is dedicated to the

comparison of the first-section results with two of the main
works from the state of the art, namely, those from Khan et al .
[30] and Robles-Kelly and Wei [39]. In the fourth and final part,
we measure the contribution of each input spectral band in our
best solution for multispectral-based illuminant estimation, so
as to provide a form of model explainability.

To compare the aforementioned methods, we use the
reproduction angular error [46], which is defined as follows:

e rep(U , V )= arccos

(
U
V · (1, 1, 1)

|
U
V |
√

3

)
. (9)

The rationale is to evaluate the final effect of applying color con-
stancy in the RGB domain, as measured via reproduction error,
in addition to the intermediate step of illuminant estimation, as
measured via recovery error.

A. Raw RGB versus Multispectral Illuminant
Estimation

In this section we assess the performance of multispectral
extended color constancy algorithms, compared with the origi-
nal raw RGB edge-based color constancy algorithms. The results
are reported in Table 1. We observe that only three multispectral
extended algorithms perform better than their RGB version:
spectral white point, spectral first order gray edge, and spectra
second order gray edge. While spectral white point mean repro-
duction error improves only by 0.08◦ compared to its raw RGB
version (corresponding to a 1% improvement), spectral first
order gray edge and spectral second order gray edge improve
respectively by 0.38◦ (6%) and 0.65◦ (9%). Additional statistics
are reported in Supplement 1.

A first explanation of why the multispectral extensions of dif-
ferent color constancy algorithms lead to inconsistent variations
in performance may be found in the algorithms’ linearity. We
note, in fact, that the RGB gray world algorithm and the multi-
spectral gray world algorithm produce equivalent results. For the
RGB gray world, spectral images are first converted, using linear
camera sensitivity functions, to RGB images for the sake of our
experiments, and from these, the gray world is applied, which

Table 1. Evaluation of Raw RGB and Multispectral Color Constancy Algorithms Performance Divided by Method
a

Input
AWB

Algorithm
Mean

Recovery
Median

Recovery
Mean

Reproduction
Median

Reproduction
% Mean Reproduction

Improvement

Multispectral GE1 5.09 4.42 6.38 5.23 6%
Raw RGB 5.46 4.72 6.76 5.67
Multispectral GE2 5.03 4.49 6.32 5.13 9%
Raw RGB 5.55 5.26 6.97 6.29
Multispectral GGW 3.70 3.15 4.42 3.37 −2%
Raw RGB 3.67 2.92 4.33 3.09
Multispectral GW 3.81 2.55 4.42 2.91 0%
Raw RGB 3.81 2.55 4.42 2.91
Multispectral SOG 3.84 3.15 4.63 3.74 −1%
Raw RGB 3.84 3.16 4.57 3.71
Multispectral WP 4.68 3.93 5.60 4.99 1%
Raw RGB 4.81 4.29 5.68 5.26

aWe report both recovery and reproduction angular errors, expressed in degrees (◦). The lower, the better. The last column shows the percentual improvement in
mean reproduction angular error of multispectral versus raw RGB algorithms. Best results per metric are highlighted in bold.

https://doi.org/10.6084/m9.figshare.24879102
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consists of equal-weight linear operations. For the multispectral
gray world, the two operations are inverted: the algorithm is
applied to the multispectral image using equal-weight linear
operations, and the result is then brought into RGB using the
same linear camera sensitivity functions. The pure linearity of
the involved operations leads to equivalent results in the two
cases. The other algorithms within the framework, such as
the white patch, or the gray edge, display behaviors at a vary-
ing degree of non-linearity, which leads to a varying degree of
divergence between the RGB and multispectral version.

A second explanation may be formulated as to why some of
the multispectral algorithms produce a performance improve-
ment, while others lead to a decrease in the performance. To
this extent, we recall that the analyzed RGB color constancy
algorithms are based on individual assumptions and hypotheses
regarding the input image. For example, the RGB gray world
assumes that the average of the observed radiance is achromatic
(i.e., all tristimulus responses are on average equivalent), the
RGB white patch assumes that the brightest area in the image is
a highlight reflecting the scene illumination source, etc. In prac-
tice, different images will match such assumptions to different
degrees, thus leading to a varying range of performance levels.
Similarly, the multispectral extensions of the same algorithms
are inherently based on assumptions on the input spectral
image, which are different from the assumptions of their RGB
counterparts, and as such they lead to a different distribution of
errors.

B. Iluminant Estimations Re-elaboration

The illuminant estimation re-elaboration will be assessed
method by method, comparing the performance of the
re-elaborated raw RGB input and the performance of the
re-elaborated multispectral information. As for the previous
assessment, the estimations are compared with the reproduction
error, and the performance is reported in terms of mean and
median errors. Additionally, we show the percent improvement
with respect to the traditional raw RGB pipeline from Table 1.
The results for all re-elaboration methods are presented in
Table 2.

1. AverageMultiplicativeWeight

All illuminant estimation algorithms benefit from the use of the
average multiplicative weight method, both for the multispec-
tral and raw RGB input. Results in Table 2 also show that not
only the re-elaboration methods improve the illuminant esti-
mation accuracy but also that the multispectral input improves
the performance with respect to the raw RGB input. The best
improvement is achieved by multispectral second order gray
edge (GE2) but the best performance overall is achieved by mul-
tispectral general gray world (GGW) with a 3.69◦ reproduction
error.

2. AverageAdditiveBias

The only illuminant estimation algorithms that benefit from
the average additive bias re-elaboration are: first order gray
edge (GE1) and second order gray edge (GE2), even in their
multispectral extension.

However, with this re-elaboration, the best performing
pipeline is the multispectral general gray world (GGW) with a
5.75◦ mean reproduction error value, which is still performing
worse than the 3.69◦ achieved by the raw RGB general gray
world (which is the best traditional performing algorithm in this
investigation).

3. Optimization-DrivenMultiplicativeWeight

The re-elaboration of the multispectral estimations obtained
with the optimization-driven multiplicative weight improves
the mean reproduction error value for each algorithm. However,
the raw RGB shades of gray (SoG) estimations actually
achieve the best result for the optimization-driven multipli-
cative weight method with a mean reproduction error of 3.5◦,
which improves the value for that metric with respect to the
non-re-elaborated raw RGB estimations by 23%, while the
best improvement is achieved by multispectral second order
gray edge (GE2) with a 38% improvement compared to the
traditional raw RGB estimation.

4. Feed-ForwardNeural Network

The performance of the feed-forward re-elaboration method led
to more noticeable improvements in processing multispectral
information with respect to traditional raw RGB data, as can be
easily appreciated from Table 2. The mean reproduction error
for the multispectral inputs ranges from 3.15◦ for the first order
gray edge (GE1) down to 2.58◦ for the spectral white point
(WP), achieving the best performance overall in our analysis.
The white point (WP) re-elaboration method improves by 55%
compared with the traditional raw RGB method for the same
illuminant estimation algorithm.

Figure 4 offers a visual representation of the effect of color
constancy using our proposed method in different configura-
tions, including raw RGB or multispectral input, and the four
re-elaboration methods.

C. Comparison with the State of the Art

Among the methods in the state of the art, Robles-Kelly and
Wei [39] and Khan et al . [30] are the most similar ones to our
proposed method in terms of approach and final goal, i.e., RGB
color constancy by exploiting multispectral information.

Robles-Kelly presented a method that employs a convo-
lutional neural network to estimate pixel-wise illuminant in
the scene for both trichromatic and spectral images. Khan
et al . [30] proposed to extend statistical illuminant estimation
methods (applied also here, and described in Section 3.A) to N
dimensions, and subsequently developed a spectral adaptation
transform to bring the multispectral image data into a canonical,
or target, multispectral representation [31]. In order to enable
a direct comparison with our method it has been necessary
to apply a consensus-based strategy for raw RGB illuminant
estimation. The strategy consists of:

1. converting the input multispectral radiance image into the
RGB domain, to obtain a raw RGB image that is not white-
balanced;
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Table 2. Evaluation of the Re-elaboration of the Multispectral and Raw RGB Illuminant Estimations
a

Input
Re-elaboration

Method
AWB

Algorithm
Mean

Recovery
Median

Recovery
Mean

Reproduction
Median

Reproduction
% Improvement Mean
Reproduction Error

Raw RGB AAB GE1 5.28 4.07 6.46 4.75 4%
Raw RGB AAB GE2 5.31 4.20 6.49 4.91 7%
Raw RGB AAB GGW 5.32 4.39 6.50 5.25 −50%
Raw RGB AAB GW 5.30 4.51 6.48 5.50 −47%
Raw RGB AAB SOG 5.38 4.24 6.58 5.08 −44%
Raw RGB AAB WP 5.32 4.02 6.51 4.82 −15%
Multispectral AAB GE1 4.78 3.63 5.91 4.27 13%
Multispectral AAB GE2 4.88 3.93 6.01 4.57 14%
Multispectral AAB GGW 4.64 3.60 5.75 4.39 −33%
Multispectral AAB GW 4.66 3.73 5.77 4.52 −31%
Multispectral AAB SOG 4.76 3.58 5.89 4.46 −29%
Multispectral AAB WP 4.66 3.35 5.78 4.10 −2%
Raw RGB AMW GE1 4.15 3.36 4.79 4.42 29%
Raw RGB AMW GE2 4.16 3.98 4.84 4.30 31%
Raw RGB AMW GGW 3.42 2.21 3.82 2.55 12%
Raw RGB AMW GW 3.61 3.08 3.95 3.31 11%
Raw RGB AMW SOG 3.44 2.28 3.84 2.54 16%
Raw RGB AMW WP 5.12 4.79 5.57 5.24 2%
Multispectral AMW GE1 3.82 2.88 4.51 3.70 33%
Multispectral AMW GE2 3.84 3.30 4.54 3.82 35%
Multispectral AMW GGW 3.26 2.23 3.69 2.34 15%
Multispectral AMW GW 3.62 2.86 4.03 3.28 9%
Multispectral AMW SOG 3.28 2.22 3.73 2.60 18%
Multispectral AMW WP 4.86 4.44 5.33 5.00 6%
Raw RGB ODMW GE1 4.29 3.46 5.25 4.36 22%
Raw RGB ODMW GE2 3.95 3.54 4.80 4.16 31%
Raw RGB ODMW GGW 3.27 2.87 3.81 3.45 12%
Raw RGB ODMW GW 3.71 3.48 4.36 4.08 1%
Raw RGB ODMW SOG 3.00 1.94 3.50 2.40 23%
Raw RGB ODMW WP 4.22 3.97 4.84 4.46 15%
Multispectral ODMW GE1 4.20 3.41 5.15 4.07 24%
Multispectral ODMW GE2 3.62 3.04 4.35 3.61 38%
Multispectral ODMW GGW 3.15 2.25 3.59 2.31 17%
Multispectral ODMW GW 3.52 2.85 3.99 3.17 10%
Multispectral ODMW SOG 3.14 2.18 3.65 2.58 20%
Multispectral ODMW WP 4.91 4.01 5.61 4.86 1%
Raw RGB FFNN GE1 3.93 3.76 5.13 5.40 24%
Raw RGB FFNN GE2 3.05 2.16 3.81 3.19 45%
Raw RGB FFNN GGW 3.75 3.69 4.48 3.76 −3%
Raw RGB FFNN GW 3.44 2.40 4.02 2.68 9%
Raw RGB FFNN SOG 3.74 2.79 4.62 3.86 −1%
Raw RGB FFNN WP 5.09 2.75 6.20 3.19 −9%
Multispectral FFNN GE1 2.48 2.18 3.15 2.63 53%
Multispectral FFNN GE2 2.24 1.33 2.77 1.93 60%
Multispectral FFNN GGW 2.24 1.43 2.71 1.55 37%
Multispectral FFNN GW 2.47 1.53 2.91 1.63 34%
Multispectral FFNN SOG 2.26 1.11 2.71 1.43 41%
Multispectral FFNN WP 2.13 1.04 2.58 1.28 55%

aAll values are expressed in degrees (◦); the lower, the better. The last column shows the percentage of improvement of the mean reproduction angular error, between
the selected method and the traditional illuminant estimation algorithm for the raw RGB input.

2. dividing the same input multispectral radiance image
by the estimated multispectral illuminant to obtain a
multispectral reflectance image;

3. multiplying the obtained multispectral reflectance image
for the target multispectral illuminant, to obtain a new
multispectral radiance image;

4. converting the multispectral image restulting from step 3

into the RGB domain, to obtain a raw RGB image that is

white-balanced;

5. obtaining a per-pixel RGB illuminant estimation by divid-

ing the result of point 4 by the result of point 1;
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Fig. 4. Visual example of some of the most significant methods.
(a) Acquired scene; (b) scene corrected with the expected illuminant
in raw RGB; (c)–(h) scene corrected with the illuminant estimated via
general gray world (GGW) on either raw RGB or multispectral (MS)
input, using different re-elaboration methods. For all corrections,
angular errors are reported in parentheses (the lower, the better).

6. generating a global raw RGB illuminant estimation of the
input image by consensus through average per channel.

In Table 3 a comparison of the results of the previously cited
methods is shown against our solution. We consider two base-
lines of our method without re-elaboration (based on raw RGB
and multispectral data), using general gray world as a reference
due to its optimal performance as reported in Table 1. We then
also consider our best performing configuration, using multi-
spectral white point and FFNN re-elaboration as reported in
Table 2. The comparison is performed in terms of mean and
median recovery angular error in order to allow for a direct
comparison with the results reported by Robles-Kelly et al. [39].
The comparison between our own method’s baselines and exist-
ing methods from the state of the art highlights that a simple
approach without re-elaboration achieves similar perform-
ance as the solution by Khan et al . Additionally, our complete
method based on output re-elaboration allows us to achieve
superior performance in raw RGB illuminant estimation.

Table 3. Mean and Median Recovery Angular Error (in
Degrees ◦; the Lower, the Better) for Khan’s,
Robles-Kelly’s, and Our Method on NUS Dataset [12]

a

Method
Mean Recovery
Angular Error

Median Recovery
Angular Error

Robles-Kelly and Wei [39] 12.56 4.62
Khan et al . (multispectral
GGW) [31]

3.96 2.94

Our baseline (raw GGW) 3.67 2.92
Our baseline (multispectral
GGW)

3.70 3.15

Our best method
(multispectral WP+ FFNN)

2.13 1.04

aIn bold the best results.

D. Further Analysis

In order to further study our best model for illuminant estima-
tion from multispectral data, we investigate the relationship
between input and output wavelength bands as a form of model
explainability. Specifically, we measure the relevance of each
input spectral band i by selectively feeding to our trained feed-
forward neural network FF a set of band-specific impulses
(setting band i to one, and all the other bands to zero). We assess
the absolute difference in each of the network’s output bands j
compared to the average network’s output A:

reli =
∑

j

|F F
(
impulse(i)

)
j − A j |, (10)

A j =
1

N

∑
i

F F
(
impulse(i)

)
j . (11)

The result of this analysis is reported in Fig. 5. By supporting
the visualization with the camera sensitivity function curves
used in the optimization process, three band clusters emerge,
roughly corresponding to the central sections of the camera’s
color filters, with local minima corresponding to the overlap
between two color channels, where information is partially
redundant (the estimate on the green channel is partially
informed by the information from the blue and red channels).
Furthermore, the model presents two outlying peaks and a
generally oscillating behavior.

These observations on band relevance could potentially
inform the definition of feature reduction techniques for hard-
ware optimization, where fewer and selected wavelength bands
are considered in the construction of a multispectral sensor.

6. CONCLUSIONS

We have conducted an investigation to assess whether multi-
spectral information can be beneficial for the raw RGB color
constancy problem. We have separated the work into two
main steps. (1) In the first step we evaluated the multispectral
illuminant estimations and we compared the results with the
traditional raw RGB illuminant estimations. (2) For the second
step we suggested to re-elaborate multispectral estimations to
better fit the expected raw RGB illuminant. To serve this pur-
pose we suggested four re-elaboration methods and we evaluated
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Fig. 5. Relative importance of wavelength bands for our neural
model for illuminant estimation from multispectral data. Camera
sensitivity functions reported for reference.

them, not only comparing them to the traditional raw RGB
approach but also with raw RGB re-elaborated performance.

We proved that multispectral information can be used to
improve raw RGB color constancy. In fact, we have shown that
some methods (first order gray edge, second order gray edge, and
white point) improve with our multispectral-based methods.
Results show that re-elaboration methods improve performance
both for multispectral and raw RGB illuminant estimation,
respectively, with an overall performance increment of 60% and
50%, for the mean reproduction angular error, with respect to
the traditional raw RGB pipeline. Of great relevance is the result
achieved by the multispectral white point with feed-forward
neural network re-elaboration, that achieves a mean recovery
error of 2.13◦.

In the future, we plan to extend the work to other illuminant
estimation algorithms, especially to machine-learning-based
algorithms.
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