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Abstract

The great di.usion of digital cameras and the widespread use of the internet have produced a mass of digital images depicting
a huge variety of subjects, generally acquired by unknown imaging systems under unknown lighting conditions. This makes
color balancing, recovery of the color characteristics of the original scene, increasingly di2cult. In this paper, we describe a
method for detecting and removing a color cast (i.e. a superimposed color due to lighting conditions, or to the characteristics
of the capturing device), from a digital photo without any a priori knowledge of its semantic content. First a cast detector,
using simple image statistics, classi4es the input images as presenting no cast, evident cast, ambiguous cast, a predominant
color that must be preserved (such as in underwater images or single color close-ups) or as unclassi4able. A cast remover,
a modi4ed version of the white balance algorithm, is then applied in cases of evident or ambiguous cast. The method we
propose has been tested with positive results on a data set of some 750 photos.
? 2003 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

The great di.usion of digital cameras and the widespread
use of the internet have produced a mass of digital im-
ages depicting a huge variety of subjects, generally acquired
by non-professional photographers using unknown imaging
systems under unknown lighting conditions. The quality of
these real-world photographs can often be considerably im-
proved by digital image processing. At present color and
contrast corrections are usually manually performed within
the framework of speci4c software packages. Since these
interactive processes may prove di2cult and tedious, espe-
cially for amateur users, an automatic image enhancement
tool would be most desirable.

Typical image properties requiring correction are color,
contrast and sharpness. We have approached the open issues
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of designing reliable automatic tools that can improve the
overall quality of digital photographs pragmatically by de-
signing a modular enhancing procedure (Fig. 1). Each mod-
ule can be considered as an autonomous element, that can
be combined in more or less complex algorithms.

This paper focuses on unsupervised color correction. The
problem is that of automatically and reliably removing a
color cast (a superimposed color due to lighting conditions,
or to the characteristics of the capturing device). The solu-
tion we have designed exploits only simple image statistics
to drive the color procedure, preventing artifacts.

Section 2 illustrates the problem addressed, and the related
methods available in the literature. In Section 3, we describe
the automatic procedure for color balancing, which we have
structured in two main parts: a cast detector and a cast re-
mover. The detector, described in Section 3.1, classi4es the
input images with respect to their chromaticity as: (i) no-cast
images, (ii) evident cast images, (iii) ambiguous cast images
(images with a weak cast, or for which whether or not a cast
exists is a subjective opinion), (iv) images with a predomi-
nant color which must be preserved (such as in underwater
images, or single color close-ups), (v) unclassi4able.
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Fig. 1. Our enhancement chain constituted by independent enhancement modules.

The remover, a modi4ed version of the white balance
algorithm [1,2], piloted by the class of the cast, is applied
to images labeled as having evident or ambiguous cast. This
step is described in Section 3.2. Our experimental results are
reported and commented in Section 4, while our conclusions
are presented in Section 5.

2. Related work

Automatic color correction is a challenging issue as the
RGB images recorded by an imaging device depend on the
following elements:

1. The response of each color channel as a function of
intensity, usually modeled as a gamma correction. For
generic images the channel responses of the imaging de-
vice are usually unknown. Cardei et al. [2,3] have shown
that gamma-on images (i.e. images for which gamma
does not equal unity) can be color corrected without 4rst
linearizing them. Consequently, it is common practice to
address color and gamma corrections independently.

2. The device white balancing, usually set by the device
manufacturer so that it produces equal RGB values for a
white patch under some chosen illuminant. Images of un-
known color balance can still be corrected, but this poses
an additional challenge to the color correction algorithm.

3. The relative spectral sensitivities of the capturing de-
vice as a function of wavelength. This information is of-
ten not available (e.g. for images downloaded from the
Internet), and sensitivities can di.er signi4cantly for dif-
ferent cameras. As Cardei et al. [2,3] have pointed out,
while two di.erent camera models balanced for the same
illuminant will have by de4nition the same response to
white, they may have di.erent responses to other colors.

4. The surface properties of the objects present in the scene
depicted and the lighting conditions (lighting geometry
and illuminant color). Unlike human vision, imaging de-
vices (such as digital cameras) can not adapt their spec-
tral responses to cope with di.erent lighting conditions.
As a result, the acquired image may have a cast, i.e. an
undesirable shift in the entire color range. The ability of
the human visual system to discount the illuminant, ren-
dering the perceived colors of objects almost independent
of illumination is called color constancy. This would be
a useful property in any vision system performing tasks

that require a stable perception of an object’s color, as in
object recognition, image retrieval, or image reproduc-
tion, e.g. Ref. [4].

Color constancy is an under-determined problem and thus
impossible to solve in the most general case [1]. Several
strategies are proposed in the literature. These, in general,
require some information about the camera being used, and
are based on assumptions about the statistical properties of
the expected illuminants and surface reJectances. From a
computational perspective, color constancy is a two-stage
process: the illuminant is estimated, and the image colors
are then corrected on the basis of this estimate. The correc-
tion generates a new image of the scene as if taken under
a known standard illuminant. The color correction step is
usually based on a diagonal model of illumination change,
deriving from the Von Kries hypothesis that color constancy
is an independent gain regulation of the three cone signals,
through three di.erent gain coe2cients [5]. This diagonal
model is generally a good approximation of change in illu-
mination, as demonstrated by Finlayson et al. in Ref. [6].
Should the model lead to large errors, its performance can
still be improved with sensor sharpening [7,8]. In formula
the Von Kries hypothesis can be written as


L′

M ′

S′


 =



kL 0 0

0 kM 0

0 0 kS






L

M

S


 ; (1)

where L, M , S and L′, M ′, S′ are the initial and
post-adaptation cone signals and kL;M;S are the scaling co-
e2cients [5]. The scaling coe2cients can be expressed as
the ratio between the cone responses to a white under the
reference illuminant and those of the current one. A typical
reference illuminant, which is also the one we have used
here, is the D65 CIE standard illuminant [9]. In practical
situations the L, M , S retinal wavebands are transformed
into CIE XYZ tristimulus values by a linear transformation,
or approximated by image RGB values [12].

Whatever the features used to describe the colors, we must
have some criteria for estimating the illuminant and thus
the scaling coe2cients in Eq. (1). The gray world algorithm
assumes that, given an image of su2ciently varied colors,
the average surface color in a scene is gray [10]. This means
that the shift from gray of the measured averages on the
three channels corresponds to the color of the illuminant.
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The three scaling coe2cients in Eq. (1) are therefore set to
compensate this shift.

The white balance algorithm, instead, looks for a white
patch in the image, the chromaticity of which will then be
the chromaticity of the illuminant. The white patch is eval-
uated as the maximum found in each of the three image
bands separately [1,2]. The scaling coe2cients are now ob-
tained comparing these maxima with the values of the three
channels of the chosen reference white.

Retinex algorithms, [11,12], try to simulate the adapta-
tion mechanisms of the human vision, performing both color
constancy and dynamic range enhancement. Although re-
lated to the white patch algorithms, they are not a simple
diagonal model, but also take into account the spatial rela-
tionships in the scene.

Still based on the diagonal model, the gamut mapping
approach [13] determines the set of all possible RGB values
of world surfaces under a known canonical illuminant. This
set is represented as a convex hull in the color space. The set
of all the possible RGB values consistent with the image data
under an unknown illuminant, forms another convex hull.
The object is to determine the diagonal mapping of these two
hulls. However, there is no unique solution to this problem,
and, in particular, not all the mappings found correspond to
real world illuminants. Finlayson reformulated the problem
in a two-dimensional chromatic space (r = R=B; g = G=B)
where the diagonal model is still valid, then argued that
diagonal maps can be further constrained by considering
only those corresponding to expected illuminants [14–17].
Once the set of possible maps had been computed, several
di.erent models for 4nding a unique solution were proposed
in Refs. [18,19].

Color by correlation has been introduced by Finlayson
et al. as a successive improvement of the gamut mapping
[20–22]. The basic idea is to pre-compute a correlation
matrix which describes the extent to which the proposed il-
luminants are compatible with the occurrence of image chro-
maticities. In a further re4nement, the correlation matrix has
been set up to compute the probability that the observed
chromaticities are due to each of the training illuminants.
The best illuminant can then be chosen, using a maximum
likelihood estimate for example, or other methods described
in Ref . [18]. Funt et al. [23,24] have achieved a good per-
formance in color constancy using a neural network. The
network estimates the illuminant chromaticity based on the
gamut present in the image: the input layer is binary, indi-
cating the presence, or absence in the image of a sampled
chromaticity; the output is the estimated chromaticity of the
illuminant.

As we have said, color correcting images of unknown ori-
gin adds to the complexities of the already di2cult problem
of color constancy, because the pre-processing the image
was subjected to, the camera sensors and camera balance are
all unknown [1]. Digital still cameras usually employ au-
tomatic white balance techniques, based on some illumina-
tion estimation assumption, to adjust sensor ampli4er gains

in order to produce an image where the white objects ap-
pear white. Moreover, an ad hoc adjustment is commonly
made to force an image’s maximum luminance value to
pure white. Some cameras also adjust the minimum lumi-
nance to set the black point at a certain energy level. The
movement of the white and black point regions of the im-
age towards pre-de4ned goals typically produces pleasing
peak highlights and shadows. However, the resulting im-
ages may show signi4cant color casts in over half the image.
Since the image white point is altered in a very non-linear
way during image acquisition, the camera data available for
post-processing retains only limited information about the
illuminant [25]. For digital still cameras with an unknown
white balance correction in which the brightest pixels may
have been compromised, Cooper et al. developed an algo-
rithm that analyzes the chromaticity of any large contiguous
nearly gray objects found using adaptive segmentation tech-
niques, to identify the presence of a cast, estimate the chro-
matic strength of the objects, and alter the image’s colors to
compensate for the cast [25,26]. Unsupervised segmentation
is, in turn, another ill-posed problem.

3. Our color correction strategy

The computational strategy described here should not be
interpreted as a “new color constancy algorithm”; it is in-
stead a tool that, given as input any digital photo, produces
as output a more pleasing image, that is an image the user
will perceive as more natural than the original one. The suc-
cess of the method is evaluated by direct comparison of the
original and the processed images.

The procedure is structured in two main parts: a cast de-
tector and a cast remover. The basic idea of our cast detec-
tor (Section 3.1) is that by analyzing the color distribution
of the image in a suitable color space with simple statisti-
cal tools, it is possible not only to evaluate whether or not a
cast is present, but also to classify it. The classes considered
are: (i) no cast images; (ii) evident cast images; (iii) am-
biguous cast images; (iv) images with a predominant color
that must be preserved; and (v) unclassi4able. The estimate
of the sensor scaling coe2cients is assimilated within the
problem of quantifying the cast. The cast remover (Section
3.2) is applied only to those images classi4ed as having an
evident or ambiguous color cast.

3.1. Cast detection and classi!cation

The algorithm is structured as follows:
As seen in Section 2, RGB images are often referred to

unknown imaging devices. We assume here that the images
are coded in terms of sRGB color coordinates. The sRGB is
representative of the majority of devices on which color is
and will be viewed [27,28]; it refers to a monitor of average
characteristics, so that the images can be directly displayed
by remote systems without further manipulation.
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The sRGB values are mapped into the CIELAB color
space [30] (see Appendix A), where the chromatic compo-
nents and lightness are separated [20,25]. The CIELAB is a
perceptually uniform color space in which it is possible to
e.ectively quantify color di.erences as seen by the human
eye; it is widely used in color imaging and is included as a
standard in the international color consortium (ICC) color
pro4les [28].

(i) We analyze only those pixels with a lightness in an in-
terval that excludes the brightest and the darkest points.
This because the images we consider may already have
been processed during acquisition, and we assume that
imaging device is unknown. Digital cameras often force
the brightest image point to white and the darkest to
black, altering the chroma of very light and very dark
regions. Our experience on a data set of several hundred
images has suggested that we consider the interval of
lightness: 30¡L∗ ¡ 95 in identifying color cast. If the
size of the considered portion of image is less than the
20% of the whole, the image statistics are not fully re-
liable. These images are considered unclassi4able and
are not processed at all. This is the case of very dark
or very light images, such as those shown in Fig. 2.
Otherwise, the algorithm proceeds with the next step.

(ii) The two-dimensional histogram, F(a; b), of the image
colors in the ab-plane is computed. For a multicolor
image without cast it will present several peaks, dis-
tributed over the whole ab-plane, while for a single
color image, there will be a single peak, or a few peaks
in a limited region (see Fig. 3). The more concentrated
the histogram and the farther from the neutral axis, the
more intense the cast.

The color distribution is modeled using the following
statistical measures, with k = a; b:

�k =
∫
k
kF(a; b) dk; (2)

�2
k =

∫
k
(�k − k)2F(a; b) dk; (3)

respectively, the mean values and the variances of the
histogram projections along the two chromatic axes a,
and b.

(iii) An equivalent circle (EC) with center: C=(�a; �b) and
radius: � =

√
�2
a + �2

b is associated to each histogram.
To characterize the EC quantitatively we introduce a
distance D:

D = � − � (4)

(where � =
√

(�2
a + �2

b)), and the ratio:

D� = D=�: (5)

Because D is a measure of how far the whole histogram
(identi4ed by its EC) lies from the neutral axis (a =
0; b = 0), while � is a measure of how the histogram

is spread, D� makes it possible to quantify the strength
of the cast.

The algorithm analyzes the color histogram distribution
in the ab chromatic plane, examining its EC and computing
the statistical values D and D�.

1. If the histogram is concentrated and far from the neutral
axis, the colors of the image are thus con4ned to a
small region in the ab chromatic diagram (Fig. 4). The
images are, instead, likely to have either an evident
cast (to be removed), or a predominant color (to be
preserved), if:

(D¿ 10 and D� ¿ 0:6) or (D� ¿ 1:5): (6)

A predominant color could correspond to an intrinsic
cast (widespread areas of vegetation, skin, sky, or sea),
or to a single color close-up (Fig. 5).

To detect images with a predominant color corre-
sponding to an intrinsic cast and a single color close-up,
a simple classi4er exploiting both color and spatial in-
formation is used [31]. A region identi4ed as probably
corresponding to skin, sky, sea, or vegetation is con-
sidered signi4cant if it covers over 40% of the whole
image; the image is classi4ed as having an intrinsic
cast, and the cast remover is not applied.

If none of the regions corresponding to skin, sky,
sea, or vegetation occupies over 40% of the whole, but
the image EC is extremely concentrated, D� ¿ 6, and
has an high average color saturation, (C∗=L∗ ¿ 1—the
ratio between the chroma radius and the lightness is
correlated to the color saturation), the image is clas-
si4ed as a single color close-up and, also in this case,
the cast remover is not applied.

Images presenting a concentrated histogram which
are not classi4ed as having a predominant color, i.e.
intrinsic cast images or close-ups, are held to have an
evident cast and are processed for color correction as
described in Section 3.2.

2. All images without a clearly concentrated color his-
togram are analyzed with a procedure based on the
criterion that a cast has a greater inJuence on a neu-
tral region than on objects with colors of high chroma.
The color distribution of near neutral objects (NNO) is
studied with the same statistical tools described above.
A pixel of the image belongs to the NNO region if
its chroma is less than an initial 4xed value (set here
at one fourth the maximum chroma radius of that im-
age), and if it is not isolated, but has some neighbors
that present similar chromatic characteristics, than it
belongs to the NNO region. Isolated nearly gray pixels
are probably due to noise. If the percentage of pixels
that satis4es these requisites is less than a prede4ned
percentage of the whole image, which experience has
suggested to set at 5%, the radius of the neutral region
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Fig. 2. Examples of unclassi4able images (typically very dark or very light images in which the color range evaluated is not su2cient to
determine whether or not a cast exists).

Fig. 3. Left, a multicolor image with no cast, which presents several peaks in the 2D histogram in the ab-plane; right, a cast image showing
a concentrated 2D histogram.

Fig. 4. Left, equivalent circles corresponding to a cast image; right, equivalent circles for a multicolor image with no cast. The parameters
D and � permit the characterization of the histogram distribution.

is gradually increased to the maximum chroma radius,
and the region recursively evaluated.

When there is a cast, we may expect the NNO color
histogram to show a single small spot, or, at most, a few
spots in a limited region. NNO colors spread around the
neutral axis, or distributed in several distinct spots indicate
instead that there is no cast. The statistical analysis that we
have performed on the whole histogram is now applied to
the NNO histogram, allowing us to distinguish among three
cases:

• evident cast images;
• no cast images;

• ambiguous cases (images with a weak cast, or for which
the presence of a cast is a subjective opinion).

If we de4ne, as above, the mean values and variances
of the NNO histogram, with k = a; b:

�NNOk =
∫
k
kFNNO(a; b) dk; (7)

�2
NNOk =

∫
a
(�NNOk − k)2FNNO(a; b) dk: (8)

we can associate with each NNO histogram aNNO equiv-
alent circle (ECNNO) with center in CNNO=(�NNOa; �NNOb)
and a radius of �NNO =

√
�2
NNOa + �2

NNOb.
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Fig. 5. Images with a predominant color and their equivalent circles. Left, single color close-up; right, intrinsic cast.

Fig. 6. If analysis of the whole image does not indicate whether or not there is a cast, the NNO must be analyzed. The three possible cases
are represented in the three rows of this 4gure, each showing the original image and the NNO region, together with the corresponding ECs
and ECNNOs. The top row shows the case of a no-cast image: D�NNO =−0:87 and the NNO histogram is clearly spread uniformly around
the neutral axis. The middle row corresponds to an image with evident cast: D�NNO=1:02 and shows a clear shift histogram. The bottom row
presents the case of an ambiguous cast: it is not clear whether there is a cast, and any evaluation could be a subjective opinion: D�NNO=0:01.

NNO histograms that are well de4ned and concentrated
far from the neutral axis will have a positive D�NNO: the
image has an evident cast (Fig. 6). With negative values of
D�NNO the histogram presents an almost uniformly spread

distribution around the neutral axis, indicating no cast. We
set as thresholds D�NNO = 0:5 for cast images and D�NNO =
−0:5 for no cast images. Cases falling in the interval between
−0:5 and 0.5 are considered ambiguous.
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Input image Output image WB RegionInput image Output image WB Region

Fig. 7. The WB region and color correction for a cast image.

Fig. 8. The WB region and color correction for an ambiguous case.

3.2. Cast removal

The method we propose for cast removal is based on the
Von Kries hypothesis with the RGB channels considered
an approximation of the L, M , S retinal wavebands [12].
The estimate of the sensor scaling coe2cients is assimilated
within the evaluation of the color balancing coe2cients.
Our cast remover is not used alone, but applied after cast
detection and only to those images classi4ed as having either
an evident or an ambiguous cast in order to avoid problems
such as the mistaken removal of predominant color, or the
distortion of the image’s chromatic balance. The diagonal
transform is


R′

G′

B′


 =



kR 0 0

0 kG 0

0 0 kB






R

G

B


 ; (9)

where RGB and R′G′B′ are the color coordinates of the input
and corrected image, respectively.

The gain coe2cients, kR, kG , and kB are estimated by
setting at white what we have called the white balance (WB)
region:

kR =WhiteR=RWB;

kG =WhiteG=GWB;

kB =WhiteB=BWB; (10)

where RWB, GWB, and BWB are the averages of the three
RGB channels over the whole selected WB region and
(WhiteR; WhiteG; WhiteB) represents the reference white
chosen.

The main peculiarity of the method is that it determines
the WB region on the basis of the type of cast detected.
To avoid the mistaken removal of an intrinsic color, re-
gions previously identi4ed by the cast detector as probably
corresponding to skin, sky, sea or vegetation, are temporar-
ily removed from the analyzed image. The algorithm then
looks for the WB region in the rest of the image which
presents a low level of saturation. The region corresponds
to the object, or, as is explained below, group of objects that
will be forced to white. Forcing to white regions with high
saturation usually causes a color distortion in the output im-
age. During experimentation it became apparent that a su2-
ciently low level of saturation corresponds to C=L∗ ¡=0:8
(ratio of the chroma radius and the lightness in the CIELAB
color space).

The algorithm now di.erentiates between evident cast and
ambiguous cast.

In the 4rst case, the WB region is formed by the objects
corresponding to all the signi4cant color peaks in the ab
histogram of the analyzed portion of the image (Fig. 7). Only
objects with a lightness greater than 30 will be accepted,
because the candidates to be whitened must not be too dark.

In the case of ambiguous cast, the WB region is composed
of the near neutral objects (NNO) of the analyzed portion
of the original image (Fig. 8) because the inJuence of a
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weak cast is visible only in objects near the neutral axis. By
choosing the NNO region, we avoid the risk of removing
the intrinsic color of an object far from the neutral axis, and
the consequent chromatic distortion of the output image.

Once the scaling coe2cients have been evaluated with
Eq. (10), the cast remover algorithm is applied to the whole
image, including regions of skin, sky, sea, and vegetation.

This color balance algorithm can be considered a mix-
ture of the white balance and gray world procedures. The
WB region is formed by several objects of di.erent colors,
which are set at white not singularly, but as an average. This
prevents the chromatic distortion that follows on the wrong
choice of the region to be whitened. When there is a clear
cast, the colors of all the objects in the image su.er the same
shift due to that speci4c cast. If we consider the average over
several objects, introducing a kind of gray world assump-
tion, only that shift survives and will be removed. Note that
for images where the WB region consists of a single ob-
ject, such as is usually the case of images with a strong cast,
our method tends to correspond to the conventional white
balance algorithm, while for images where the WB region
includes more objects (as in images with a softer cast), the
method tends to the gray world algorithm. The evaluation
of the scaling coe2cients can be conveniently performed
on the thumbnail image or on a sub-sampled image, signif-
icantly reducing the computational time.

4. Experimental results

The thresholds in our procedure were heuristically deter-
mined on a set of 40 images, indicated by our research spon-
sor as a good example of non-professional digital photos.
These images were not used in the evaluation phase.

To verify the reliability of our method we used another
data set, composed of 748 images of di.erent sizes (from
120 × 160 to 2272 × 1704 pixels), resolutions and quality
(in terms of jpeg compression, noise, dynamic range, etc.).
These images were downloaded from personal web-pages,
or acquired by our research sponsor using various digital
cameras and scanners. The pre-processing of these images
varied and was in the most of the cases unknown. We tried
to avoid having undesirable clusters of images (i.e. images
derived from the same web site and/or of the same subject),
since that might have biased in some way our classi4cation
experiments.

Table 1

Cast detector

No cast Ambiguous cast Cast Predominant color

Panel of experts

No cast 177 22 3 2
Ambiguous cast 8 133 43 0
Cast 3 5 219 17
Predominant color 1 0 7 106

To evaluate the goodness of the method, the performance
of the cast detector and that of the cast remover must be
combined. However, we 4rst considered the performance of
the cast detector alone, as this 4rst step could also be applied
in conjunction with other cast removal algorithms.

4.1. Cast detector performance

Among the 748 images, 2 were considered unclassi4able
by the cast detector; these images are shown in Fig. 2. For
each of the remaining 746 images, the output of the cast
detector was compared with the majority opinion of a panel
of 4ve experts and reported in the confusion matrix, C,
presented in Table 1.
The diagonal terms of the matrix correspond to images

for which there is an agreement between the class assigned
by the detector and the opinion of the experts and cover
the 85% of the cases (635/746). Examples of correctly
classi4ed images are reported in Fig. 9 (see also Figs. 10
and 11).

If we look at the misclassi4ed elements of the matrix, we
4nd:

• Seven predominant color images and three no-cast images
erroneously classi4ed as cast images by the cast detec-
tor. As a consequence of this misclassi4cation, the cast
remover is applied to images the colors of which should
instead be preserved. This can be considered a serious er-
ror. The second and third images of Fig. 12 are examples
of this type of misclassi4cation.

• Three cast images classi4ed by the detector as having no
cast and 17 cast images as having a predominant color.
These images will not be color corrected; consequently,
the output images will correspond to the input ones. These
cases can be considered a failure of the method as the
cast is not removed; however, the images are preserved,
and there is no color distortion. We do not consider this
misclassi4cation a serious error. Even less severe is the
misclassi4cation of eight ambiguous cast images as hav-
ing no cast. The 4rst image on the left of Fig. 12 is an
example of a cast image erroneously classi4ed as a pre-
dominant color image.

• A subset of 22 images classi4ed by the detector as am-
biguous cases but judged by the experts to have no cast.
These cases must be evaluated individually, however the
application of the cast remover to these images, does not
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Fig. 9. Examples of images correctly classi4ed by the detector. Above left, cast image; right, ambiguous case; below left, no-cast image;
right, predominant color image.

Fig. 10. Examples of images judged by the experts as no-cast images.
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Fig. 11. Examples of images judged by the experts as predominant color images.

Fig. 12. Examples of misclassi4cation. From left to right, a cast image classi4ed as a predominant color image (not considered a serious
error), a predominant color image classi4ed as a cast image, and a no-cast image considered a cast image (the latter two, both cases of
serious misclassi4cation).

at any rate create artifacts, or substantially alter the high
chroma colors.

• A subset of 48 images (5+43) judged ambiguous by the
experts while classi4ed by the detector as cast images,
or vice versa. These images anyway have consequently
been color corrected, but not according to the computa-
tional strategy designed for them. These cases must be
also evaluated individually.

• Two images classi4ed as predominant color and judged
by the expert as no-cast, and one predominant color im-
age classi4ed as no-cast. These misclassi4cations have no
consequences since neither no-cast nor predominant color
images undergo cast removal.

4.2. Cast remover performance

We consider the behavior of the cast remover only with
respect to the images correctly classi4ed as having a cast,
or an ambiguous cast, (the second and third elements of the
diagonal of the confusion matrix):

• Of the 219 images correctly classi4ed as having a cast,
after cast removal, 211 were judged by the panel of experts

better than the originals, six were considered equivalent,
and two were judged worse. In Fig. 13, these latter 2 (left)
are compared with their color balanced output (right),
while Fig. 14 shows examples of cast images judged better
than the originals after the color balancing.

• Among the 133 ambiguous cases, 98 images were judged
by the panel of experts better than the originals after the
cast removal, and the remaining equivalent. Examples of
processed ambiguous cases are shown in Fig. 15 (see
Fig. 16)

In the case of cast detector misclassi4cations, there are
two possible kinds of error:
No color balancing of cast images: The cast images are

not color balanced because classi4ed as having no cast, or
having a predominant color: the output image corresponds
to the input. The error does not introduce chromatic distor-
tion. The more frequent situation is the classi4cation of a
cast as a predominant color. It is usually the case of a strong
blue, green, or pink cast which the classi4er interprets as
a signi4cant region of sky, sea, vegetation, or skin, respec-
tively, (Fig. 17). We plan to reduce this error in the future
by enhancing the performance of the region classi4er.
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Fig. 13. The 2 cast images judged by the panel of experts to be worse after color balancing: left, the input images; right, the images after
color balancing.

Color distortion of no cast images or predominant color
images: Predominant color images or no-cast images erro-
neously classi4ed as having a cast undergo color balancing.
This may be the case of close-ups of a single object, or
no-cast images with only one near neutral object which the
cast detector considers cast images. Applying the cast re-
mover may produce color changes in the output images. The
three no-cast images, erroneously classi4ed as cast images,
are shown, before and after color balancing, in Fig. 18.
In summary, in the great majority of the experimented

cases, the processed image was held to be superior to the
original; only in less than 2% of the 746 images processed
was the output judged worse than the original.

We have compared our results with those obtained with
conventional white patch and gray world algorithms, those
most often used in imaging devices. We again collected
the majority opinion of the same 4ve experts. This second
analysis, gives our algorithm as consistently better than the
gray world with the exception of only a few cases, (10),
when it is judged equal. It does not introduce the grayish
atmosphere typical of the gray world output images, as can
be seen in Fig. 19 comparing the second column (output of
the gray world algorithm) with the fourth (the corresponding

output of our algorithm). In the case of images with a strong
cast, such as in those of the 4rst row of Fig. 19, the gray
world not only introduces a grayish overtone but at times
strongly distorts the colors.

In comparison with the white patch algorithm, our
method is judged better in 40% of the cases, while in the
rest it is judged equal. It shows a better performance in the
case of cast images with highlights, or where the acquisi-
tion system has forced the white point incorrectly. In these
cases, the maxima used by the white patch corresponded
to regions that had lost their chromatic information, and
consequently the cast could not be removed. Examples of
this kind of failure of the white patch algorithm are shown
in the 4rst and fourth rows of Fig. 19. Moreover, in the
presence of a predominant color, the white patch approach
generally causes severe chromatic distortion, trying to
whiten the intrinsic color of the scene, as in the last row of
Fig. 19.

4.3. Computational cost

The prototype code has been developed and tested with
the Matlab 6.5 Image Processing Toolbox and with the



1212 F. Gasparini, R. Schettini / Pattern Recognition 37 (2004) 1201–1217

Fig. 14. Top, 4 cast images correctly classi4ed by the cast detector. Bottom, the same 4 images after color balancing, judged by the experts
better than the originals.

Borland C++ Builder 5.0, while its 4rmware implementa-
tion is under study.

To evaluate quantitatively the computational cost of our
procedure, the two modules of cast detection and cast re-
moval are considered separately. The image analysis in the
cast detector is performed on the thumbnail image, already
available in most digital cameras, or easily computable by

sub-sampling. This strategy is justi4ed by the fact that there
are no signi4cant di.erences between the adopted simple
statistics over the whole image and over its sub-sampled ver-
sion. In the case of the C++ implementation, the average
computational cost of the thumbnail analysis is about 0:17 s
on a PC Intel Pentium M, 1:5 GHz, 512 MB, with Win-
dows XP Professional as operating system. We report here



F. Gasparini, R. Schettini / Pattern Recognition 37 (2004) 1201–1217 1213

Fig. 15. Top two rows, images classi4ed as ambiguous cases by the cast detector. Bottom two rows, the same images after color correction.

the average cost as the procedure can follow di.erent paths
depending on the characteristics of the analyzed image.

The cast remover is applied to the whole image and its cost
is about 5:6 �s=pixel. Total cost is linear with the number
of image pixels as it substantially involves only a diagonal
transform.

5. Conclusions

Color balancing is in general performed interactively. Au-
tomatic color correction, without knowledge of the image
source and subject, is a very challenging task. For example,
an automatic white balance adjustment applied to a sunset
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Fig. 16. The cast and ambiguous case images of Fig. 9 after the color balancing. The other two images of Fig. 9 (second row) were classi4ed
as a no-cast image and a predominant color image, respectively, and did not undergo cast removal.

Fig. 17. Cast images erroneously classi4ed as having a predominant
color, and thus not color balanced.

image may drastically modify the nature of the scene, re-
moving the characteristic reddish cast, while methods based
on the gray world assumption will generate a wholly grayish
scene in the case of a predominant color such as is found in
underwater images, or in those of a forest of mostly bright
green leaves. Color constancy algorithms work well only
when prior assumptions are satis4ed, for example that the
scene is colorful enough, or uniformly illuminated by a sin-
gle source of light. When these prerequisites do not hold,
the result may be distorted, or grayed out colors. Moreover,
traditional methods of cast removal do not discriminate be-
tween images with true cast and those with predominant col-
ors, such as underwater images, or single color close-ups; but
are applied in the same way to all images. This may result in

an unwanted distortion of the image chromatic content with
respect to the original scene. A fundamental aspect of our
method is that it is designed to distinguish between true cast
and predominant color in a completely unsupervised way,
allowing us to discriminate between images requiring color
correction and those in which the chromaticity must, instead,
be preserved. The correction is also calibrated on the type
of cast, allowing the processing of even ambiguous images
without color distortion. The whole analysis is performed
by simple image statistics on the thumbnail image, already
available in most digital cameras, or, easily computable by
sub-sampling. This economy of size, together with the speed
of the operations involved is a great advantage: the algo-
rithm is so quick, it could easily be incorporated into more
complex procedures, including object recognition and image
retrieval, without a signi4cant loss of computational time.
Our cast detector can also be employed in tandem with color
balance methods, to suggest which images should be color
corrected, and which preserved.
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Appendix A. sRGB to CIELAB color mapping

The sRGB color space was introduced in 1996 as a stan-
dard color space for image interchange, especially over the
Internet. The sRGB color space complements current ICC
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Fig. 18. Top row, the 3 no-cast images classi4ed by the cast detector as having a cast. Bottom row, the processed images after cast removal,
judged worse than the originals.

color management strategies by enabling a method of han-
dling color in the operating systems and device drivers, us-
ing a simple and robust device independent color de4nition
(if there does not exist an ICC pro4le, then the color space
is sRGB. If there is an ICC pro4le embedded in the im-
age, this takes priority and provides an unambiguous color
space de4nition [28]). The sRGB color space de4nition is
based on the average performance of typical CRT moni-
tors under reference viewing conditions, but it is well suited
to Jat panel displays, television, scanners, digital cameras,
and printing systems. For these reasons it has now been
widely accepted in the consumer imaging industry and it
has now been adopted as an IEC international standard [29].
Due to similarities of the de4ned reference display to real
CRT monitors, often no additional color space conversion
is needed to display the images. However, conversions are
required to transform data into sRGB and then out to de-
vices with di.erent dynamic ranges, gamuts and viewing
conditions. More details on the respective sRGB standard
color space and the ICC pro4le format can be found in Refs.
[28,29].

The 8 bit integer sRGB values are converted to Joating
point non-linear sR′G′B′ values as follows:

R′
sRGB = R8bit =255:0; G

′
sRGB = G8bit =255:0;

B′
sRGB = B8bit =255:0:

The nonlinear sR′G′B′ values are transformed to linear
RsRGB, GsRGB, BsRGB values by:
If R′

sRGB, G
′
sRGB, B

′
sRGB6 0:04045,

RsRGB = R′
sRGB=12:92; GsRGB = G′

sRGB=12:92;

BsRGB = B′
sRGB=12:92;

else if R′
sRGB, G

′
sRGB, B

′
sRGB ¿ 0:04045,

RsRGB = ((R′
sRGB + 0:055)=1:055)2:4;

GsRGB = ((G′
sRGB + 0:055)=1:055)2:4;

BsRGB = ((B′
sRGB + 0:055)=1:055)2:4

These values are converted to XYZ (D65) by

X

Y

Z


 =



0:4124 0:3576 0:1805

0:2126 0:7152 0:0722

0:0193 0:1192 0:9505






RsRGB

GsRGB

BsRGB


 :

Tristimulus values are then mapped in the CIELAB color
space according to the following equations [30], with the
D65 reference white: Xn = 0:9505; Yn = 1:00; Zn = 1:0891;
and q = Y=Yn; p= X=Xn; r = Z=Zn;

L∗ = 116(Y=Yn)
1=3 − 16 for (Y=Yn)¿ 0:008856;

L∗ = 903:3 (Y=Yn) for (Y=Yn)6 0:008856

a∗ = 500∗(p1 − q1);

b∗ = 200∗(q1 − r1);

where

q1 = 7:787q + 16=116 for q6 0:008856;

q1 = q1=3 for q¿ 0:008856;
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Fig. 19. Comparison of the output of our algorithm (last column), with that of the gray world (second column) and of the white patch (third
column). The gray world may fail in that images without a su2cient variation in color. The white patch in the case of cast images with
highlights. Our algorithm shows a greater stability.

p1 = 7:787p+ 16=116 for p6 0:008856;

p1 = p1=3 for p¿ 0:008856;

r1 = 7:787r + 16=116 for r6 0:008856;

r1 = r1=3 for r ¿ 0:008856:
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