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ABSTRACT
The growing production of digital content and its dissemination
across the worldwide web require efficient and precise manage-
ment. In this context, image quality assessment measures (IQAMs)
play a pivotal role in guiding the development of numerous image
processing systems for compression, enhancement, and restoration.
The structural similarity index (SSIM) is one of the most common
IQAMs for estimating the similarity between a pristine reference
image and its corrupted variant. The multi-scale SSIM is one of
its most popular variants that allows assessing image quality at
multiple spatial scales. This paper proposes a two-stage genetic
programming (GP) approach to evolve novel multi-scale IQAMs,
that are simultaneously more effective and efficient. We use GP
to perform feature selection in the first stage, while the second
stage generates the final solutions. The experimental results show
that the proposed approach outperforms the existing MS-SSIM.
A comprehensive analysis of the feature selection indicates that,
for extracting multi-scale similarities, spatially-varying convolu-
tions are more effective than dilated convolutions. Moreover, we
provide evidence that the IQAMs learned for one database can be
successfully transferred to previously unseen databases. We con-
clude the paper by presenting a set of evolved multi-scale IQAMs
and providing their interpretation.
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1 INTRODUCTION
The dynamic rise of social media and its penetration into our daily
lives causes a continuously growing production of digital content
and its dissemination across the world wide web. About 58% of the
world’s population uses social media, and the average daily usage
is about two and a half hours [1]. As of 2021, there are over 1 billion
active Instagrammers, half of whom share their life moments daily
through the stories feature [2]. Digital images and video happen
to emerge as the most favored medium for communication and
information sharing: recent data suggest that almost 70% of the
users rated video as their number one source of information, and
75% of all video views come from mobile devices [3]. These facts are
not surprising - taking a photo, recording a video, or performing a
live stream to any audience, no matter the scale, is now a matter of
a few clicks. Forbes estimates that online videos will make up more
than 82% of all consumer internet traffic by 2022 [4]. Therefore,
efficient and precise methods for digital imagery management are
in high demand. In this context, compression algorithms play an
essential role in saving storage space and bandwidth for transfer-
ring large amounts of imagery and video information (from now
on, called media) through the Internet. However, the compression
usually comes at the cost of visual quality degradation. For example,
compression artifacts produce an unpleasant viewing experience
and can deteriorate computer-vision (CV) systems’ performance.
To counteract this problem, the image processing (IP) community
has developed numerous techniques to remove the undesirable ar-
tifacts from images that degrade the visual quality and reduce their
usefulness for the underlying tasks [5, 16, 43, 45].

Both input and output media need to be evaluated for the per-
ceived visual quality to design compression and restoration algo-
rithms properly. Moreover, such evaluation must be ideally auto-
matic (i.e., without human intervention), precise and efficient. The
research community proposed several image quality assessment
measures (IQAMs) to solve this problem [12, 17, 19, 20, 25, 27, 35–
38, 42], notable among which is the structural similarity index
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(SSIM) inspired by the intrinsic functioning of human visual sys-
tem (HVS). Notice that IQAMs’ performance is usually assessed by
correlating their similarity scores with those provided by human
observers; to this extent, Spearman’s rank correlation coefficient
(SRCC) is preferred [36]. Due to its precision, computational effi-
ciency, and mathematical formulation’s interpretability, the SSIM
considerable large attention in the community and motivated sev-
eral related measures [20, 37, 38, 42]; a detailed review of SSIM can
be found in [33]. The multi-scale SSIM (MS-SSIM) is one of the
most popular and commonly used among the existing measures.
The MS-SSIM consists of aggregating the similarity components at
different spatial scales (a.k.a. multi-scale context), the latter being
simulated through a pooling operator. From another perspective,
MS-SSIM can be seen as a compact deep convolutional neural net-
work (DCNN) made of 5 sequential blocks of convolutional and
pooling layers. However, recent empirical evidence in the CV field
indicates that pooling layers can cause a significant loss of poten-
tially relevant spatial information when performing multi-scale
context aggregation. This produces a degradation of the systems’
performance on different tasks [23, 24, 40] and can affect image qual-
ity assessment (IQA). In this study, genetic programming (GP) [21]
is proposed to generate a novel MS-SSIM. Such an MS-SSIM should
be more precise while maintaining the computational efficiency
and the simplicity of mathematical formulation. Moreover, moti-
vated by the up-to-date findings in CV about the harmful effects
of pooling layers and to simplify the measure, we redesign the
transition mechanism between different spatial scales by replacing
the pooling layers with dilated convolutions and spatially-varying
convolutional kernels. Particularly, in this work, we show that:
• GP can be successfully applied to evolve SSIM-like measures;
• the evolved measures can improve the correlation with the
subjective evaluation provided by human observers;
• the evolved measures can be generalized to other problems;
• the evolved measures can achieve a lower computational
complexity when compared to the original MS-SSIM;
• the mathematical formulation of the evolved measures al-
lows for human-interpretability;
• the most effective approach to aggregate multi-scale spa-
tial information is through spatially-varying convolutional
kernels.

The paper is organized as follows: Section 2 introduces the neces-
sary theoretical background by providing an overview of IQA, SSIM
and the different approaches to aggregate multi-scale contextual
information. Section 3 describes how new IQAMs based on SSIM
can be formulated using GP; in particular, the considered terminal
and function sets are provided and explained. Section 4 presents
the research objectives, characterizes the datasets used in our study,
broaches and discusses the hyper-parameters used, and shows the
results obtained. Finally, Section 5 draws the main conclusions and
proposes future research ideas.

2 BACKGROUND
2.1 Image quality assessment (IQA)
For those applications in which humans ultimately consume the
media, the most appropriate method for media quality assessment is
through human visual system (HVS). In other words, by involving

people to evaluate the perceived quality of the media subjectively.
However, in practice, subjective evaluation happens to be complex,
time-consuming, expensive, and sensitive to the experimental de-
sign [29]. To overcome these limitations, several researchers have
proposed objective IQAMs that can automatically (i.e., without
human intervention) estimate the perceived visual quality.

Typically, FR-IQAMs (like SSIM) estimate a standardized similar-
ity score given a pair of reference-distortion images. The precision
of a given FR-IQAM is defined as the correlation between these
scores and the subjective evaluation provided by human observers -
such as the mean opinion score (MOS) and differential MOS (DMOS)
- on different IQA databases. A larger correlation with the subjec-
tive evaluation is desirable [29]. Additionally, other concerns, like
measures’ complexity, must be considered.

2.1.1 Single-scale structural similarity index (SS-SSIM). The struc-
tural similarity index (SSIM) [36] is by far the most popular. It
is classified as a full-reference IQAM (FR-IQAM) since it directly
compares a pristine reference image with its potentially corrupted
variant (like an image subject to JPEG compression). The SSIM was
inspired by the theory that HVS is particularly suited for extract-
ing structural information from the scenes. By explicitly including
HVS’s characteristics, the authors were able to introduce a whole
new paradigm in the IQAMs field. The high precision, allied to a
simple mathematical formulation, assured SSIM’s preeminence as
a proxy evaluation for human assessment in different IP and CV
applications [10, 11, 34, 44].

Formally, SSIM performs a comparison between a pristine refer-
ence image 𝑥 and a potentially corrupted version of the same image
𝑦 based on three independent similarity components extracted at
a single spatial scale (resolution): luminance, contrast, and struc-
ture. Components’ extraction is performed by sliding an 11x11
symmetric Gaussian kernel with a standard deviation of 1.5 across
reference-distortion pairs. The SSIM is computed as an aggregation
of locally estimated components. Each image’s patch average 𝜇 rep-
resents the luminance information. Thus the luminance comparison
is:

𝑙 (𝑥,𝑦) =
2𝜇𝑥 𝜇𝑦 +𝐶1
𝜇2𝑥 + 𝜇2𝑦 +𝐶1

, (1)

where 𝐶1 is a small quantity introduced for numerical stability, as
are 𝐶2 and 𝐶3 in the following equations for the other components.
The three quantities are given as functions of the dynamic range of
the pixel values 𝐿 (𝐿 = 255 for 8 bits/pixel gray-scale images) and two
scalar constants 𝐾1 ≪ 1 and 𝐾2 ≪ 1 (traditionally set to 0.01 and
0.03, respectively): 𝐶1 = (𝐾1𝐿)2, 𝐶2 = (𝐾2𝐿)2, 𝐶3 = 𝐶2/2. Contrast
is represented by using each image’s patch standard deviation 𝜎 .
Consequently, the contrast-based comparison is:

𝑐 (𝑥,𝑦) =
2𝜎𝑥𝜎𝑦 +𝐶2
𝜎2𝑥 + 𝜎2𝑦 +𝐶2

, (2)

The structure element is represented through the standardization
of each image with the corresponding mean and standard deviation.
Comparison of the structure can be obtained through the inner
product of these signals:

𝑠 (𝑥,𝑦) =
𝜎𝑥𝑦 +𝐶3
𝜎𝑥𝜎𝑦 +𝐶3

, (3)
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where:

𝜎𝑥𝑦 =
1

𝑁 − 1

𝑁∑︁
𝑖=1
(𝑥𝑖 − 𝜇𝑥 ) (𝑦𝑖 − 𝜇𝑥 ) . (4)

Finally, the three components are combined into a unique expres-
sion that is weighted with exponents 𝛼 , 𝛽 , and 𝛾 :

𝑆𝑆𝐼𝑀 (𝑥,𝑦) = [𝑙 (𝑥,𝑦)]𝛼 · [𝑐 (𝑥,𝑦)]𝛽 · [𝑠 (𝑥,𝑦)]𝛾 . (5)

2.1.2 Multi-scale structural similarity index (MS-SSIM). Initially,
the SSIM was mainly used at a single spatial scale (SS-SSIM). In
practice, however, subjective evaluation is highly dependent on the
numerous viewing conditions. These include the environment illu-
mination, the conditions of the displaying device, such as display’s
resolution and the response time, the distance from the display
to the observer, network bandwidth and latency, etc. The single-
scale approach may only be appropriate for specific settings in this
context. Notably, SSIM, like several other IQAMs, is significantly
sensitive to the spatial scale selection [18, 38]. To incorporate view-
ing conditions’ diversity, Wang et al. [38] proposed a multi-scale
extension of SSIM (MS-SSIM). MS-SSIM aggregates the inner simi-
larity indexes calculated from a range of 5 different spatial scales
(resolutions). To transit between spatial scales, MS-SSIM down-
samples the reference-distortion pairs through pooling. Empirical
findings constantly show that MS-SSIM tends to outperform its
single-scale counterpart on several tasks by a significant margin.
Formally MS-SSIM is defined as:

𝑀𝑆𝑆𝑆𝐼𝑀𝑥,𝑦 = [𝑙𝑀 (𝑥,𝑦)]𝛼𝑀

𝑀∏
𝑗=1
[𝑐 𝑗 (𝑥,𝑦)]𝛽 𝑗 [𝑠 𝑗 (𝑥,𝑦)]𝛾 𝑗 . (6)

By taking the reference-distortion pair as the input (𝑥 and 𝑦, re-
spectively), the measure computes, at each scale 𝑗 , the contrast
and structural similarities (𝑐 𝑗 and 𝑠 𝑗 , respectively). When changing
from scale 𝑗 to 𝑗 + 1, a low-pass filter, followed by a down-sampling
operation with a factor of 2, is applied over the reference-distortion
pair. The luminance similarity, denoted by 𝑙𝑀 (𝑥,𝑦), is computed
only at the last scale (i.e.,𝑀 = 5). The exponents 𝛼𝑀 , 𝛽 𝑗 , and 𝛾 𝑗 are
used to adjust the relative importance of different components. The
overall cross-scale evaluation is then given by a weighted product
of the above-mentioned components extracted at different scales.

For a reader familiar with the field of deep learning (DL), it
becomes clear that MS-SSIM is, in practical terms, a compact human-
interpretable DCNN made of 5 sequential blocks of convolutional
and average pooling layers. This observation motivated us to bring
state-of-the-art findings in the CV field to design a novel MS-SSIM.
Section 2.2 provides the necessary background for that.

2.2 Multi-scale spatial information
Current deep learning (DL) systems are made of sequential stacks
of similar blocks. These typically comprise convolution, normal-
ization, and activation layers, interleaved with pooling layers that
perform spatial down-sampling of the input feature maps [22, 28].
The latter are necessary to (i) reduce the feature maps’ spatial di-
mensionality in such a way enabling a significant improvement in
terms of systems’ computational efficiency, and (ii) integrate the
multi-scale contextual information by enlarging systems’ recep-
tive field, therefore embracing greater global context in the scene.

However, recent evidence suggests that pooling can cause a signifi-
cant loss of potentially relevant spatial information [23, 24, 39, 40],
therefore degenerating systems’ performance on the underlying CV
tasks. This facet was found to be particularly harmful to classifying
natural images, which tend to exhibit many objects whose identities
and relative configurations are important for understanding the
scene.

Dilated (a.k.a. atrous) convolutions can be employed to avoid
the destructive effects of pooling while maintaining the ability
to aggregate multi-scale contextual information without losing
resolution. In simple terms, a dilated convolution is a traditional
convolution except the filter’s resolution is increased by inserting
zeros between two successive values along each spatial dimension.
It is a simple yet powerful technique to make filters’ receptive field
larger without impacting computation or the number of parameters.
Several studies point out that dilated convolutions outperform their
non-dilated counterparts on several complex CV tasks without
increasing the model’s depth or complexity [13, 14, 39, 40].

Another approach to aggregating the multi-scale contextual in-
formation without losing resolution involves processing the input
feature map using convolution kernels with different spatial di-
mensions [15, 41]. The experimental evidence shows that such
an approach to learning features, called PyConv, has the poten-
tial to impact nearly every CV task. In particular, Duta et al. [15]
demonstrated that PyConv significantly improve image classifica-
tion, video action classification/recognition, object detection, and
semantic image segmentation/parsing.

3 THE PROPOSED APPROACH
In this study, GP is used to evolve novel multi-scale IQAM, which
uses dilated convolutions and spatially varying kernels to aggre-
gate multi-scale similarities. Specifically, we propose to evolve GP
individuals using a set of terminal symbols made of aggregated in-
ner similarity indexes, extracted at different spatial scales through
dilated convolutions and spatially-varying kernels (as motivated
and described in Section 2.2). In this way, the GP individuals are
intended to represent potentially new IQAMs that aggregate multi-
scale contextual information without losing input images’ resolu-
tion. Ideally, these new measures will better reflect people’s subjec-
tive evaluation and, when compared with the traditional MS-SSIM,
they will not increase the overall computational complexity. In gen-
eral terms, the proposed approach is divided into two sequential
stages. First, we use GP to estimate the subset of the most promi-
nent spatial scales (i.e., features). Second, we redesign the MS-SSIM
by means of GP using previously estimated spatial scales.

3.1 Terminals
In the proposed approach, GP individuals aggregate inner similarity
indexes extracted at different spatial scales, these being simulated
through different dilation rates and window sizes. For the first stage,
a large terminal set 𝑇𝑠𝑡𝑎𝑔𝑒1 is generated to perform feature selec-
tion. The pseudo-code in 1 illustrates how 𝑇𝑠𝑡𝑎𝑔𝑒1 was obtained.
Each individual terminal in𝑇𝑠𝑡𝑎𝑔𝑒1 is a vector which size equals the
number of reference-distortion pairs of a given IQA database, and
each value represents a given spatially-aggregated similarity com-
ponent, obtained using a𝑤𝑖 ×𝑤𝑖 Gaussian kernel, with dilation rate
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of 𝑑 𝑗 , for a given reference-distortion pair. From the pseudo-code,
we can see that three spatially-aggregated similarity components
are computed for the combination of dilation and window-size.
Therefore, the cardinality of the terminal set 𝑇𝑠𝑡𝑎𝑔𝑒1 is given by
#𝑇𝑠𝑡𝑎𝑔𝑒1 = #𝐹𝑆𝑆𝐼𝑀 ×#(𝑊 ) ×#(𝐷) = 3×6×9 = 162. Although, in DL
literature, the alternative multi-scale context aggregation strategies
has been explored independently (i.e., with dilated convolutions or
with spatially-varying kernels), we decided to generate terminals
that blend these two approaches. The rationale behind this decision
is to leave GP deciding, in a data-driven manner, which form of
multi-scale context aggregation is preferred given the optimization
task at hand. We use the symbol 𝑇𝑠𝑡𝑎𝑔𝑒2 to distinguish the subset
of 𝑇𝑠𝑡𝑎𝑔𝑒1 which is used in the second stage of the proposed GP
approach.

Algorithm 1 GP terminal set composition
Require:
(𝑋, 𝑌 ) ⊲ reference-distortion in a given IQA-DB
𝐺 (𝑤, 𝑑) ⊲ 𝑤 ×𝑤 kernel with dilation of 𝑑
𝐹𝑆𝑆𝐼𝑀 ← [𝑙, 𝑐, 𝑠] ⊲ SSIM’s similarity components

Ensure:
𝑇𝑠𝑡𝑎𝑔𝑒1 ← [] ⊲ GP terminals
𝑊 ← [3, 5, 7, 9, 11, 13] ⊲ window-sizes
𝐷 ← [1, 2, 3, 4, 5, 6, 7, 8, 9] ⊲ dilation rates
for𝑤𝑖 ∈𝑊 do

for 𝑑 𝑗 ∈ 𝐷 do
𝐺 ′ = 𝐺 (𝑤𝑖 , 𝑑 𝑗 ) ⊲ 𝑤𝑖 ×𝑤𝑖 kernel with dilation of 𝑑 𝑗
for 𝑓𝑠𝑠𝑖𝑚 ∈ 𝐹𝑆𝑆𝐼𝑀 do

𝑡 = 𝑓𝐺
′

𝑠𝑠𝑖𝑚
(𝑋,𝑌 ) ⊲ similarity component using 𝐺 ′

𝑡 = 𝑡 .𝑚𝑒𝑎𝑛((−2,−1)) ⊲ spatially-aggregates 𝑡 ′
𝑇𝑠𝑡𝑎𝑔𝑒1.append(𝑡)

end for
end for

end for

3.2 Functions
The original formulations of SSIM and MS-SSIM can be subject
to a probabilistic interpretation. In such a view, the overall simi-
larity can be interpreted as the probability that the image pair is
simultaneously similar according to three different “sub-similarities”
(luminance-, structural-, and contrast- based). By assuming these
similarities are independent, the overall probability is, in practice,
computed through the multiplication rule. Furthermore, each sub-
similarity probability is first reprocessed through an exponential
function that modifies its impact: for example, given a base in the
0 to 1 range, a very low exponent will yield a sub-similarity prob-
ability that approaches 1, regardless of the starting value. As a
consequence of the value being close to 1, its impact on the overall
similarity is significantly reduced. In this work, we have leveraged
and expanded upon such a concept by including the addition opera-
tion among the set of functions that a learned similarity expression
can exploit. In the aforementioned probabilistic interpretation, us-
ing the addition means that the overall similarity can be seen as
the probability that the image pair is similar according to either
different similarities. In practice, the set of functions 𝐹 includes two

arithmetic operators ({+, x}), and an exponentiation operator that
raises an input terminal to the power of a given exponent (𝑥𝑖 , 𝑖 ∈
[0.05, 0.15, 0.3, 0.5, 0.8, 1/0.8, 1/0.5, 1/0.3, 1/0.15, 1/0.05]).

3.3 Limit complexity without performance
deterioration

An extensive evolutionary search inevitably implies solutions’
growth in terms of complexity and can cause overfitting [30, 32].
We use EDDA [9, 31] to seed the GP population in this context.
In a nutshell, the initial population is created by using the best
individuals extracted from a set of independent sub-populations
(a.k.a. demes), which run under distinct evolutionary conditions
(i.e., parameters). Demes are left to evolve for a few generations,
such that the elite solutions do not grow significantly in size when
they are extracted. The abundance of numerous independent sub-
populations allows performing a broad exploration of the search
space efficiently, allowing high-quality initial solutions to be found.
Moreover, EDDA allows redistributing the computational effort
towards initial exploration, followed by solutions’ refinement in
the main evolutionary process. For example, given a budget of 1M
fitness evaluations and a population of 1000 solutions, GP with the
traditional ramped half-and-half (RHH) initialization takes 1000
generations to complete one run. This factor implies that the final
solutions will be exposed to the variation operators 1000 times.
In EDDA, assuming a configuration with 1000 demes of 100 indi-
viduals each, evolved for five generations, the main evolutionary
process takes just 500 generations to complete one run with 1M
fitness evaluations. This aspect implies that the final solutions will
be exposed to the variation roughly twice as less (505 times), there-
fore presenting a smaller size. Moreover, the empirical evidence
shows that the solutions obtained using EDDA happen to generalize
significantly better than several traditional methods [9, 31].

Another approach for limiting the complexity of the final solu-
tions is to use hoist mutation as a pruning method. Specifically, we
propose to split the main evolutionary process (i.e., after EDDA
initialization) into two halves: the first uses a combination of swap
crossover and subtree mutation, whereas the second uses hoist
mutation only. The experimental results show that this separation
allows for reducing individuals’ size while improving their general-
ization ability.

3.4 Fitness function
Given that we want the GP system to maximize solutions’ associa-
tion with the subjective evaluation provided by human observers,
we formalized the fitness function 𝑓 as the modulus Spearman’s
rank correlation coefficient (SRCC) between both measures - the
subjective evaluation and the respective outcome of GP individuals.
SRCC is a widely accepted and used evaluation measure for IQA
metrics in the community [29, 36]. In such a way, 𝑓 : 𝑆 → [0, 1],
with higher values representing higher similarity with the subjec-
tive evaluation. Specifically, let𝑚𝑠𝑠𝑠𝑖𝑚𝑔𝑝 be a candidate multi-scale
IQAM formulated by means of GP, (𝑋, 𝑌 ) a tuple of reference-
distortion pairs and𝑀𝑂𝑆 the respective target (mean opinion score),
the fitness of𝑚𝑠𝑠𝑠𝑖𝑚𝑔𝑝 is computed as 𝑓

(
𝑚𝑠𝑠𝑠𝑖𝑚𝑔𝑝 (𝑋, 𝑌 ), 𝑀𝑂𝑆

)
.
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Table 1: Summary features of the considered IQA databases.
The columns𝑊𝑖x𝐻𝑖 and D/𝐻𝑖 stand for image resolution and
viewing distance in terms of the image height, respectively.
References, Distortions, and Pairs refer to the number of
reference images, distortion types, and resulting reference-
distortion pairs, respectively.

Features TID2013 [26] VDID2014 [18]
𝑊𝑖x𝐻𝑖 512×384 768×512, 512×512
D/𝐻𝑖 3 4, 6
#References 25 8
#Distortions 24 3
#Pairs 3000 160

4 EXPERIMENTS
4.1 Data
The proposed approach is assessed on two well-known databases to
assess image quality aspects. In this sub-section, the reader can find
their detailed description and instructions on how these were used.
Both databases were created using reference images that account for
diverse visual scenes and contain several different types of distor-
tion with different intensity degrees. The reference-distortion pairs
were subjectively evaluated by involving hundreds of volunteers in
a controlled experimental environment.

We train our approach using one of the biggest and most popular
databases for image quality assessment (IQA) - TID2013 [26]. In
the first stage, the input reference-distortion pairs are partitioned
by reference images into a training, validation, and test sets. The
most prominent spatial scales are chosen based on the validation
partition. In the second step, the training and validation partitions
are merged. Moreover, to assess the generalization ability of the
evolved measures to previously unseen viewing conditions, we
use a popular dedicated viewing distance-changed image database
VDID2014 [18]. Unlike in TID2013, where a convenient (preferred)
distance to a monitor was used to compute the similarities be-
tween the reference-distortion pairs, the subjective assessment in
VDID2014was performed at two groups of typical viewing distances
and image resolutions. The latter is motivated by the fact that the
amount of extractable information in a visual scene depends on the
viewing distance and image resolution. In this sense, we explicitly
incorporate such an important aspect as the varying viewing dis-
tance in our study. Table 1 provides a detailed description of the
IQA databases that were used.

4.2 Experimental settings
The experiments were repeated 30 times (runs) to provide an out-
right statistical analysis. A different seed for the pseudo-random
numbers generator was used in each run to partition the data and
initialize and execute the algorithm. The EDDA initialization tech-
nique was used with 200 individuals per deme (200𝐸𝐷𝐷𝐴), each left
to evolve for five generations (𝐸𝐷𝐷𝐴5) [31]. During the EDDA ini-
tialization, subtree mutation was the only variation operator being
used to foster the search space’s exploration. The selection was the
tournament. During the EDDA initialization, random selection pres-
sure in [0.05, 0.2] interval was generated for every deme, whereas

during the main evolutionary process (i.e., after the initialization), a
pressure of 10% was used. Contrarily to the traditional 5%, a higher
pressure was considered to foster convergence given the relatively
small amount of generations. Once the population was initialized,
the first half of GP’s main evolutionary process (i.e., the first ten
generations) was conducted using the swap crossover and the sub-
tree mutation, with probabilities of 0.7 and 0.3, respectively. In the
second half of the process (i.e., the remaining ten generations), the
hoist mutation was used, and the mutation’s probability was in-
creased to 1.0 to foster trees’ pruning (i.e., no crossover was used).
Table 2 provides a complete enumeration of the parameters used
in this study. The hyper-parameters were selected following the
findings from the literature to avoid a computationally demanding
tuning phase.

We train our system using the TID2013 [26] IQA database. In the
first stage, the input reference-distortion pairs are partitioned by
the reference images into train, validation, and test sets containing
64%, 16%, and 20%, respectively. The partition is 80% and 20% for
training and test sets in the second stage, respectively. Moreover,
the evolved solutions are assessed for generalization ability on
a previously unseen database VDID2014 (which is also distance-
changed).

We rely on GPOL [7] to conduct our experiments. GPOL is a
felxible and efficient multipurpose optimization library in Python
that covers a wide range of stochastic iterative search algorithms,
including GP. Its flexible and modular implementation allows for
solving optimization problems like the one in this study.

4.3 Experimental findings
Section 4.3.1 shows the findings regarding the first stage, which
aims at estimating the subset of the most prominent spatial scales
(i.e., features). The findings regarding the second stage, consisting
of a final estimation of MS-SSIM by means of GP, can be found in
Section 4.3.2.

4.3.1 Stage 1. We computed the frequency of the input terminals
in the elite GP trees as a proxy for their worth to identify the most
prominent approach for multi-scale contextual information extrac-
tion. Figure 1 shows the most relevant combinations of the dilation
rates and the window sizes, regardless of the similarity component.
From the figure, it becomes clear that the most prominent approach
for extracting the multi-scale contextual information for FR-IQAMs
consists of using spatially-varying Gaussian kernels with a dilation
rate of 1 (consider the top 5 bars). Moreover, there is an indication
that smaller window sizes are preferred. These findings appear
consistent with the nature of artifacts introduced in the IQAM data-
base, which consists of local degradations whose appearance is well
described by convolutional kernels with smaller spatial resolution.
To dig deeper, we analyze the frequency distribution of different
dilation rates at each window size. Figure 2 shows that, among all
the possible combinations, a dilation rate of 1 happens to be the
most frequent for every window size considered in our experiments,
except for the largest window (13). Interestingly, the greater the
spatial size of the Gaussian kernel, the higher is the frequency of
the two largest dilation rates (8 and 9).
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Table 2: Summary of the hyper-parameters. Note that 𝑃 (𝐶) and 𝑃 (𝑀) indicate the crossover and the mutation probabilities.

Parameters Values
№runs 30
№ generations {5𝐸𝐷𝐷𝐴 , 20}
Population’s size {200𝐸𝐷𝐷𝐴 , 1000}
Terminals {𝑇𝑠𝑡𝑎𝑔𝑒1, 𝑇𝑠𝑡𝑎𝑔𝑒2}
#Terminals {stage1 = 162, stage2 = 15}
Functions (𝐹 ) {+, x, 𝑥𝑖 }, 𝑖 ∈ [0.05, 0.15, 0.3, 0.5, 0.8, 1/0.8, 1/0.5, 1/0.3, 1/0.15, 1/0.05]
Initialization 𝐸𝐷𝐷𝐴5 subtree mutation and swap crossover
Selection tournament with 10% pressure
Crossover swap crossover
Mutation {subtree mutation, hoist mutation}
𝑃 (𝐶) {0.7, 0.0}
𝑃 (𝑀) {0.3, 1.0}
Stopping criteria № generations

The analysis of the two figures allows us to conclude that we can
significantly simplify the terminal set by using only five spatially-
varying Gaussian kernels with a dilation rate of 1, whose window
sizes are 3, 5, 7, 9, and 11. Given that there are three similarity
components to be extracted at each spatial scale, the terminal set for
the second stage 𝑇𝑠𝑡𝑎𝑔𝑒2 will be reduced, therefore, to 15 terminals
(5 × 3).

Figure 3 shows the learning curves during the first stage. The
sub-figure on the left shows elite individuals’ averaged fitness as
the SRCC (on the vertical axis) across the generations (on the hori-
zontal axis). The sub-figure on the right shows how elites’ length
(on the vertical axis) progresses through the generations (on the
horizontal axis). The gray vertical line divides the evolutionary pro-
cess into two parts. The first part (on the left) uses a combination of
swap crossover and subtree mutation (with probabilities of 70 and
30%, respectively). The second part only uses the hoist mutation to
prune the trees. The red line regards the traditional MS-SSIM’s test
fitness and length (in the left and right sub-figures, respectively).
By looking at the figure, we conclude that:

• the proposed GP system outperforms standard MS-SSIM at
modeling the perceived visual quality of the media;
• the proposed GP system converges to a point of stability and
presents a small gap with the training loss;
• the use of hoist mutation allows to marginally improve the
individuals’ generalization ability while noticeably reducing
their size;
• the number of generations we defined seems to be a good
compromise for the underlying optimization task; therefore,
we will stick to them in the second stage;
• although elite individuals’ length appears to be significantly
higher, the mathematical simplification of evolved solutions
shows that GP can effectively evolve solutions with a lower
complexity (to be shown in Section 4.3.3)

To support the findings above, we used the Wilcoxon rank-sum
test for pairwise data comparison under the null hypothesis that
the differences between two related paired samples are symmet-
rically about zero. It is worth pointing out that we reject the null
hypothesis when the p-value of the test is smaller or equal to a 5%
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Figure 1: Most frequently used combinations of the dilation
rate and the window size in elite GP individuals during the
first stage.

significance level. Concretely, we compared the SRCC achieved by
genetically-evolved multi-scale IQAMs against MS-SSIM on unseen
data partitions of TID2013. The records for the proposed approach
were taken on the last generation of every run. The p-value of
the test is less than 0.05, which demonstrates that our approach
statistically outperforms MS-SSIM.

4.3.2 Stage 2. The experimental findings of the first stage allowed
us to conclude that GP can effectively aggregate similarity compo-
nents at multiple scales using mainly five spatially-varying Gauss-
ian kernels with a dilation rate of 1. In this stage, we repeat the
experiments using only the most prominent features that model
multi-scale contextual information.

Figure 5 shows the learning curves of the second stage. Like in
Figure 3, the sub-figure on the left shows elite individuals’ fitness,
while the sub-figure on the right shows how elites’ length grows.
The gray vertical line denotes the transition point when only the
hoist mutation is used. The red line indicates the baseline MS-SSIM.
By looking at the figure, we could reinforce the observations found
in Figure 3. The p-value of the Wilcoxon rank-sum test for pairwise
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Figure 2: Distribution of different dilation rates for each
window size during the first stage.
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Figure 3: Elite individuals’ fitness (on the left) and complex-
ity (on the right) during the first stage. The gray vertical line
divides the main evolutionary process according to the vari-
ation strategy (subtree mutation and swap crossover on the
left, hoist mutation on the right). The red line regards the
traditional MS-SSIM.
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Figure 4: Most frequently used terminals in elite GP individ-
uals during the second stage.
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Figure 5: Elite individuals’ fitness (on the left) and complexity
(on the right) during the second stage.

data comparison demonstrated, once again, that our approach is
statistically better than MS-SSIM. Nonetheless, it is necessary to
note a slight decrease in elites’ generalization ability and a mild
increase in their length. Such a phenomenon has an explanation.
The selection of the most prominent features based on frequency
is a mere approximation and is, therefore, incomplete. Although
the feature selection in stage 1 was necessary to brace final solu-
tions’ interpretability under the light of full-reference image quality
assessment, it deprived GP of potentially useful, although dispens-
able, building blocks to achieve superior performance. Therefore,
the evolution created individuals of relatively higher complexity
(assessed by length) than in the first stage.

Figure 4 ranks the features in𝑇𝑠𝑡𝑎𝑔𝑒2 by their frequency. From the
figure, it becomes clear that the potentially most relevant features
in the GP-reformulated MS-SSIM comprise contrast and structural
similarities in the first place. These data-driven findings are consis-
tent with other works in the scientific literature, which analyzed
the individual contribution of luminance, contrast, and structure
for an effective SSIM-based IQAM [6, 8].

4.3.3 Evolved solutions and generalization. By following the prob-
abilistic interpretation introduced in Section 3.2, we can provide
some additional insights about the IQAMs evolved through GP. In
practice, our optimization process appears to favor describing the
overall similarity as the probability that the image pair is similar
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according to either similarities, instead of being simultaneously sim-
ilar according to different similarities. The addition operator, in fact,
appears in the final solutions with a significantly higher frequency
than the multiplication operator (more than three times as likely).
A couple of example solutions, after mathematical simplification,
are as follows:

𝑀𝑆 − 𝑆𝑆𝐼𝑀1 = 𝑠7
100
3 +

(
𝑠7

0.8 + 𝑙9
8000
3 + 𝑐7

160
3
)133.3

+ 𝑙9
8000
3 (7)

𝑀𝑆−𝑆𝑆𝐼𝑀2 = 𝑠5
400+

(
𝑙3
320 + 𝑐5

320
3
)8888.8

+𝑙11
8000
9 𝑙3

1000
3 +𝑐5320+𝑐5

400
9

(8)
Here, we refer to luminance, structure, and contrast similarity

between the reference and the distorted image as, respectively, 𝑙 , 𝑠 ,
𝑐 , and the subscript refers to window size. The first thing we can
observe by analyzing Equations 7 and 8 is that their structural form
happens to be simpler than MS-SSIM’s, here reported:

𝑀𝑆 − 𝑆𝑆𝐼𝑀 =

𝑙
(5)
11

𝛼
𝑐
(1)
11

𝛽1
𝑠
(1)
11

𝛾1
𝑐
(2)
11

𝛽2
𝑠
(2)
11

𝛾2
𝑐
(3)
11

𝛽3
𝑠
(3)
11

𝛾3
𝑐
(4)
11

𝛽4
𝑠
(4)
11

𝛾4
𝑐
(5)
11

𝛽5
𝑠
(5)
11

𝛾5

(9)

The superscript number in parentheses indicates the image scale
at which the similarity component is processed (in our case this is
always 1, and thus omitted from the formulation for better read-
ability). The number of individual components is, respectively, 11
for the traditional MS-SSIM, and 5 and 7 for our example solutions,
thus suggesting faster execution times. The actual processing cost
of each component is, however, a complex factor determined by
the downscaling operation (not necessary in our solutions), and
the convolution with a Gaussian filter of a given size on an input
whose size is determined by the downscaling operation itself. For
these reasons, we reserve for future work the direct measurement
of inference time of a direct implementation of our solutions.

Moreover, one can notice that the involved exponents are nu-
merically very high when compared to the values proposed by the
original SSIM authors [38] and by other SSIM-related optimization
approaches [6, 7]. When combining probabilities through the ad-
dition rule, however, the interpretation of the role of exponents
is inverted with respect to the use of multiplication. Suppose we
see the addition as an operator stacking individual contributions of
sub-similarities. In that case, a low exponent will still yield a value
approaching maximum probability 1, thus providing a significant
contribution to reaching the conclusion of high overall similarity.
Finally, it should be noted that, despite this probabilistic interpreta-
tion, no explicit constraint was put towards having an upper bound
on the overall similarity. In fact, we are mainly interested in the
ordinal relationship produced by the similarity expression, as well
represented by the Spearman rank correlation.

Table 3 shows the performance of the above-mentioned equa-
tions 7 and 8 on both training and test partitions of TID2013 and
the whole set of reference-distortion pairs of VDID2014; recall that
the latter was not used for training. The solutions were extracted
at the end of two independent evolutionary processes (i.e., two
different runs). The performance is reported as the SRCC between

Table 3: Performance of example individuals on TID2013
(both training and test partitions) and VDID2014. Recall that
the latter was not used in training. The performance of tra-
ditional MS-SSIM is reported in parenthesis.

Individuals TID2013𝑡𝑟𝑎𝑖𝑛 TID2013𝑡𝑒𝑠𝑡 VDID2014

𝑀𝑆 − 𝑆𝑆𝐼𝑀1
0.8034
(0.7856)

0.8043
(0.7634)

0.8962
(0.8995)

𝑀𝑆 − 𝑆𝑆𝐼𝑀2
0.7943
(0.7947)

0.8284
(0.7486)

0.9007
(0.8995)

solutions’ similarity scores and human observers’ subjective as-
sessment. In parenthesis, the performance of traditional MS-SSIM
is reported. The experimental results indicate that GP can evolve
multi-scale IQAMs that demonstrate better performance, besides
showing a low complexity. Moreover, the empirical evidence indi-
cates that the evolved measures can be successfully transferred to
other previously unseen databases (such as VDID2014).

5 CONCLUSIONS
MS-SSIM is among the most utilized full-reference image quality
assessment measures. It aggregates diverse similarity statistics at
multiple spatial scales, similar to how DCNNs aggregate multi-
scale context when solving a given CV task. This work proposed
the use of GP to generate novel multi-scale FR-IQAMs based on
MS-SSIM. Specifically, we define a new set of terminal symbols
to represent solutions, allowing us to foster a precise multi-scale
quality assessment. The approach is partitioned into two stages:
(i) use GP to estimate the subset of the most prominent spatial
scales (i.e., features), and (ii) redesign the MS-SSIM through GP
using previously estimated scales. To encourage small solutions,
we initialize GP’s population using the EDDA technique, and we
perform trees’ pruning through hoist mutation. The approach is
trained and assessed using a sizeable real-world database for IQA.
The evolved solutions are additionally evaluated for their capability
to generalize on other problems, using a dedicated distance-changed
IQA database. The experimental results show that the proposed
approach outperforms the traditional MS-SSIM. Also, the evolved
individuals present a lower degree of complexity. A comprehensive
analysis of the feature selection indicates that, for extracting multi-
scale similarities, spatially-varying convolutions are more effective
than dilated convolutions. Empirical evidence also shows that the
evolved measures can be successfully transferred to previously
unseen databases. The current work paves the way for a brand new
application area for evolutionary computation and GP in particular
to IP and CV: given the urge for precise and simultaneously efficient
IQAMs, several GP techniques can be applied to improve upon this
trade-off, such as bloat control methods and convergence-based
stopping criteria [30, 32]. Future work directions include exploring
other categories of feature-selection algorithms besides filters.
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