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Abstract: In recent years, research on techniques to identify and classify activities of daily living
(ADLs) has significantly grown. This is justified by the many application domains that benefit
from the application of these techniques, which span from entertainment to health support.
Usually, human activities are classified by analyzing signals that have been acquired from sensors.
Inertial sensors are the most commonly employed, as they are not intrusive, are generally inexpensive
and highly accurate, and are already available to the user because they are mounted on widely
used devices such as fitness trackers, smartphones, and smartwatches. To be effective, classification
techniques should be tested and trained with datasets of samples. However, the availability of
publicly available datasets is limited. This implies that it is difficult to make comparative evaluations
of the techniques and, in addition, that researchers are required to waste time developing ad hoc
applications to sample and label data to be used for the validation of their technique. The aim of
our work is to provide the scientific community with a suite of applications that eases both the
acquisition of signals from sensors in a controlled environment and the labeling tasks required when
building a dataset. The suite includes two Android applications that are able to adapt to both the
running environment and the activities the subject wishes to execute. Because of its simplicity and
the accuracy of the labeling process, our suite can increase the number of publicly available datasets.
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1. Introduction

In recent years, researchers have been increasingly interested in systems for human activity
monitoring based on machine learning techniques. In particular, the scientific community is paying
particular attention to the definition and experimentation of techniques that use inertial signals
captured by wearable devices to automatically recognize activities of daily living (ADLs) [1] and/or
promptly detect falls [2,3]. These techniques have proven to be effective in many application domains,
such as physical activity recognition and the estimation of energy expenditure [4,5], the monitoring of
Parkinson’s disease development [6], and the early detection of dementia disease [7].

Very recently, these techniques have been embedded in smartphone applications and rely
on data acquired by the hosted sensors [8]. For instance, the applications by Sposaro et al. [9],
Tsinganos et al. [10], Pierleoni et al. [11], and Casilari et al. [12] promptly detect falls; the application
by Reyes-Ortiz et al. [13] classifies ADLs; and the application by Rasheed [14] both detects falls and
classifies ADLs.

The success of these techniques depends on the effectiveness of the machine learning based
algorithm employed, which results in being penalized by at least two factors: (i) the lack of an
adequate number of public datasets to evaluate the effectiveness; and (ii) the lack of tools to be used to
record labeled datasets and thus increase the number of available datasets.
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Despite the strong interest in publicly available datasets containing labeled inertial data,
their number is still limited. Casilari et al. [15] and Micucci et al. [16] analyze the state of the
arts and provide a nearly complete list of those currently available, which includes, for example,
UniMiB SHAR [16], MobiAct [17], and UMAFall [18]. For this reason, many researchers experiment
with their techniques using ad hoc built datasets that are rarely made publicly available [19–21].
This practice makes it difficult to compare in an objective way the several newly proposed techniques
and implementations because of a lack of a common source of data [16,21–23].

Almost none of the applications used to collect data are made publicly available [24]. To the
authors’ knowledge, the only exception is that used in the Gravity project, which, however, records falls
only [25]. Thus, we searched for applications that also record inertial data in well-established digital
marketplaces, such as Android’s Google Play Store [26], Apple’s App Store [27], and Microsoft’s
Windows Phone App Store [28]. We decided to focus on this market because we were interested in
smartphones and smartwatches, and thus we neglected all the applications, such as that presented
in [29], that take into consideration wearable devices not equipped with a mobile operating system.
In the marketplaces we explored, we found some applications for registration, but all of them presented
some limitations, for example, the kind of sensors used as the data source (e.g., G-sensor Logger [30]),
the lack of support for labeling (e.g., Sensor Data Logger [31]), and the possibility of recording only
one type of activity at each registration (e.g., Sensor Log [32]).

In this article, we present UniMiB AAL (Acquisition and Labeling), an Android suite that provides
support for the acquisition of signals from sensors and their labeling. The suite is available for
download from the following address http://www.sal.disco.unimib.it/technologies/unimib-aal/ [33].
The suite can manage the sensors hosted by both an Android smartphone and, if present, a paired
Wear OS smartwatch. The suite is composed by two applications: acquisition, which collects signals
from the available sensors while a human subject is performing activities, and labeling, which allows
the user to specify which type of activity he/she is carrying out, such as walking, running, or sitting.
The two applications are designed to run on two different smartphones; thus the user can specify
each time an activity performed and its beginning and end timings using a smartphone without
having to handle the other smartphone that is acquiring the data. This solution allows signals and
assigned labels as synchronous as possible with the exact activity carried out by the subject to be
obtained. Indeed, the smartphone that records signals is not moved from its position when the subject
specifies the beginning and the end of each activity with the labeling smartphone. The suite discovers,
independently of the hosting device, the available sensors and all their settings. The definitions of the
types of activities that the user is requested to perform are easily configurable, as their definitions are
stored in external files. Moreover, UniMiB AAL also collects information related to the sensor types
and sampling rates that can be used to perform any kind of normalization that may be required to
standardize the data with other data acquired with different devices. Finally, in addition to the use for
which the suite was designed, it can also be used as a tool to label data from wearable devices that
are not directly connected with smartphones and that provide data from different kinds of sensors,
including those related to health. Because these devices are widely used, this could allow a potential
amount of labeled data to be obtained. This can be achieved by placing the device (smartphone or
smartwatch) on which the acquisition application is running next to the wearable device. The data
acquired by the two devices is then analyzed in order to identify time series that refer to the same
activity. The labels captured by the labeling application are then assigned to the wearable device
data on the basis of these analyses. If the wearable device can be synchronized with a reference
time (e.g., through the Network Time Protocol (NTP) [34]), only the labeling application is required,
because the labels can be assigned directly to the data acquired by analyzing the timestamps only.

The article is organized as follows. Section 2 discusses differences between some existing
applications and the UniMiB AAL suite; Section 3 describes the method that guided the design
and implementation of the suite; Section 4 describes the applications that are included in the UniMiB
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AAL suite; Section 5 describes how signals and labels are stored and managed; Section 6 provides
information about the usability tests we performed; finally, Section 7 sketches the conclusions.

2. Related Work

This section discusses some of the available mobile applications for data acquisition and labeling.
The search was performed on Google Scholar and Google Play Store, on July 15, 2018, considering
applications available from 2015 to the end of 2017 with the following keywords: “sensor recording”,
“sensor log”, “activity recognition”, and “sensor labeling activity”. In the case of Google Scholar,
we also added to these the keyword “Android”.

We looked for applications that are able to collect and label signals from sensors embedded in
a smartphone (and from a possibly paired wearable device), that provide the opportunity to select
the sensors to be used during recording, and that may support the user by showing the sequence of
activities he/she has to execute to be compliant with the design of a dataset collecting campaign.

Thus, in order to be considered, the applications had at least the following characteristics,
which made them usable and complete: (i) compliancy with the human–computer interaction (HCI)
guidelines [35] in order to guarantee both the applications’s correct use and its correct use by the
subjects; (ii) provision of the possibility to record signals from a wearable device in order to collect more
signals or signals from different positions; (iii) a selectable pool of sensors to be used for recording in
order to choose those most suitable for the current acquisition campaign; (iv) in the case of acquisition
campaigns with a sequence of predefined activities that the subjects have to perform, help provided
to the user proposing time after time the activity that he/she must carry out, in order to relieve
the user from having to remember the protocol (i.e., the sequences of activities) of the acquisition
campaign; and finally; (v) labeling and acquisition activities executed in different devices to obtain
signals and assigned labels as synchronous as possible with the exact activity carried out by the subject.
Executing the two activities on different devices allows the user not to have to move the device that
acquires when he/she specifies the beginning and the end of each activity from its position relative to
the device used for labeling.

We clearly did not consider applications that do not store the acquired signals, because these
were useless for our scope. We considered only applications that make the acquired data available for
offline processing related to the experimentation of activity recognition techniques. Moreover, we did
not exclude from our research applications that record signals only, that is, applications that do not
provide a built-in labeling feature.

At the end of the research, we found only seven applications that met the requirements. Table 1
summarizes their characteristics. We include the UniMiB AAL suite in the table in order to compare it
with the applications we found.

Table 1 includes the following information:

• App: The name of the application and its reference (i.e., the URL (Uniform Resource Locator) used
to download the application or a reference to the article presenting the application).

• Google Play Store: The availability of the application on Google Play Store.
• Source code: The availability of the source code of the application.
• Multi-devices (Wear OS): Support for recording sensors mounted on external devices such as

smartwatches equipped with Wear OS.
• Multi-sensors: The possibility of recording data acquired from a set of sensors that are not only the

inertial sensors.
• Sensor selection: The possibility to choose which sensors to use to record data.
• Labeling: The possibility to apply labels to the recorded data.
• Multi-devices (Acquisition and Labeling - Acq. & Lab.): The possibility to run the acquisition and the

labeling activities on different devices.
• List of activities: The possibility of supporting the user with the list of activities he/she has to

perform (i.e., the protocol defined by the acquisition campaign if defined).
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• Material Design Guidelines: Indicates if the application follows the HCI guidelines in order to meet
the requirements related to usability. In particular, because we considered Android applications
only, we checked if the application followed the Material Design Guidelines [36], which are a set
of usability guidelines for the Android environment.

Table 1. Sensor recording and labeling applications.

Application Google
Play Store

Source
Code

Multi-Devices
(Wear OS)

Multi-
Sensors

Sensor
Selection Labeling Multi-Devices

(Acq. & Lab.)
List of

Activities
Material Design

Guidelines

Activity Recognition Training [37] Yes — No Yes No Yes No No No
ExtraSensory [38] No Yes Yes Yes — Yes No No No
G-Sensor Logger [30] Yes — No No No No No No No
Sensor Data Collector [39] Yes — Yes Yes Yes Yes No No No
Sensor Data Logger [31] Yes — Yes Yes Yes No No No Yes
Sensor Log [32] No — No Yes Yes Yes No No No
Sensor Sense [40] Yes — No Yes Yes No No No Yes
UniMiB AAL [33] Not yet Yes Yes Yes Yes Yes Yes Yes Yes

All columns are populated with Yes, No, or — if the corresponding characteristic was respectively
present, not present, or unknown.

Some of the applications provided a very limited set of features. For example, G-Sensor
Logger [30] collects accelerations only, and Sensor Sense [40] acquires signals from only one sensor at a
time, which can be chosen by the user. On the other hand, there were also more advanced applications,
such as Sensor Data Logger [31], which allows signals to be registered from more than one sensor at a
time (chosen by the user) and which can be paired with a Wear OS device.

Apart from UniMiB AAL, only four applications allowed labeling of the acquired data:
Sensor Data Collector [39], Activity Recognition Training [37], ExtraSensory [38], and Sensor Log [32].

Sensor Data Collector and Activity Recognition Training are both available on Google Play Store.
Sensor Data Collector allows the user to specify the activity he/she is carrying out and his/her

environment (e.g., home or street). The application saves the data in an SQLite database, which is
stored in a non-public folder of the device.

Activity Recognition Training is an application designed to generate datasets that can be used
for activity recognition. The application allows the user to specify the beginning and the end of each
activity. The data are saved in a single text file stored in a public folder of the device. Each row in the
file is a pair: the sensor type and the corresponding acquired signal.

ExtraSensory and Sensor Log are not available on Google Play Store, despite that the latter was
present in the store until at least January 2018.

ExtraSensory is an open-source project, and the source code for both the server-side and the
Android application is available. The application was designed in order to build the ExtraSensory
Dataset [38] and was then released to ease further data collection. The application combines
unsupervised labeling (exploiting classifiers trained with the ExtraSensory Dataset) and self-reported
labels by the user, both before the actions and as a post-activity inquiry.

Sensor Log was developed to ease the process of collecting and labeling sensory data from
smartphones. The recorded signals are stored in an SQLite database and can be exported in CSV
(Comma-Separated Values) format.

All four applications supporting labeling, in addition to supporting the acquisition of signals
from inertial sensors, also allow data to be registered from other built-in sensors, such as temperature
and pressure. Of these four applications, only ExtraSensory and Sensor Data Collector allow signals to
be recorded from the sensors of both the smartphone and the possible paired Wear OS smartwatch;
only Sensor Data Collector and Sensor Log allow the user to select the sensors to be used for acquisition.

However, even if all four of these applications allow signals to be labeled, they are lacking in
terms of satisfying some of the characteristics that we list at the beginning of this section, which are,
on the contrary, fulfilled by UniMiB AAL. These characteristics are detailed in the following:

• Multi-Devices (Acq. & Lab.): The acquisition and labeling of the data happen on the same
device. In the case of Sensor Log, Sensor Data Collector, and Activity Recognition Training,
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these happen during the acquisition, thus introducing some incorrect labels in the dataset, as
explained in Section 3.1. ExtraSensory relies on its own oracle to label data, which may not be
accurate, and improves its accuracy by asking the user about the performed activities. While this
gives better knowledge of the acquired data, there are inherent synchronisation issues between
the offline labeling and the data.

• Activities List: None of the four applications support a predefined list of activities (i.e., protocols)
in order to ease the data acquisition. Each time the user wishes to perform an activity, he/she has
to choose the activity from the list of configured activities (or give feedback about it afterwards,
in ExtraSensory); moreover, each activity is performed and recorded separately, thus removing
from the acquired dataset the transitions between the activities, which may decrease performance
once the online recognition takes place.

• Material Design Guidelines: Developing an end-user application that follows the HCI guidelines
increases the end-user usage. On the opposite side, the user will experience frustration that will
lead to him/her refraining from using the application [41]. Furthermore, depending on the
marketplaces, users are familiar with specific guidelines (e.g., Material Design [36] for Android,
and Human Interface Guidelines [42] for iOS). Therefore, developers should ensure consistency
with these and not bore the user with new ways of interacting for common features.
Despite this, none of the four applications follow the Material Design Guidelines, hence not
guaranteeing usability. For example, Sensor Data Collector does not provide floating action
buttons [43] (which represent the primary action of a screen) to control the application with a
single action; it forces the user to leave the main screen and move to a settings panel to start
the recording, and it fails in providing correct feedback to the user. In contrast, Sensor Sense
follows the Material Design principles, for example, by providing a floating action button to start
the recording and by using cards [44] (which contain content and actions about a single subject)
to present a list of elements.

3. Method

The aim of our work is to provide the scientific community with a system capable of recording
data from smartphone sensors (and the possibly paired smartwatch) to be easily used in evaluating
and training machine learning techniques. The evaluation and training of these techniques require the
availability of datasets containing signals recorded by sensors while subjects are carrying out activities,
such as walking, sitting, or running. The subjects range from children to the elderly, with a scarce or
marked attitude toward the use of computer technologies. Signals can range from inertial sensors
data (e.g., accelerometers, gyroscopes, and compasses) to any kind of physiological or environmental
sensor (e.g., pressure, temperature, and heart rate). In addition, these signals may come from sensors
hosted in smartphones and/or smartwatches that differ from each other in terms of characteristics
(e.g., precision, acquisition rate, and value ranges) depending on their manufacturer. Such signals
must be labeled with the true activities carried out by the subjects, who can autonomously choose
which activity to carry out and for how long or follow a protocol (i.e., a fixed sequence of actions and
relative durations) defined by the researchers.

Thus, the definition of such datasets requires systems that are easy to use even by inexperienced
users and that are easily configurable. To this aim, simple system configurations (e.g., a list of
smartphone and smartwatch positions) should be possible without the applications having to be
recompiled and deployed to the device. The data acquisition component must be designed in such a
way that it does not depend on the physical characteristics of specific sensors. This allows a portable
application that automatically adapts to the actual execution context to be obtained. The data labeling
should be as consistent as possible to the activity the user is performing. Finally, the data and their
labels should be accompanied by a set of additional information to be used in the technique evaluation.
Such information may include, for example, the sensor type, position, and acquisition frequency.
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An acquisition and labeling system must therefore address the following requirements: labeling
accuracy: the data must be labeled according to the corresponding performed activity; usability:
the system must be easily used to avoid mistakes and must be easily configured without the
presence of a programmer; self-adaptability: the system must be able to be used with different
smartphones, smartwatches, and sensors; completeness: the system must acquire and provide
additional information to improve the dataset usage in the experimentations. Such requirements
result in the following guidelines for the design of the system: data reliability, configurability,
user friendliness, hardware adaptability, and data meaningfulness. Figure 1 sketches the identified
requirements, the corresponding guidelines, and the design and implementation choices that fulfil
them. The following subsections detail the guidelines and the identified design and implementation
solutions.
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Figure 1. From requirements to design choices.

3.1. Data Reliability

The two main functionalities that the system must provide are data acquisition and support for data
labeling. Data acquisition includes interfacing with the sensors embedded in the smartphone, managing
the connection with the paired smartwatch, and storing the data acquired by the sensors. Data labeling
includes the user interface setting the beginning and end times of a given activity performed by a
human subject.

These two functionalities may result in a single application running on a smartphone. Using only
one application would result in the following usage scenario: The user uses the application’s user
interface to specify the activity he/she will perform and then starts the registration and puts the
smartphone in the designated place, for example, in her trouser pocket. When the user completes
the activity, he/she picks up the smartphone from his/her trouser pocket and then stops recording.
This usage scenario has a significant drawback: the data recorded from when the user starts recording
to when he/she puts the smartphone in her pocket and, vice versa, the data recorded from when
he/she picks up the smartphone from her pocket to when he/she stops recording are incorrectly
labeled. These data are in fact labeled as belonging to the activity performed. To overcome this problem,
we decided to operate a separation of concerns by assigning the responsibility of data acquisition and
data labeling to two different software components, each of them reified by a different application.
The idea is that these two applications should be executed in two different smartphones. In this way,
the user exploits the acquisition application to start the recording of sensors. Once started, the user
may place the smartphone in the designated location, for example, his/her trouser pocket. Then,
the user exploits the labeling application running on a second smartphone to specify from time to time
the activity that is being performed.

Two key aspects need to be considered to ensure that the process of recording and labeling data is
properly implemented: Firstly, the two smartphones hosting the acquisition and labeling applications
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should be synchronized in accordance with a common clock time; secondly, the data recorded by the
sensors and the activities carried out by the subjects should have a unique subject identifier.

Clock synchronization between the two applications allows acquired data to be easily matched
with the beginning and end time labels of the corresponding activity. For the implementation,
we decided to use the currentTimeMillis() [45] method of the System class provided by the Java
SDK (Java Software Development Kit), which allows the current time to be obtained in milliseconds.
For the correct synchronization of the two smartphones, it is necessary that their wall-clock times are
set by the same NTP server, so that the wall-clock times are the same and the currentTimeMillis()
method returns consistent values from the two devices.

Concerning the identifiers, users are required to input their unique identifiers each time they
start a new acquisition and labeling session. Identifiers along with timestamps are then used to store
recordings as described in Section 5.

Clearly, the two applications can run on the same smartphone, but this use case would cause
incorrect labels to be assigned to the recorded data.

3.2. Configurability

The application should be easily configured by people who are not programmers of mobile
applications. This facilitates the use of the application by researchers mainly interested in developing
and experimenting with new machine learning techniques for human activity monitoring.

When performing an activity or a set of activities, the subject has to specify both the kind of
activity he/she will execute and where the smartphone and/or smartwatch will be placed during the
execution of the activity. It has been demonstrated that the information regarding the position of the
recording device (e.g., trouser pocket, wrist, or waist) is exploited in the machine learning literature to
study the robustness of recognition methods to changes in device position [46].

The type of activity and device position are chosen from predefined lists and are not inserted by
hand. This permits the user’s interaction with the application to be simplified and, more importantly,
the list of possible activities allowed during the recording session to be predefined. Thus, we have
defined two sets of lists: one set contains the lists related to the positions, and the other set contains
the lists related to the activities.

The set related to positions includes two lists: one list contains the positions where the smartphone
can be placed, and the other contains the positions where the smartwatch can be placed.

The set related to activities also contains two lists, one containing a simple list of activities
(e.g., walking, running, and sitting), and the other containing a list of predefined protocols. A protocol is
an ordered sequence of activities and their durations, for example, running for 5 min, then jumping for
1 min, then standing for 2 min, and so on. Indeed, we identified two distinct ways in which the subject
could carry out the activities: by selecting the activity to be performed from a list (i.e., operating a
free choice among the list of activities) or by following a protocol (i.e., a predefined list of activities and
durations). The former offers to the subject the possibility to choose which activities he/she wishes to
carry out and for how long. On the contrary, the latter does not allow the subject to change the order
in which the activities have to be carried out or their duration.

The four configuration lists are turned into four corresponding JSON (JavaScript Object Notation)
files: the smartphone positions’ list, the smartwatch positions’ list, the list of activities for the free
choice mode, and the list of protocols in the predefined list mode.

Listings 1 and 2 show examples for the smartphone and smartwatch positions’ lists, respectively.
Listing 3 shows an example list related to the free choice of activities, while Listing 4 shows an

example list containing three protocols.
Because the positions are related to the acquisition devices, we decided to assign the functionality

regarding the choice of positions to the acquisition application. Because activities are used to correctly
label signals, we decided to assign the functionality regarding the choice of the activity or the protocol
to the labeling application. It follows that the JSON files related to positions are located in the



Appl. Sci. 2018, 8, 1265 8 of 22

smartphone running the acquisition application, while the JSON files related to the activities are
located in the smartphone running the labeling application.

Listing 1. Example of the configuration file that includes the list of the smartphone positions.

{
"positions": [

"Bag",
"Belt waist/hip (left -front)",
"Belt waist/hip (right -front)",
"Belt waist/hip (center -front)",
"Belt waist/hip (left -back)",
"Belt waist/hip (right -back)",
"Belt waist/hip (center -back)",
"Shirt pocket (left -front)",
"Shirt pocket (right -front)",
"Trouser pocket (left -front)",
"Trouser pocket (right -front)",
"Trouser pocket (left -back)",
"Trouser pocket (right -back)"

]
}

Listing 2. Example of the configuration file that includes the list of smartwatch positions.

{
"positions": [

"Wrist (left)",
"Wrist (right)"

]
}

Listing 3. Example of the file that includes the list of activities from which the user makes their selection.

{
"free_choice_activities": [

"Bicycling",
"Going downstairs",
"Going upstairs",
"Jumping",
"Laying",
"Running",
"Sitting",
"Sitting down",
"Standing",
"Standing up",
"Walking"

]
}

To avoid having to compile the application every time these files are modified, the JSON files are
located in a public folder of the smartphone called configuration in both the acquisition and labeling
applications. Because these files are in public storage, it is possible to access them in an easy way
either by connecting the smartphone to a computer or directly from the mobile device. This allows
some positions and/or activities or protocols to be changed, added, or removed in accordance with
the needs. Every change to these four files is automatically reflected in the acquisition and labeling
application, and thus there is no need to either rebuild the application or make a new installation.
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The configuration folder of the acquisition application is placed in the AAL - Acquisition
folder. On the left of Figure 2 is shown the folder hierarchy and the two JSON files for the device
positions. The configuration folder of the labeling application is located in the AAL - Labeling
folder of the labeling application. On the right of the Figure 2 is shown the folder hierarchy and the
two JSON files for the activities.

Listing 4. Example of the file that includes the list of protocols from which the user makes a selection.

{
"protocols": [

{
"name": "Relax",
"description": "This protocol ...",
"exercise": [

{
"description": "Walking",
"duration": 300

},
{

"description": "Sitting",
"duration": 60

},
{

"description": "Standing",
"duration": 120

}
]

},
{

"name": "Soft Sport",
"description": "This protocol ...",
"exercise": [

{
"description": "Running",
"duration": 180

},
{

"description": "Jumping",
"duration": 120

}
]

},
{

"name": "Hard Sport",
...

}
]

}
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AAL - Acquisition

con�guration

smartphone_positions.txt

smartwatch_positions.txt

recordings

AAL - Labeling

con�guration

free_choice_activities.txt

protocols.txt

recordings

Figure 2. (Left) The folder organization in the acquisition application. (Right) The folder organization
in the labeling application.

3.3. User Friendliness

The application must have a pleasant, intuitive, and clean user interface in order to promote its
use and to minimize errors in its use.

To fulfil this aim, we followed two directions. On one hand, we analyzed the layouts of
other applications with similar functionalities. In this way, we were able to identify the positive
and negative aspects of every application according to our point of view. On the other hand,
we followed the guidelines defined in the Material Design [36] specification, which is the way Google
recommends Android applications be developed. The Material Design Guidelines, as well as providing
recommendations about the patterns to follow to create a well-designed user interface, also gives
advice on the basis of accessibility studies.

Taking into consideration the positive aspects of the analyzed applications and the indications
provided by the Material Design Guidelines, we obtained a user interface that provides a good
user experience and that is consistent with the operating system and other Android applications.
These aspects allow the subject not to be disoriented when he/she uses both applications and to think
only about carrying out the activities and recording the data.

Section 4 provides some screenshots of both of the applications to show their adherence to the
Material Design Guidelines.

3.4. Hardware Adaptability

Ensuring hardware adaptability requires that the acquisition application should not embed a list of
predefined sensors to interface with but should be able to discover those that are available in the target
smartphone and in the paired smartwatch. If available in the smartwatch, the automatically populated
list should include not only classical inertial sensors (e.g., accelerometer, gyroscope, and compass),
but also different sensors for the monitoring of, for example, the ambient temperature, ambient level
of humidity, heart rate, and others.

To achieve this goal, we used the Android API. In particular we exploited the SensorManager
class that provides the getSensorList (int type) [47] method, through which it is possible to obtain
a list of the available sensors in a device. In this way, the acquisition application can adapt to the
smartphone in which it is executed and offers the possibility to choose all the sensors or some of
them. Moreover, if the smartphone is paired with a smartwatch, the application can also adapt to
the smartwatch, thus also making it possible to select the sensors available in the smartwatch itself,
increasing the information associated to the activities carried out by the subject.

This ensures extreme flexibility in the choice of the data type that can be recorded. Moreover,
the subject can select only the sensors that are hosted by the smartphone or the smartwatch.
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3.5. Data Meaningfulness

Signals acquired by the sensors can be used without any additional information. However,
the knowledge of information about the devices (smartphone and smartwatch) and the sensors used
to acquire the signals may help in improving the data processing.

Concerning the devices, additional information may include, for example, the version of
the operating system, the manufacturer, and the model of the device. Concerning the sensors,
the manufacturer and the model can be very useful to search for the technical datasheet of the
sensor. In addition, operational information of the sensors, such as the resolution, the delay, and the
acquisition rate, can be very useful for processing purposes.

As for hardware adaptability, to achieve this goal, we used the Android API (Application
Programming Interface). In particular, we exploited the Build class [48], which makes available
a set of constant variables whose values are initialized according to the device in which the application
is running. Such constants include, for example, the manufacturer, the brand, the version release,
and much other information about the device. In this way, the application can automatically retrieve
such information each time a new acquisition is started.

On the other side, we exploited the Sensor class [49], which represents a sensor. The class is
initialized with the specific characteristics of the represented sensor that can be accessed by means of
ad hoc methods. For example, the method getMaximumRange() makes available the maximum range
of the sensor in the sensor’s unit, and the method getMinDelay() makes available the minimum delay
allowed between two events in microseconds.

As for the Build class, the Sensor class automatically adapts the status of its instances according
to the sensor the instance is representing. Thus, the application can automatically retrieve sensors’
information each time a new acquisition is started, as the corresponding sensor instances are
initialized accordingly.

4. UniMiB AAL Suite

This section describes the functionalities of the UniMiB AAL suite and provides some screenshots
captured during its execution.

The two main functionalities are assigned to two different applications: data acquisition and data
labeling. As discussed in Section 3, this architectural choice was made in order to obtain signals with
labels that are as correct as possible, that is, signals with labels that reflect the exact activity carried
out by the subject. With two separate applications, the subject can start the recording application on a
smartphone, which is then placed in its designated position and is not moved until he/she decides to
stop recording. Once the subject has placed the smartphone with the acquisition application running,
he/she starts the labeling application on another smartphone and uses the application to label signals
(i.e., he/she specifies the activity, its beginning time, and its end time). This usage scenario is sketched
in Figure 3. Timestamped signals recorded by the acquisition application can be easily coupled to the
labels assigned by the subject through the labeling application because of the fact that the clocks of the
two smartphones are synchronized. However, the fact that the suite includes two applications does
not preclude it from running on a single smartphone.

4.1. The Acquisition Application

When the subject runs the application, he/she is asked to specify his/her ID, the devices to use in
the acquisition phase, and the position of the devices (see Figure 4a).

The ID of the subject is any alphanumeric string that is used to link signals, labels, and the identity
of the subject and that is maintained externally from the suite. We imagine that a subject who plans an
acquisition session will store in their own file (e.g., a CSV file) information about each aspect, such as,
for example, age, weight, height, lifestyle, and any other information that can be useful for training
and testing machine learning techniques.
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Figure 3. The UniMiB AAL (Acquisition and Labeling) suite.

Concerning the selection of the devices and their positions, the subject selects these from the list
(see Figure 2) placed in public storage as specified in Section 3.2. In Figure 4a, it is possible to see how
Listing 1 is rendered by the application. The subject is then asked to select the sensors for recording
signals among those available in the previously selected devices (see Figure 4b). The sensors presented
to the subject are those that have been obtained by asking the available sensors using the Android API
as discussed in Section 3.5. In case both the smartphone and the smartwatch are selected, a tab layout
allows the user to switch from the smartphone to the smartwatch list of the available sensors to select
those to be used.

The subject can then start the acquisition of signals from the selected sensors by pressing the
play button on the top of the activity, as shown in Figure 4b. Once the recording has been started,
an indeterminate progress bar informs the subject that the signals are being captured (Figure 4c).
At this time, the subject should place the devices in the position that he/she has specified in the
configuration phase (see Figure 4a).

If the application cannot acquire signals from the sensors, it notifies the subject of the problem by
emitting a sound signal.

Finally, once the subject has stopped recording, he/she can perform another acquisition session by
changing the configuration if necessary (e.g., using only a smartphone and selecting its accelerometer
sensor), or the subject can access the recordings folder to retrieve the files containing all the data related
to the acquisition (see Figure 4d).

4.2. The Labeling Application

When the subject starts the application, he/she is asked to specify her ID, which must be equal to
that provided in the acquisition application in order to associate the files generated by the acquisition
application to the corresponding files generated by the labeling application (see Figure 5a).

In the same configuration screen, the subject also selects the acquisition mode. As introduced in
Section 3.2, the suite supports two kind of acquisition modes: free choice and predefined list. The free
choice acquisition mode allows the subject to select the time of each activity he/she wants to carry out,
for example, walking, standing, and sitting down. The predefined list acquisition mode constraints the
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subject to carry out a predefined sequence of activities, for example, walking for 300 s, running for
180 s, and stretching for 60 s.

(a) (b) (c) (d)

Figure 4. Screenshots of the acquisition application.

The labeling application reifies the free choice acquisition mode by showing the subject the
list of activities from which he/she selects the activity he/she wants to carry out and for how long
(see Figure 5b). The list shown in Figure 5b was populated by processing the JSON file in Listing 3.
Once the subject has selected the activity (e.g., Running), he/she can signal its beginning by pressing
the start button (see Figure 5c). In this way, the application acquires the timestamp for which the
subject starts the execution of the selected activity. When the subject decides to stop the execution of
the activity, he/she presses the stop button, so that the labeling application can acquire the timestamp
for the end of the activity. As shown in Figure 5d, the labeling application shows the subject the list of
activities he/she has carried out and their durations.

With regard to the predefined list acquisition mode, the labeling application shows the subject the
list of available protocols, as shown in Figure 5e. The list is populated by processing the JSON file in
Listing 4. Once the subject chooses the protocol, the labeling application shows the list of activities
defined in the selected protocol and their durations (see Figure 5f). This list is also populated by
means of the information in Listing 4. The subject starts each activity by pressing the start button,
which signals to the application the beginning time of the current activity. Automatically, when the
time for the current activity elapses, it saves the end time of the just-completed activity. Figure 5g
shows the execution of the Relax protocol.

Finally, once the subject has finished the execution of the last activity defined in the selected
protocol, he/she can perform another labeling campaign, changing the configuration if necessary
(e.g., changing the protocol or selecting the free choice acquisition mode), or the subject can access the
recordings folder to retrieve the files containing all the data related to the labeling (see Figure 5h).
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5. Screenshots of the labeling application.

5. The Recordings

This section details how recordings generated by the two applications are organized and how
they can be accessed. As introduced in Section 3.2, both the applications have a main folder in the
public storage of the smartphone: AAL - Acquisition for the application that acquires the signals
from the sensors, and AAL - Labeling for the application that labels these data. Because these files
are in public storage, a user can access them in an easy way either by connecting the smartphone to a
computer or directly from the mobile device.

As shown in Figure 6, both the AAL - Acquisition folder and AAL - Labeling folder contain
two subfolders: configuration and recordings. The configuration folder is discussed in Section 3.2
and contains the files that a user can change in order to adapt the applications according to researchers’
needs, while the recordings folder contains the files with the signals and the labels recorded.
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AAL - Acquisition

con�guration

recordings

subject1_2018-04-09_09:36:38

subject2_2018-04-09_09:40:21

extra

device_positions.csv

smartphone_metadata.csv

smartphone_sensors_information.csv

smartwatch_metadata.csv

smartwatch_sensors_information.csv

sp-K6DS3TR Acceleration Sensor

sw-BM1383GLV Pressure Sensor

(a) Acquisition

AAL - Labeling

con�guration

recordings

subject1_2018-04-09_09:38:23

subject2_2018-04-09_09:42:37

extra

acquisition_mode.csv

labeling.csv

(b) Labeling

Figure 6. The folder organization in the acquisition application (a), and the folder organization in the
labeling application (b).

Each time a subject starts a recording session, the acquisition application creates a new folder
whose name is obtained by concatenating the id (identifier) of the subject and the date and the time of
the beginning of the recording. For example, the folder subject2_2018-04-09_09:40:21 in Figure 6a
specifies that the recordings are related to a subject with ID “subject2” who recorded a session on
April 9, 2018 at 9 am for 40 min and 21 s. Each folder related to an acquisition session performed
by a subject contains as many CSV files as the number of sensors that have been selected for the
recordings, each of them containing the acquired signals. The name of each file is characterized by an
initial string that specifies if the sensor belongs to the smartphone (sp) or to the smartwatch (sw) and is
followed by the name of the sensor as provided by the Android API. The files containing signals from
smartwatch sensors are transferred to the smartphone via Bluetooth. For example, the file sp-K6DS3TR
Acceleration Sensor in Figure 6a contains the acceleration signals acquired by the sensor identified
as K6DS3TR hosted in the smartphone.

Similarly, the recordings folder of the labeling application contains the data related to the
activities performed during application runs. Each time a subject starts to label his/her first activity,
the labeling application creates a new folder following the same pattern of the acquisition application.
For example, the folder subject2_2018-04-09_09:42:37 in Figure 6b specifies that the labels are
related to a subject with ID “subject2” who recorded a session on April 9, 2018 at 9 am for 42 min and
37 s. Each folder related to a labeling session contains a CSV file named labeling that contains the
labels of the activities that the subject has performed (see Figure 6b).

The subfolders of the acquisition application recordings folder can be associated to the
corresponding subfolders of the labeling application recordings folder because of the names
assigned to the subfolders. That is, given a recordings subfolder in the acquisition application,
the associated subfolder in the labeling application is that which has the same identifier for
the subject and a time that is the closest to that of the acquisition subfolder. For example,
the subfolder subject2_2018-04-09_09:40:21 created by the acquisition application and the
subfolder subject2_2018-04-09_09:42:37 created by the labeling application can be associated
because they have the same identifier and because the date of the subfolder in the labeling application
is the closest to that of the folder in the acquisition application.
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Figure 7a,b show respectively the fragments of the sp-K6DS3TR Acceleration Sensor and
sw-BM1383GLV Pressure Sensor files stored in the subject2_2018-04-09_09:40:21 folder. The first
column indicates the acquisition time in milliseconds, the following columns contain the acquired
values (x, y, and z for the acceleration sensor and the value of the pressure for the pressure sensor),
and the last column specifies the accuracy of the values as returned by the Android API. In particular,
the level of accuracy can assume one of five predefined values: −1 when the values returned by the
sensor cannot be trusted because the sensor had no contact with what it was measuring (e.g., the heart
rate monitor is not in contact with the user), 0 when the values returned by the sensor cannot be trusted
because calibration is needed or the environment does not allow readings (e.g., the humidity in the
environment is too high), 1 when the accuracy is low, 2 when the accuracy is medium, and 3 when the
accuracy is maximum [47].

timestamp x y z accuracy

1523406183006,00 41.397.014 -11.253.091 8.842.057 3
1523406183025,00 41.325.183 -11.205.206 8.822.903 3
1523406183025,00 41.349.125 -11.468.576 8.820.508 3
1523406183025,00 4.048.719 -11.420.691 879.896 3

1523406188009,00 4.312.089 -11.013.664 8.411.087 3
1523406188009,00 4.314.483 -11.013.664 8.411.087 3
1523406188009,00 4.312.089 -10.941.836 8.415.876 3
1523406188015,00 4.336.032 -10.870.007 8.432.636 3

…

…

…

(a) Acceleration values.

timestamp value accuracy

1523406182994,00 97.986.914 3
1523406183042,00 979.791 3
1523406183094,00 97.974.023 3
1523406183142,00 97.974.414 3

1523406187883,00 9.798.047 3
1523406187931,00 97.972.656 3
1523406187982,00 9.798.164 3
1523406188030,00 9.798.262 3

…

…

…

(b) Pressure values.

Start Stop Activity
1523406171772,00 1523406179794,00 Walking
1523406183009,00 1523406188011,00 Sitting
1523406190160,00 1523406196183,00 Standing

(c) Labels.

Figure 7. The signals that were stored by the acquisition application and acquired by the acceleration
sensor K6DS3TR (a) and by the pressure sensor BM1383GLS (b), and the corresponding labels that
were stored by the labeling application (c).

Figure 7c shows the content of the paired labeling file (contained in the
subject2_2018-04-09_09:42:37 folder). The first and second columns respectively specify
the beginning and the end of the activity, which are labeled in the third column. Red bounding boxes
in Figure 7a,b indicate the signals that are labeled with “sitting” as they have compatible timestamps.

At each recording session, both the acquisition and the labeling application store in their extra
folder additional information that can be useful for data processing (see Figure 6). The acquisition
application includes the following CSV files:

• device_positions contains the positions of the devices indicated by the subject.
• smartphone_metadata and smartwatch_metadata respectively contain information about

the smartphone and the smartwatch used to perform recordings, such as, for example,
the manufacturer, the model, and the Android version. This information is automatically retrieved
from the smartphone and from the smartwatch by the applications.

• smartphone_sensors_information and smartwatch_sensors_information respectively
contain information about the sensors of the smartphone and the smartwatch that have been
used to record the signals. Besides the name of the sensor, its vendor, and other information that
allows the sensor’s detailed specifications to be determined, the files include other data such as
the minimum delay (i.e., the minimum time interval in microseconds that a sensor can use to
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sense data), the maximum range (i.e., the maximum range of the sensor in the sensor’s unit),
and the resolution of the sensor in the sensor’s unit. Figure 8 shows the content of these files in
the recording session sketched in Figure 7. The red bounding boxes highlight the sensors that
generated the signals in Figure 7a,b.

The labeling application includes the acquisition_mode CSV file that specifies the acquisition
mode (i.e., free choice or predefined list) selected by the subject. In the case that the predefined list
mode has been selected, the labeling application also specifies the name of the selected protocol.

Name Vendor Version Min Delay Max Range Resolution Power
K6DS3TR Acceleration Sensor STM 1 2000 784.532 0.0023942017 0.25
YAS537 Magnetic Sensor Yamaha Corporation 1 10000 1200.0 0.1 6.0
K6DS3TR Gyroscope Sensor STM 2 2000 34.906.586 0.0012217305 6.1

…

(a) Accelerometer sensor information.

Name Vendor Version Min Delay Max Range Resolution Power
BMI160 3-axis Accelerometer Bosch Sensortec 1 10000 392.266 0.009576807 0.23
BMI160 3-axis Gyroscope Bosch Sensortec 1 10000 34.906.586 0.0012217305 6.1
BM1383GLV Pressure Sensor ROHM Semiconductor 1 50000 1100.0 5.0E-4 0.005

…

(b) Pressure sensor information.

Figure 8. The information about the sensors used for recording in the smartphone (a) and in the
smartwatch (b).

6. Usability Tests

Usability tests were conducted at a quiet and controlled location within the Department of
Informatics, Systems and Communication of the University of Milano-Bicocca. We involved 10 users
who tested both the acquisition and the labeling applications by performing and labeling activities
for 20 min. The users’ ages were around 20, 40, 50, and 60 and were equally distributed, and for
their genders, half were female and half were male. The users were trained in the use of both the
applications by a moderator who was an expert user of the application. The usability test included
four tasks that were conducted individually, that is, one user at a time. After the test, to obtain
the users’ impressions about the usability of the applications, the users completed a questionnaire.
The questionnaire included questions related to the functionalities of the two applications, and the
questions were inspired by the System Usability Scale (SUS) questionnaire [50].

The tasks involved in the tests are described in the following.

1. Use the acquisition application to acquire the data from the sensors of the smartphone only,
and use of the labeling application to label the activities performed following a predefined list
of activities. For this task, the moderator instructed the users to follow the predefined list of
activities denoted as “Relax”, which included walking for 300 s, sitting for 60 s, and standing
for 120 s.

2. Use of the acquisition application to acquire the data from the sensors of both the smartphone and
the smartwatch, and use of the labeling application to label the activities performed following
a predefined list of activities. For this task, the moderator instructed the users to follow the
predefined list of activities denoted as “Soft sport”, which included running for 180 s and jumping
for 120 s.

3. Use of the acquisition application to acquire the data from the sensors of the smartphone, and use
of the labeling application to label the activities performed that were freely chosen from the free
choice list. For this task, the moderator instructed the users to choose at most three activities from
the free choice list and to perform them for at most 15 s. The free choice list included running,
walking, sitting, and going downstairs.
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4. Use of the acquisition application to acquire the data from the sensors of both the smartphone
and the smartwatch, and use of the labeling application to label the activities performed that were
freely chosen from the free choice list. For this task, the moderator gave the same instructions as
in the third task above.

The users were also instructed to move between tasks and to do whatever they would naturally
do. The moderator observed all the test sessions and annotated the errors and the problems that
occurred and the time taken by each user to complete a task.

Table 2 reports the results of the questionnaire obtained by taking the median of all the users’
votes. The first 10 statements refer to both the applications, while the 13th and 14th statements refer
to the acquisition and labeling applications, respectively. Generally, the applications evaluated the
applications as easy to use. The users employed a very short time to start using the applications
correctly, and they declared the use of the applications’ interface to be very pleasant. Some users found
the action of selecting the sensors to be recorded somewhat difficult when both the smartphone and
the smartwatch were selected. For this, additional instructions by the moderator were needed.

Table 2. Usability questionnaire (numerical scale: 1: “strongly disagree”; 2: “disagree”; 3: “neutral”;
4: “agree”; 5: “strongly agree”).

No. Statement 1 2 3 4 5

1. Overall, I am satisfied with how easy it is to use the application. •

2. I found this application unnecessarily complex. •

3. I would need the support of a technical person •
to be able to use the application.

4. The interface of this application was pleasant. •

5. I found the various functions in this application •
were well integrated.

6. I thought there was too much inconsistency in this application. •

7. I would imagine that most people would learn •
to use the application very quickly.

8. I found the application very cumbersome/awkward to use. •

9. I felt very confident using the application. •

10. I needed to learn a lot of things before •
I could get going with this application.

11. Whenever I made a mistake using the application, •
I could recover easily and quickly.

12. I believe I could become productive quickly using this system. •

13. I found the action of selecting the sensors •
to be recorded too complex.

14. I found the action of selecting the activity •
to be recorded too complex.

7. Conclusions

The lack of available applications to acquire and label signals acquired from sensors and the
small number of public datasets containing labeled signals force researchers to develop their own
applications whenever they need to experiment with a new activity recognition technique based on
machine learning algorithms.

In this article, we present UniMiB AAL, an application suite for Android-based devices that eases
the acquisition of signals from sensors and their labeling. The suite is not yet loaded in Google Play
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Store, but it is available for download from the following address: http://www.sal.disco.unimib.it/
technologies/unimib-aal/ [33]. The suite is composed by two applications (acquisition and labeling) in
order to be executed on two different smartphones. This may reduce the number of signals erroneously
labeled, as the smartphone acquiring signals is never moved from its position during the labeling
task. Moreover, assigning labeling and acquisition to two separated and dedicated applications also
becomes an advantage when an operator assists the subject during recording activities. In this scenario,
having a second smartphone adds the possibility to have the operator handling the labeling while the
subjects only have to perform the experiment. Indeed, our empirical experience when collecting the
UniMiB SHAR [16] dataset suggested that subjects have the tendency to be less precise and make more
errors than the designers of the experiments. Even if the configuration that exploits two smartphones
helps in achieving correctly labeled signals, the two applications can be run on one smartphone only.
This can be useful whenever the subject is unable to manage two smartphones.

Both the applications feature a simple and clear interface and can acquire data from a variety of
sensors. The acquisition application automatically discovers the sensors hosted by the devices so that
it can adapt to the true running environment. Moreover, the configuration information, including the
list of activities or the positions of the devices, is stored in external accessible files. This allows the
researches to personalize the configurations according to their needs, without having to recompile
the applications.

In order to validate the usability, we conducted a number of tests involving 10 users equally
distributed in terms of age and gender. The tests showed that a very short time was needed to
understand how to use the applications and start using them.

The application scenarios of the proposed suite are numerous and mostly focus on human
monitoring (see Section 2). The idea of implementing a suite for recording and labeling signals from
smartphone and smartwatch sensors arose because of the difficulties we encountered in acquiring a
dataset of accelerometer signals related to human activities and falls [16]. This dataset, as well as others
in the state of the arts, are used to develop machine learning algorithms that are then able to predict
whether a person’s activity is a race or a walk. To obtain robust machine learning algorithms, a huge
amount of data is needed, and more importantly, data needs to be correctly labeled. The manual work
for data labeling would be tedious and noise-prone. One of the possible application scenarios of the
proposed suite would be the following: needing to acquire signals from the accelerometer and the
gyroscope of a smartphone. The idea is to record signals related to n activities (walking, running, etc.)
performed by a group of m humans. Each activity is performed following a given story board: walking
for 5 min, running for 3 min, and so on. Each person performing the activity holds the smartphone for
data recording in his/her pocket and the smartphone for data labeling in his/her hands. Using the
proposed labeling suite running on the latter smartphone, the human is able to easily label the activities
that he/she is performing.

Future developments will include a simplification of the process of selecting sensors when both
the smartphone and the smartwatch have been selected, as suggested from the tests. We plan to
substitute the current tab layout with a simple activity that includes two buttons: one button is used to
show a popup from which the subject can select the smartphone’s sensors; the other button is used
to show a popup from which the subject can select the smartwatch’s sensors. Moreover, we plan to
include in both the applications additional functionality that will allow the researchers/users to define
the content of the configuration files so that they do not have to edit files in JSON format.

Finally, we will explore the possibility to integrate voice recognition as a way to ease the process
of starting, stopping, and labeling activities. This improvement will release the user of the burden
of manually signaling the beginning of each activity in the predefined list operation mode and of
manually selecting and signaling the beginning and end timings of each activity in the free choice
operation mode.
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