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Color constancy algorithms are typically evaluated with a statistical analysis of the recovery angular error and
the reproduction angular error between the estimated and ground truth illuminants. Such analysis provides
information about only the magnitude of the errors, and not about their chromatic properties. We propose an
Angle-Retaining Chromaticity diagram (ARC) for the visual analysis of the estimated illuminants and the cor-
responding errors. We provide both quantitative and qualitative proof of the superiority of ARC in preserving
angular distances compared to other chromaticity diagrams, making it possible to quantify the reproduction
and recovery errors in terms of Euclidean distances on a plane. We present two case studies for the application of
the ARC diagram in the visualization of the ground truth illuminants of color constancy datasets, and the visual
analysis of error distributions of color constancy algorithms. © 2020 Optical Society of America
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1. INTRODUCTION

Color constancy is the ability of the human visual system to
perceive consistent object colors under different illumination
conditions [1]. The exact mechanisms behind such phenome-
non have been studied extensively [2,3], and human beings are
generally assumed by vision scientists to have evolved this ability
in assistance to object recognition [4].

Digital camera sensors do not naturally possess color con-
stancy capabilities, and therefore computational color constancy
algorithms are employed in the early stages of the image acqui-
sition pipeline [5] to emulate human color constancy, and to
eventually produce consistent object appearances under dif-
ferent illuminations. Computational color constancy, from
now on referred to as “color constancy” for simplicity, is usually
composed of two steps: the first one estimates the color of the
scene illuminant from the analysis of image data; the second
one corrects the image based on this estimate to generate a new
rendition of the scene, as if it was taken under a fixed reference
light source, such as standard daylight conditions. A widely
adopted model for the color constancy mechanism is based on
the von Kries transform [6], which describes the correction of
the tristimulus values [e.g., red, green, and blue (RGB) for a
digital image] with a diagonal matrix.

In order to evaluate the illuminant estimation part of com-
putational color constancy, the error between a ground truth
illuminant U = (uR, uG, uB) and an estimated illuminant
V = (vR, vG, vB) can be computed with the recovery angular
error [7,8] in RGB space,
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The reproduction angular error [9] has been proposed as an
alternative evaluation of color constancy algorithms. It is com-
puted by comparing a perfect white surface (1, 1, 1) with the
reproduction of a white surface U (corresponding to the ground
truth illuminant) corrected using the estimated illuminant V ,
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Color constancy solutions, evaluated through either the

recovery or the reproduction errors on a properly annotated
dataset, are usually compared through simple summary statistics
such as the mean, maximum, and median [10]. Alternatively,
more advanced statistical tools can be employed, such as the
Wilcoxon signed-rank test [11] as suggested by Hordley et al.
[12], to compare in a pairwise fashion the whole error distribu-
tions of color constancy algorithms. The assessment through
a single-valued metric such as the angular error is extremely
valuable for a straightforward comparison of different methods,
and we believe it should be maintained as the principal means
of comparison due to its widespread adoption. By definition,
however, angular metrics focus on the scale of the error, and
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ignore its direction (i.e., the chromaticity component of the
error itself ) [8]. We show with a concrete example in Section 6
that two methods for illuminant estimation that are considered
statistically equivalent in terms of advanced analysis on the
reproduction error can in fact hide significantly different error
distributions, when the chromaticity information is considered.
This suggests that whenever two or more solutions are found to
be equivalent in a comparison based on the widely established
angular error, further analysis can be conducted to reveal deeper
insights.

On top of quantitative comparison, the visual inspection of
error distributions can be exploited to highlight hidden char-
acteristics of color constancy solutions, or to provide a more
intuitive understanding of the error distribution itself. The
output of color constancy methods is a 3D vector; nonetheless,
illuminant information is normally analyzed in a bidimensional
chromaticity diagram, since the magnitude of the illuminant is
not relevant for color correction. Differently from what happens
with error measures, for chromaticity diagrams there is not one
universally accepted standard representation. We argue that the
specific choice of chromaticity is highly critical, and show that
the most commonly adopted solutions introduce distortions
of the angular distances, which are responsible for unwanted
biases in visual inspection of error distributions, as we will show
through qualitative and quantitative analysis. We will also evalu-
ate some alternative and less-used solutions, which present a
better representation only for RGB triplets that are very close to
the neutral axis, although we argue that highly chromatic lights
are often more relevant in error analysis, and thus should not be
neglected.

To overcome all these limitations, we define and present
ARC: an Angle-Retaining Chromaticity diagram that intro-
duces the least possible amount of distortions across the whole
range of RGB values; in terms of angular distance preservation,
we show that the RGB reproduction error directly maps into
the Euclidean distance in ARC, and that the recovery error is
highly preserved. We derive both the definition of RGB to ARC
transformation, as well as the numerically stable inversion back
into the RGB domain. We also present two applications of the
proposed chromaticity diagram, which can be used to compare
distributions of illuminant estimation datasets, as well as error
distributions of existing methods for color constancy.

2. CHROMATICITY DIAGRAMS FOR COLOR
CONSTANCY

In the framework of color constancy, different chromaticity dia-
grams have been employed either as a visualization tool, or as a
working space for color-related processing.

Ratio chromaticity is the simplest solution for dimensionality
reduction of RGB data. It consists in normalizing two of the
components for a third one (for example, R

G and B
G ). As the

normalization component approaches zero, however, the ratio
quickly diverges toward infinity. This representation was used
to describe the 2017 INTEL-TUT dataset for camera-invariant
color constancy [13], and to build chromaticity histograms for
illuminant estimation [14].

In order to partially constrain the co-domain of ratio chro-
maticity, the logarithm of the ratios has been introduced [15]

(also known by the name of uv chromaticity, or log-chrominance
[16]) and used as an intermediate data representation for color
constancy algorithms [17,18], or for presentation purposes
[19]. This formulation, however, heavily dilates the distances
for input values that are close to the pure RGB colors, as we will
show in Section 4.

A common solution is the rg chromaticity diagram, which
divides two components (namely, R and G) by the sum of
the three values. It has been employed as a working space for
illuminant estimation [20,21], as a data visualization diagram
[17,22,23], and to present annotated datasets Color Checker
[24] and Cube+ [25] (in its rb variant). However, rg chromatic-
ity is heavily skewed on the red–green axis, thus also introducing
hue-specific distortions.

Alternative representations for chromaticity information
are the so-called Maxwell triangle (i.e., the projection of RGB
colors onto a plane perpendicular to the neutral axis), and the
hue/saturation components from the hue, saturation, value
(HSV) color space. These solutions are not commonly asso-
ciated with the color constancy domain, although they do
present valuable properties, as we will show through proper
experimentation.

3. ANGLE-RETAINING CHROMATICITY
DIAGRAM

The recovery angular error measures the 2D angle between two
color vectors in 3D RGB color space. As such, it implies that all
RGB vectors lying on the same ray from the origin are consid-
ered equivalent. We exploit the inherent low-dimensionality of
the angular error to define a bidimensional chromaticity space,
which we called Angle-Retaining Chromaticity (ARC), such
that:

1. The angular distance between any RGB vector and the neu-
tral axis is maintained as Euclidean distance in ARC [this
distance corresponds to the reproduction error as defined in
Eq. (2)].

2. The angular distance between any two RGB vectors is
highly correlated to the Euclidean distance between the
corresponding points in ARC [this distance corresponds to
the recovery error as defined in Eq. (1)].

Following this definition, ARC is expressed in polar coordinates,
such that:

• The azimuth (αA) corresponds to the direction of the
original RGB vector with respect to the neutral gray axis. This
component is related to the hue of the color.

• The radius (αR) corresponds to the angular error between
the original RGB vector and the neutral gray axis. This compo-
nent is loosely related to the saturation of the color.

The conversion for a generic RGB vector to the correspond-
ing point in ARC diagram is depicted in Fig. 1. The Maxwell
chromaticity triangle is also reported for reference.

Given an input RGB vector P = (ρR, ρG, ρB), ARC polar
coordinates A= (αA, αR) are computed as follows:

αA = arctan2
(√

3(ρG − ρB), 2ρR − ρG − ρB

)
, (3)
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Fig. 1. Visualization of the conversion from a point in RGB color
space to the corresponding point in ARC diagram.
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With the first argument of arctan2 referring to the verti-
cal axis. The polar coordinates system (αA, αR) can also be
converted to Cartesian coordinates (αX , αY ), in order to facili-
tate their management, and the measurement of Euclidean
distances,
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When expressed in Cartesian coordinates (αX , αY ), the range

of ARC is
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Conversely, any given ARC point A= (αA, αR) expressed in
polar coordinates can be converted in RGB space as a ray start-
ing from the origin. Using either ρG or ρB as the independent
variable (for numerical stability), the other components can be
obtained as

ρR =


3sign(c )

√
(c 2−c+1)d + (c 2
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where c and d are computed, respectively, fromαA andαR as

c = fc (αA)=
2
√

3
√

3− 3 cot(αA)
, (12)

d = fd (αR)=
tan (αR)

2

2
. (13)

The full derivation of the conversion between RGB and
ARC is provided in Section 5. An official implementation is
made available at the project web page: http://www.ivl.disco.
unimib.it/activities/arc/.

4. ARC GEOMETRIC INTERPRETATION AND
PROPERTIES

The transformation between any given RGB point and its
counterpart in ARC can be geometrically described by the
following process:

1. We project the RGB point, following a ray from the origin,
onto the surface of the octant of a sphere with center in
(0, 0, 0) and radius 4

π
arccos( 1

√
3
).

Fixing the radius of the sphere is important in order to pro-
vide a 1:1 scale between RGB angular error in degrees, and
ARC Euclidean distance.

2. We flatten this surface by following an equidistant projec-
tion [26], which preserves the great-circle distances with
respect to the point of neutral grays.

The reader may refer to Fig. 1 for a visual depiction of this
procedure.

Plotting the entire RGB color space into ARC produces
a gamut whose shape resembles a Reuleaux triangle [27].
Differently from a Reuleaux triangle, though, the boundary of
the ARC gamut is not a curve of constant width. For the purpose
of angular distance preservation, constant width would be a
desirable property. It is, however, impossible to impose for all
pairs of points at the same time: as a direct consequence of the
Theorema Egregium [28,29], in fact, any mapping between a
curved surface and a planar one, necessarily introduces distor-
tions since the two surfaces are not respectively isomorphic. We
choose to constrain the preservation of distances with respect to
the white, in virtue of its relevance for the domain of color con-
stancy. It follows that, given any general pair of RGB vectors U
and V , their recovery angular error is not necessarily preserved
in terms of Euclidean distance in ARC. However, thanks to
the limited extent of the curved surface, and thanks to the full
preservation of the distances with respect to the white, there is
still a high correlation between angular distance in RGB and
Euclidean distance in ARC. This correlation is, in fact, higher
than what is observed with other commonly used chromaticity
diagrams, as demonstrated with the following experiments.
As a result, we effectively map 3D angular distances (errors)
into segments on a plane. The segments’ length can be visually

http://www.ivl.disco.unimib.it/activities/arc/
http://www.ivl.disco.unimib.it/activities/arc/
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Fig. 2. Neighborhoods of the RGB neutral axis with increasing
angles of 4◦ steps, mapped into different chromaticity diagrams. ARC
correctly produces equidistant circles.

appreciated and estimated by a human observer, as supported
by Stevens’s power law [30,31]. Furthermore, each segment
is embedded in a hue-oriented space, which allows for a visual
estimation of the error direction as well.

For the sake of completeness, in the following, we extend our
evaluation of the diagrams described in Section 2 (ratio uv, and
rg chromaticity) to the Maxwell color triangle, which is obtained
by projecting the input values onto a plane perpendicular to the
neutral axis, and to the hue/saturation pair from HSV brought
into Cartesian coordinates. First, we analyze how the angular
distance between any given RGB vector and the reference white
(1, 1, 1) is affected by the transformation into chromaticity
coordinates. We do so by defining neighborhoods of the neu-
tral axis at different angles with a 4◦ step. The result is visually
presented in Fig. 2.

A chromaticity diagram that preserves angular distances
with a reference white would display equidistant concentric
circles, while any type of distortion would result in circles being
spaced unevenly, and/or in irregular shapes. By construction,
ARC perfectly preserves the angular distance with respect to the
neutral axis [corresponding to the (0, 0) “white” point in ARC].
As a consequence, it is possible to visualize the reproduction
angular error between two illuminants U and V by computing
their ratio U

V as per Eq. (2), and plotting the resulting illumi-
nant into ARC. Conversely, all other analyzed chromaticity
diagrams introduce some form of distortion. Among these, the
best alternative is the Maxwell triangle, which presents hue-
invariant distortions that depend only on the distance from the
center. All the remaining diagrams exhibit both hue-specific and
saturation-specific distortions.

A similar experiment can be performed to investigate the
local degree of distortion between pairs of colors. We sample 91
colors in RGB space, and define for each one a neighborhood

Fig. 3. Local RGB neighborhoods of 2◦mapped into different chro-
maticity diagrams. ARC produces the best solution in terms of eccen-
tricity and homogeneity of the neighborhoods.

of 2◦ diameter. We transform once again these neighborhoods
into different chromaticity representations, and show the result
in Fig. 3.

If the chromaticity transformation was to perfectly maintain
the local angular distance as Euclidean distance, the resulting
plot would display perfect circles of the same size. Conversely,
different circle sizes correspond to regions in the chromaticity
having higher (or lower) local angular distance with respect
to other regions, while different shapes mean that specific
directions in hue or saturation have a different impact on rep-
resenting angular distances. ARC shows the best behavior in
terms of local angle-retaining properties: the sizes of the neigh-
borhoods are highly consistent, and the shapes get only slightly
distorted for very saturated combinations of RGB triplets (cor-
responding to highly chromatic lights in the context of color
constancy). Please note that the uneven distancing between
neighborhoods is to be attributed to the sampling strategy, and
not to a property of the chromaticity itself, as demonstrated in
Fig. 2. Another well-performing diagram is the Maxwell tri-
angle, which shows similar properties, but with a visibly stronger
distortion for triplets close to the RGB axes. As a consequence,
the recovery angular error between two illuminants U and V can
be better approximated and visualized as the Euclidean distance
between the corresponding points in ARC.

In order to offer a quantitative assessment of the angle-
preservation capability of different chromaticity diagrams, we
provide two evaluations. First, we compute fitting ellipses for the
local neighborhoods of Fig. 3, and report in Table 1 the mean
eccentricity and the coefficient of variation for the area. A lower
eccentricity means that the neighborhoods are more similar to
a circle, and a lower coefficient of variation for the areas means
that the neighborhoods have a similar size.
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Table 1. Fitting Ellipse Properties for Local
Neighborhoods in Different Chromaticity Diagrams, the
Lower the Better

Chromaticity
Eccentricity

(mean)
Area (Coefficient

of Variation)

ARC 0.2516 0.0280
ratio 0.7921 2.7600
uv 0.8864 1.0510
rg 0.8139 0.3092
Maxwell 0.4232 0.3091
HS (HSV) 0.7211 0.3864

We then compute the Pearson correlation coefficient [32]
between the angle of color pairs randomly sampled in RGB,
and the Euclidean distance of the corresponding chromaticities.
This is shown in Table 2: both with respect to color pairs in
which one is the reference white, and with arbitrary color pairs.

These quantitative evaluations empirically show the supe-
riority of ARC with respect to other chromaticity diagrams.
Conversely, the commonly used ratio chromaticity and uv
chromaticity are shown to possess the least angle-retaining
properties.

MR =

 cos θ +ω2
x (1− cos θ) ωxωy (1− cos θ)−ωz sin θ ωxωz(1− cos θ)+ωy sin θ

ωyωx (1− cos θ)+ωz sin θ cos θ +ω2
y (1− cos θ) ωyωz(1− cos θ)−ωx sin θ

ωzωx (1− cos θ)−ωy sin θ ωzωy (1− cos θ)+ωx sin θ cos θ +ω2
z (1− cos θ)

 . (15)

5. FULL DERIVATION OF THE
TRANSFORMATION BETWEEN RGB AND ARC

In this section, we define the steps that lead to the transforma-
tion from an input RGB vector P = (ρR, ρG, ρB) to ARC polar
coordinates A= (αA, αR).

A. RGB to ARC Transformation

The radius αR [Eq. (4)] is computed as the recovery
error, defined in Eq. (1), between the input RGB vector
P = (ρR, ρG, ρB) and a neutral such as N = (1, 1, 1),

Table 2. Linear Correlation between Angular Error of
Pairs of Points, and Euclidean Distance of the
Corresponding Points in Different Chromaticity
Diagrams, the Higher the Better

Chromaticity
Pair with White
(Correlation)

Arbitrary Pairs
(Correlation)

ARC 1.0000 0.9996
ratio 0.0157 0.0067
uv 0.7861 0.7291
rg 0.9200 0.9162
Maxwell 0.9922 0.9874
HS (HSV) 0.9531 0.9630

αR = arccos

(
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The azimuth αA [Eq. (3)] is defined as the angle formed by
the projection of the input RGB vector P onto a plane perpen-
dicular to the neutral gray axis. The reference line for this angle
is given by the projection of the red hue (i.e., αA = 0), and the
origin is the projection of the neutral axis itself. The azimuth
component is obtained by first repositioning the reference frame
with respect to the neutral axis. To do so, the initial step is to
rotate the original RGB space with a transformation matrix
MR so that the white vector N = (1, 1, 1) transforms into
N′ = (0, 0,

√
3) (i.e., the neutral axis becomes vertical in the

new reference frame). We use Rodrigues’ rotation formula [33]
to rotate points around an arbitrary axis, defined through a unit
vectorω, by an arbitrary amount θ ,

Let θ be the 2D angle in 3D space between the white N and
N′, following once again Eq. (1),

θ = arccos
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We introduce a second rotation matrix MP that operates
around the new vertical axis (the neutral gray axis) by an angle
γ= 15◦, to eventually obtain the green vertex of ARC in the
top-left corner of the chromaticity diagram, as it is common for
chromaticity diagrams,

MP =

 cos γ − sin γ 0
sin γ cos γ 0

0 0 1
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 . (18)

The RGB point P ′ in the new reference frame is, therefore,
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(19)
The projection of the input RGB point P onto a plane per-

pendicular to the neutral axis (such as z= 1 in the new reference
frame) implicitly eliminates one dimension. To this end, let l be
the line passing through O = (0, 0, 0) and P ′ = (ρX , ρY , ρZ),
defined as x = tρX , y = tρY , z= tρZ . The intersection
between line l and plane z= 1 leads to t = 1

ρZ
; therefore,

x =
ρX

ρZ
=

√
2(2ρR − ρG − ρB)

2(ρR + ρG + ρB)
, (20)

y =
ρY

ρZ
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√
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2(ρR + ρG + ρB)
. (21)

Finally, the planar angle formed by the ray passing through
(0, 0) and (x , y ) with respect to a reference “horizontal”
orientation is

αA = arctan2 (y , x )

= arctan2

( √
6(ρG − ρB)

2(ρR + ρG + ρB)
,

√
2(2ρR − ρG − ρB)

2(ρR + ρG + ρB)
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= arctan2
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3(ρG − ρB), 2ρR − ρG − ρB

)
.

(22)

B. ARC to RGB Transformation

Inverting Eq. (3) for the azimuth component produces a half-
plane in the RGB space that hinges on the neutral axis, with an
orientation depending on the value of αA. Inverting Eq. (4) for
the radius component results in an infinite cone with its vertex
in the RGB origin, and its axis corresponding to the neutral axis.
The aperture of this cone is directly related to the value ofαR. As
the axes of these two surfaces coincide, their resulting intersec-
tion is a line in the RGB space, which corresponds to the whole
set of RGB points that would produce the initial ARC point
A= (αA, αR). The whole procedure is illustrated in Fig. 4.

The αA-originated half-plane must lay on the following
plane:

ρB = cρR + (1− c )ρG, (23)

where coefficients c and (1− c ) ensure that the plane rotates
around the equal-coordinate (neutral) axis. The precise rela-
tionship between c andαA can be inferred by backtracking from
Eqs. (22) to (19). According to Eq. (22),

x = y cot(αA). (24)

By definition of Eq. (19), then

Fig. 4. Visual representation of the conversion between a point
in ARC and the corresponding generating line of RGB points. This
line is the intersection between an αA-originated half-plane and an
αR-originated cone.
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Rearranging Eq. (26) in the explicit form of the plane [as in

Eq. (23)], gives the definition of c as provided in Eq. (12). The
precise half of the plane where the ARC point belongs (depicted
in Fig. 4) depends on the sign ofαA, as defined in the following.

TheαR-originated cone must follow the equation

ρ2
B − ρGρB − ρRρB + ρ

2
G − ρRρG + ρ

2
R = d(ρB + ρG + ρR)

2.
(27)

This parametrization, which ensures that the cone axis is
aligned with the equal-coordinate (neutral RGB) axis, can
be obtained by applying the Rodrigues rotation matrix from
Eq. (17) to the general equation for a vertical axis infinite cone,

ρ2
R + ρ

2
G = r 2ρ2

B, (28)

where r =
√

2d . The angle between the cone surface and its axis
is equal to arctan(r ), and, by the given definition of ARC, it is
also equal toαR,

αR = arctan(r )= arctan(
√

2d). (29)

Solving Eq. (29) for d leads to Eq. (13).
The intersection between the half-plane given by Eq. (23) and

the positive nappe of the infinite cone given by Eq. (27) leads to
a ray in RGB space, starting from the origin, defined by the fol-
lowing equation:
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Fig. 5. Three different cases for ARC to RGB inversion that ensure
numerical stability, as a function of the sign ofαA.

ρR

3sign(αA)sign(c )
√
(c 2 − c + 1)d + (c 2 − c − 2)d − (c 2 − c + 1)

=
ρG

(c 2 + 2c + 1)d − (c 2 − c + 1)

=
ρB

3sign(αA)sign(c )
√
(c 2 − c + 1)d − (2c 2 + c − 1)d − (c 2 − c + 1)

. (30)

This relation is, once again, visualized in Fig. 4. In order to
ensure numerical stability, when αA > 0, we express the RGB
coordinates as a function of ρG, and when αA < 0, we express
the RGB coordinates as a function of ρB. As can be observed in
Fig. 5, this allows us to avoid defining the inversion as a function
of a variable that may approach zero, as it happens withρG when
αA < 0, and withρB whenαA > 0.

A special case occurs when αA = 0. In this situation, the
αA-originated half-plane in Eq. (3) is described as ρB = ρG.
Replacing ρB with ρG in Eq. (27) and solving for ρR gives the
special case defined in Eq. (9) forαA = 0.

6. ARC CASE STUDIES

The visual comparison of two RGB illuminants (such as a
ground truth triplet and an estimation triplet) can be performed
in ARC in terms of approximate recovery error by plotting
them individually and then considering their Euclidean dis-
tance. Alternatively, they can be compared in terms of exact
reproduction error by plotting their ratio, and then consid-
ering the distance of the resulting point with the diagram
origin.

ARC can also be exploited to visualize and compare
entire color distributions, such as the set of ground truth
illuminants in color constancy datasets, as well as the error
distributions of algorithms for color constancy on a given
dataset. This application is described in the following
sections.

A. Distribution Analysis of Dataset Illuminants

In order to compare existing datasets on equal ground, it is
necessary to consider the different spectral sensitivities of the
sensors involved in their acquisition, i.e., to map the dataset
illuminants into a device-independent color space, before
converting them into chromaticity. Gao et al. [34] developed
an approach to discount the camera spectral sensitivity in the

estimation of illuminants, which relies on calibrated images and
the availability of reflectance spectra. Banić et al. [25] proved
that, under the assumption of similar content distributions,
two datasets acquired with different sensors can be brought into
comparable RGB color spaces through a pair of von Kries trans-
formations [6], whose coefficients are computed as the median
per channel of the illuminants in each dataset. In the following
visualizations, we adopt the approach devised by Banić et al.,
as we do not have access to spectral sensitivity functions of the
involved cameras.

The distributions of three popular datasets (ColorChecker
[35], NUS [36], and Cube+ [25]) are shown in Fig. 6,

in conjunction with the CIE series D illuminants [37] from
D40 to D150 as a guiding reference. The first dataset is the
ColorChecker by Gehler et al. [35], which was acquired using
two professional cameras (Canon EOS-1DS and CANON EOS
5D). It is composed of 568 images, each including a 24-patch
Macbeth Color checker target for the ground truth estimation
as recommended by Hemrit et al. [24]. The illuminant distribu-
tion of this dataset, depicted in Fig. 6(a), presents roughly three
clusters of illuminants. Two clusters are in common between
the two cameras: one gathered around the neutral lights, and
one more shifted toward lower correlated color temperatures
(CCT). A third cluster is exclusive to the Canon EOS-1DS
camera, used to acquire images in scenes with higher CCT.
These characteristics are less evident in the corresponding rg
chromaticity diagram of Fig. 6(d), whose local distortions pro-
duce a compact, and thus less-discernible, visualization of the
underlying distribution.

The second dataset is the National University of Singapore
(NUS) by Cheng et al. [36], which is composed of 1853
images, shot with a total nine different cameras [reported in
Fig. 6(b)], and also using a 24-patch Macbeth Color Checker
target for ground truth estimation. In general, there is a
high overlap among different cameras. With respect to the
ColorChecker dataset, NUS presents a distribution that is
more widely spread in a direction perpendicular to the CIE
D illuminants. Furthermore, it reaches more into the red area
of the chromaticity diagram, and less into the blue area. The
two clusters are characterized by a different density, which
can be clearly appreciated from the ARC representation of
Fig. 6(b), and much less evident in the rg chromaticity diagram
of Fig. 6(e).

The third dataset is the Cube+ by Banić et al. [25], which is
an extension of the Cube dataset. It is composed of a total of
1707 images acquired with a Canon EOS 550D camera. The
adopted color target is a SpyderCube calibration tool, with its
two neutral 18% gray faces used to determine the ground truth



1728 Vol. 37, No. 11 / November 2020 / Journal of the Optical Society of America A Research Article

Fig. 6. Illuminant distributions for popular color constancy datasets ColorChecker [35], NUS [36], and Cube+ [25]. (a)–(c) present such distri-
butions using our Angle-Retaining Chromaticity diagram ARC. (d)–(f ) show the distributions using rg chromaticity, which is affected by both hue
and saturation distortions.

for each image. Figure 6(c) shows the color distribution for both
cube faces, and highlights four to five clusters of illuminants,
where the cluster closest to the neutral point represents the set
of images from the original Cube dataset. The angle-retaining
properties of ARC ensure that the dataset distribution can be
observed and compared, with little-to-no representational bias
involved.

B. Error Distribution Analysis of Color Constancy
Algorithms

The comparison of existing methods for color constancy is com-
monly performed through quantitative analysis, i.e., reporting
error statistics, or using more advanced tools such as the
Wilcoxon signed-rank test. A visual comparison of the error
distributions can also contribute to discovering the hidden char-
acteristics of each analyzed solution. Through ARC, this can be
obtained by computing the ratio between ground truth and esti-
mated illuminant on a given benchmark dataset, and projecting
the corresponding points in ARC. The resulting distributions
provide a visual insight into the reproduction angular error, by
considering the proximity of points with respect to the diagram
center. Euclidean distances in ARC, in fact, directly map to RGB
angular distances in degrees.

As a use case for data visualization and comparison of color
constancy solutions, we purposely selected two methods that
provide statistically equivalent performance on the Color
Checker dataset in terms of the Wilcoxon test: the Bayesian
Color Constancy (BCC) [35] and the General Grey-World
(GGW) [23]. The simple statistics reported in Table 3, in
fact, show comparable performance, having extremely similar
values with the exception of the highly sensitive maximum
error.

This is reinforced by the Wilcoxon signed-rank test, which
reports statistical equivalence with p− value>0.17. Following
the proposed visualization procedure, then, the ground-truth-
to-estimation ratio is converted into ARC. The resulting
distributions are shown in Fig. 7(a), filtered through a bivariate
Gaussian kernel density estimation (KDE) [38]. For reference,
we also report the illuminants D40 to D150 from series D, as
well as the blackbody radiation with a CCT from 3500 K to
15,000 K.

Coordinates αX and αY are gathered into projection his-
tograms to facilitate the comparison, and the same is done for
polar coordinates αA and αR. The reported diagram effectively
presents some hidden characteristics of the two distributions
that cannot be captured through global statistics: GGW exhibits
a more isotropic distribution, compared to the skewed results
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Table 3. Reproduction Angular Error Statistics on the
ColorChecker Dataset [35] for Two Statistically
Equivalent Methods

Method Minimum Mean Median
90th
p.tile

95th
p.tile Maximum

BCC [35] 0.073◦ 5.627◦ 3.921◦ 12.516◦ 15.393◦ 29.298◦

GGW [23] 0.068◦ 5.317◦ 3.981◦ 11.159◦ 14.021◦ 23.310◦

of BCC. In particular, it can be observed how the reproduction
error distribution of BCC roughly follows the reference curve
of blackbody radiation. Furthermore, the two methods dis-
play a different hue-specific bias, with BCC being more spread
toward the magenta region of the diagram, and GGW toward
the opposite end.

For comparison, we report in Fig. 7(b) the same analysis
conducted on the commonly adopted rg chromaticity dia-
gram. In this case, the joint combination of diagram-specific
distortions, and the intrinsic distribution of the estimations
of BCC, hinders the visibility of the differences between the
two distributions and distorts the appearance of hue-specific
biases. Misinterpretation is, therefore, more likely to take place
in rg-chromaticity, especially if no frame of reference is provided
as a support for visualization, such as the concentric equal-angle
neighborhoods of Fig. 2.

7. CONCLUSION

Computational color constancy is an active field of research,
where methods are typically compared via numerical analysis.
We suggest that visual inspection through chromaticity dia-
grams can also be insightful; however, commonly used diagrams
introduce hue-specific and saturation-specific distortions of
angular distances between RGB points, making them unreli-
able tools for visual assessment of the data distributions. We
presented ARC: an angle-retaining chromaticity diagram
that maintains angular distances with the neutral gray axis as
Euclidean distances with the diagram origin. As a consequence,
it can be used to faithfully represent the reproduction angular
error, and to accurately approximate the recovery angular error.
We defined and derived the transformation of any RGB triplet
into ARC, as well as its numerically stable inversion back into
the RGB color space. Finally, we showed two practical applica-
tions of the proposed diagram: to visualize dataset distributions,
and to highlight the different behaviors of statistically equivalent
methods for color constancy.

Concerning future developments, we plan to study the
relationship between error distributions in ARC, and human-
perceived quality. By construction, the ARC diagram is tightly
related to the recovery angular error. As a consequence, it inher-
its the corresponding properties as to what can be considered
“perceivable” and “acceptable” in terms of color reproduction
error. These concepts have been analyzed in a literature survey
by Gijsenij et al. [8]: a deviation of 1◦ in angular error with the

Fig. 7. Error distributions for color constancy methods BCC [35] and GGW [23]. The comparison is conducted through (a) the proposed Angle-
Retaining Chromaticity, and (b) the commonly adopted rg chromaticity. Although the two algorithms are statistically equivalent, visualization with a
chromaticity diagram such as ARC clearly highlights the difference in chromaticity patterns.
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reference illuminant is considered below the threshold of what
can be detected by a human being [39], while the range between
2◦ and 3◦ is considered perceivable but acceptable [40,41].
Other sources [42] identify a 2◦ recovery angular error as being
acceptable for color constancy in complex scenes. Further analy-
sis could be conducted by focusing on the chromaticity of the
error itself, by relying on dedicated psychophysical experiments.

Finally, we will also consider expanding ARC from a pure
visualization diagram to a working space representation
for illuminant estimation and other forms of color-related
processing.
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