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Blind image quality assessment (BIQA) of authentically distorted images is a challenging problem due to the lack
of a reference image and the coexistence of blends of distortions with unknown characteristics. In this article, we
present a convolutional neural network based BIQA model. It encodes the input image into multi-level features
to estimate the perceptual quality score. The proposed model is designed to predict the image quality score but
is trained for jointly treating the image quality assessment as a classification, regression, and pairwise ranking
problem. Experimental results on three different datasets of authentically distorted images show that the pro-
posed method achieves comparable results with state-of-the-art methods in intra-dataset experiments and is more
effective in cross-dataset experiments. ©2022Optica PublishingGroup

https://doi.org/10.1364/JOSAA.448144

1. INTRODUCTION

In the current day, it is hard to imagine that someone does not
have a smartphone in his or her pocket. Some statistics tell us
that one person takes 20 photos a day on average in the U.S.
These photos are not only taken on special occasions, but they
are also taken spontaneously to “seize the moment,” without
paying particular attention to the light conditions and shooting
parameters. The user often takes several photos of the same
subject to increase the probability that at least one of them is
the “right one,” and therefore he or she selects the best shot that
he or she will most likely share on social media. But what does
it mean that a photo is “right”? According to the International
Imaging Industry Association white paper [1], image quality is
the “perceptually weighted combination of all visually significant
attributes of an image when considered in its marketplace or appli-
cation.” Therefore, we need to consider the application domain
and the intended use of an image. The latter, for example, could
be used as a visual reference to an item in a digital archive. In this
case, it is possible to reasonably assume that the image quality
requirements are low, although the image quality is not precisely
defined. At this point, we could think that a high-quality image
is a faithful reproduction of the original scene or an image that
looks the same as the original. However, there are several techni-
cal reasons why this type of reproduction is not always possible,
but what we have to keep in mind is that, especially in the case of
consumer photography, a faithful reproduction of the original is
not necessarily the best to pursue.

An observer evaluates a photo with respect to a mental model,
which comprises, among others, two dimensions: naturalness
and visual aesthetics [2]. Naturalness is the degree of corre-
spondence between images and human perception of reality [3],

while visual aesthetics is a measure of the perceived beauty of a
visual stimulus [4]. Both naturalness and visual aesthetics are
subjective attributes, but despite this, there are more and more
numerous and varied approaches for their automatic estima-
tion starting from collections of subjective data [5,6]. Finally,
an image may convey some emotions when it depicts some
aspects that are relevant to the persons directly involved with
the image, such as the photographer himself, or evokes some
pleasant/unpleasant feelings [7].

Having clarified that the estimate of the degree of beauty of
images is a very complex and varied problem, in this paper, we
concentrate on an unavoidable property: the perceived technical
quality of the image. The factors that may influence it are the
following:

• Intrinsic to the scene, e.g., geometry and lighting
conditions;

• Intrinsic to imaging devices, e.g., spatial resolution,
geometric distortions, sharpness, noise, dynamic range, color
accuracy, and color gamut;

• Dependent on imaging processing pipelines, e.g.,
contrast, color balance, color saturation, and compression.

Consumer photographs present an infinite variety of com-
binations of the above factors, and therefore the automatic
assessment of the perceived quality for this type of images is very
challenging. Recently, convolutional neural networks (CNNs)
have been adopted to estimate the perceived quality of consumer
photographs because they can implicitly learn the aforemen-
tioned factors in a more effective way than hand-crafted features,
whether trained under specific setups [8–10].
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In this article, we propose a novel CNN-based blind image
quality assessment (BIQA) method. The motivation relies
on the fact that BIQA plays an essential role in a broad range
of applications, including image acquisition, compression,
enhancement, generation, and retrieval [11,12]. Our method
may process the entire image to avoid the strong assumption of
patch-based BIQA models, namely that the local image quality
closely agrees with global subjective scores. However, image
quality is inevitably space-varying because of the high degree of
nonstationarity of picture contents and the complex perceptual
interactions that occur between content and distortions (such
as masking). Furthermore, to best mimic the human visual
system (HVS), which is sensitive to local distortions when the
rest of the image is of good quality [13], we encode the image
by combining multi-level features. This design choice is also
motivated by the fact that the features of different layers of a
CNN network diversely disentangle image distortions [14]. We
design and train the proposed method to jointly treat BIQA as a
classification, regression, and pairwise ranking problem. There
are studies reporting that the use of error metrics (e.g., abso-
lute mean error or mean square error) as optimization criteria
have excellent results [15]. However, others show that error
metrics achieve poor results compared to cross-entropy, espe-
cially for unbalanced datasets or randomly initialized model
parameters [16,17]. In particular, some studies have shown
the benefits of learning a model for categorizing images into
quality levels [18,19]. Therefore, here we propose the so-called
score prediction module that estimates both the quality level
and the perceived quality score of an image. The quality level
is in the form of a discrete level in a scale of values, while the
perceived quality score is a continuous value in a predefined
range. The parameters of the proposed method for estimating
the quality score are optimized end-to-end using a compound
loss consisting of a loss for each BIQA problem, namely ordinal
cross-entropy for quality-level estimation, mean squared error
for quality score regression, and pairwise gap for pairwise quality
ranking.

Experimental results on three popular datasets containing
authentically distorted images (i.e., LIVE in the Wild Challenge
[20], KonIQ-10 k [15], and Smartphone Photography
Attribute and Quality [21]) show that the proposed method
outperforms state-of-the-art methods. Cross-dataset experi-
ments highlight its high generalization capacity. Finally, the
ablation study demonstrates how the combination of BIQA
problems and multi-level features contributed to improving the
effectiveness of our method.

The remainder of this paper is organized as follows. In
Section 2, we review previous methods for image quality assess-
ment and highlight what distinguishes the proposed method
from related methods. In Section 3, we describe our method.
In Section 4, we provide dataset descriptions, implementation
details, and evaluation metrics. In Section 5 we report and
analyze results on three datasets for the quality assessment of
authentically distorted images, and we conclude in Section 6.

2. RELATED WORK

Predicting the overall quality of an image is the goal of the
image quality assessment (IQA) [22,23]. In particular, objective

IQA methods are mathematical models capable of predicting
a quality score based on human perception, trying to mimic
the judgment of the average human observer. The latter’s judg-
ment is expressed in terms of the mean opinion score (MOS).
Objective IQA can be divided into three groups: full-reference
IQA (FR-IQA) methods perform a comparison between the
image under test and the reference image [24,25], reduced-
reference (RR-IQA) methods use partial information about the
reference image [26,27], and no-reference (NR-IQA) methods
are used when there is no information on the reference image
[15,18,28,29]. In reality, the reference image is usually unavail-
able. Thus, NR-IQA, also called blind IQA (BIQA), becomes a
hot research topic. BIQA methods were first applied to specific
types of distortions (e.g., JPEG artifacts and Gaussian blur)
using synthetically distorted image databases such as LIVE
[30], TID2013 [31], or CSIQ [32]. The above methods do not
generalize well and are not suitable for real-world applications.
Therefore, in recent years, representative image datasets in terms
of authenticity, scale, and diversity have been collected. Datasets
such as the LIVE in the Wild Challenge [20] and KonIQ-10 k
[15] contain images acquired using consumer cameras, and
are therefore possibly affected by a variety of authentic and
real-world distortions. Alongside the datasets, powerful new
methods have been developed. Considering the applied meth-
odology, BIQA methods can be divided into two categories:
hand-crafted feature-based and learning-based.

A. Hand-Crafted Feature-Based BIQA Methods

Many conventional BIQA methods were derived from the
natural scene statistics (NSS) model [3]. The main idea behind
the NSS model is to measure the distance of an image from the
subspace of natural images. The NSS model consists of three
steps: (i) extract features from the image, (ii) NSS modeling,
and (iii) regression to estimate the overall quality. Based on
this framework, Moorthy and Bovik [6] proposed distortion
identification-based image verity and integrity evaluation
(DIIVINE), which uses steerable wavelet transforms. The fea-
tures are extracted and classified into the correct distortion type
using a support vector machine (SVM) and then a regressor eval-
uates the image quality. Zhang et al . [33] deployed a complex
extension of the DIIVINE (C-DIIVINE), which uses a complex
steerable pyramid decomposition. Saad et al . [34] proposed the
BLIINDS index, using the discrete cosine transform (DCT) and
later the BLIINDS-II index [35] that uses a Bayesian model to
predict the image quality by exploiting the DCT extracted fea-
tures. Another method that operates in the spatial domain is the
blind/referenceless image spatial quality evaluator (BRISQUE),
proposed by Mittal et al . [36]. The integrated local natural
image quality evaluator (IL-NIQE) [37] extends NIQE [38].
It is an opinion-unaware BIQA method that extracts five types
of NSS features from pristine images, and uses them to learn a
multi-variate Gaussian (MVG) model. The latter then serves
as a reference model against which to predict the quality of the
test image. Recently, Varga [39] proposed a NR-IQA method
in which the image is encoded into a 132-dimensional vector of
quality-aware features. A Gaussian process regressor (GPR) is
then used to map the previous feature vector into a quality score.
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B. Learning-Based BIQA Methods

The blind image quality index (BIQI) [40] follows a two-stage
framework in which 25 image quality measures of different
distortion-specific features are combined to generate one global
quality score. In Chetouani et al . [41], the features extracted
from three NR metrics (which respectively measure the effect
of blocking, blurring, and ringing) are processed by a multi-
layer perceptron (MLP) for determining the quality score. Ye
et al . [42] introduced CORNIA, a codebook-based method,
that relies on the idea of clustering image patches to create
an unlabeled codebook. Then a histogram for quality assess-
ment is obtained for each image by softly assigning patches
to the dictionary using pooling strategies. A similar approach
is proposed by Xu et al . [43]. HOSA uses normalized image
patches as local features and soft-assigns each feature to several
nearest clusters. Then it uses order statistics between features
and clusters in order to get the global quality representation. In
recent years, deep learning started to outperform other machine
learning techniques in many different fields and applications
[44]. Since that moment, a growing number of deep learning
BIQA methods have been proposed. Deep learning-based
BIQA methods exploit CNN features instead of represent-
ing images with handcrafted features. Mainly, these methods
rely on backbones pre-trained on big classification datasets
(e.g., Imagenet [45]) and extract multiple patches from a sin-
gle input image. BIECON [46], proposed by Kim and Lee,
adopts these described traits: it uses a CNN backbone to extract
features and performs a regression onto the local metric score
(obtained using a FR-IQA method). In the second step, features
pooled from patches are mapped into the subjective quality
score of the image. Bianco et al . [18] proposed DeepBIQ, which
uses multiple image patches and computes the quality score
for the whole image by average pooling all the patch scores.
Gao et al . [47] proposed a similar solution called BLINDER
that exploits multi-level representations of images instead of
patches. KonCept512 in [15] processes the full-size image and
computes the quality score using a pre-trained CNN backbone
followed by a global average pooling (GAP). Knowing that
saliency is strictly correlated with image quality [48], SGDNet
is proposed in [49]. Other BIQA methods rely on the same
idea, such as WaDIQaM [50] and VIDGIQA [51]. Many
other approaches rely on the learning to rank framework: since
collecting MOS is very expensive, it is possible to learn quality-
aware representations by ranking images with different levels
of distortions. RankNet [52], RankIQA [53], and the Siamese
networks in [54,55] use this learning paradigm. HyperIQA
[56] is a hyper network architecture that exploits the semantic
features extracted from a ResNet50 to generate the weights of a
quality prediction target network. In addition to the previous
features, the ResNet50 extracts multi-level content features that
capture both local and global image distortions. These features
are input to the quality prediction target network for quality
score estimation. Li et al . [57] designed Norm-in-Norm, a loss
that is closely related to the Pearson linear correlation coefficient
(PLCC). It ensures rapid convergence and high effectiveness of
the IQA model. Varga [58] presented a novel NR-IQA method
that processes the image at three different scales to improve the
effectiveness of features extracted from a CNN. The features

extracted for each scale are subsequently mapped into a quality
score with the help of a GPR. Finally, the quality scores for each
scale are averaged.

3. PROPOSED METHOD

The designed architecture for the quality assessment of authen-
tically distorted images is displayed in Fig. 1. Given an input
image of any size, the multi-level feature extractor encodes the
image into multi-level feature maps. Then, the feature refine-
ment network further processes the previous multi-level features
exploiting dilated convolution layers [59] by filtering and aggre-
gating. Finally, the quality score prediction module estimates
an image quality level and then maps it into a perceived image
quality score. In the following subsections we detail each of
the blocks mentioned above motivating the design choices. The
contribution of each module is experimentally validated in the
ablation study.

A. Multi-Level Feature Extractor

Image quality is commonly measured in terms of MOS for
the entire image. However, the perceived image quality varies
spatially depending on both the local image content and the
perceptual interactions that occur between the content and
distortions [13]. Trying to model the previous aspects, the
proposed multi-level feature extractor is a CNN backbone that
encodes images of varying sizes into multi-level features. In this
way we are able to obtain from local- to global-distortion aware
features [14]. To this end, we use the Inception-ResNet-v2
[60] model (see Fig. 2) as the backbone. In our network, the
last two layers of the original Inception-ResNet-v2, i.e., the
average pooling layer and the fully connected layer, are removed.
We extract multi-level features from the Inception-ResNet-A,
Inception-ResNet-B, and Inception-ResNet-C layers depicted in
Fig. 2. Since the feature maps extracted from different layers
have different spatial resolutions, we use bilinear downsampling
and upsampling to bring them to the same target resolution.
Specifically, given an input image with shape h ×w× 3, the
feature map for Inception-ResNet-A has shape h

8 ×
w
8 × 320, the

one for Inception-ResNet-B has dimensions h
16 ×

w
16 × 1088,

and the one for Inception-ResNet-C is h
32 ×

w
32 × 1536, respec-

tively. After resampling, the three feature maps are concatenated
along the channel dimension, and the resulting feature map
with shape h

16 ×
w
16 × 2944 is input to the feature refinement

network as shown in Fig. 1.
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Fig. 1. Architecture of the proposed BIQA method. Given an
image, we first extract multi-level features from a pre-trained back-
bone, and then we feed the feature refinement network that filters and
aggregates the previous features. Finally, the score prediction module
estimates the perceptual quality score. Batch normalization and ReLU
layers after the dilated convolution layers are omitted for simplicity.



B4 Vol. 39, No. 6 / June 2022 / Journal of the Optical Society of America A Research Article

Mixed 5b

Concat Fully ConnectedDropoutAvgPool Convolution SoftmaxMaxPool Residual

Inception-ResNet-A Inception-ResNet-B Inception-ResNet-CStem Mixed 6a Mixed 7a
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Fig. 2. Inception-ResNet-v2 architecture [60]. Inception-ResNet-
A, Inception-ResNet-B, and Inception-ResNet-C are repeated residual
blocks.

B. Feature Refinement Network

The obtained feature map is able to capture impairments at
different scales. To estimate the perceived quality for the whole
image, we refine the previous information and introduce more
spatial context by augmenting the network’s receptive field
using two dilated convolution [59] layers. The previous layers
effectively enlarge the receptive field size to incorporate context
without introducing extra parameters or computation cost.
Thus, the feature map is processed by two layers of dilated con-
volution with the same dilation term of 2 and kernel of shape
3× 3. The first dilated convolution with 1024 output units
determines a feature map of b h

42c × b
w
42c × 1024, while the

second one has 512 output units and reduces the feature map
to h

64 ×
w
64 × 512. Each dilated convolution is followed by a

batch normalization layer, a ReLU activation function, and
finally a dropout with a dropout probability of 50% to reduce
overfitting. The final quality score prediction module takes as
input the feature map having shape h

64 ×
w
64 × 512 and is meant

to predict the quality score. It will be detailed in the next section.

C. Quality Score Prediction

The quality score prediction module has a block that categorizes
the image into a quality level followed by a second block that
maps the discrete category into a continuous quality score.

Quality-level categorization. Some previous methods that
rank the quality of an image with respect to K quality anchors
have proven effective, mainly due to the benefits of learning
using the cross-entropy loss [18,19]. There are many ways to
define the anchors. The simplest is to divide the numerical range
of subjective scores into a small number of equally spaced inter-
vals. For example, the score range can be partitioned into the five
levels of the absolute category ratings (ACR) representing “bad,”
“poor,” “fair,” “good,” and “excellent” [61]. Or it is also possible
to partition the score range, typically [0,1] or [0,100], into K
equal bins.

In this work, we express the MOS value, qn ∈R, of a given
image n as a quality anchor by rounding the original value,
q̄n = bqne. Therefore, q̄n⇒{x ∈Z : 0≤ x ≤ K } represents
the quality level of the image n. The quality-level categorization
layer, which consists of a convolution layer with kernel 1× 1,
outputs the map of logits Z= [Z0, Z1, . . . , ZK ] for the K qual-
ity anchors. Each region of the map is then transformed into a
probability distribution thanks to the Softmax layer:

Pi =
exp(Zi )∑

j
exp(Z j )

. (1)

Finally, a GAP layer is adopted to reduce the map to a prob-
ability vector, p. Therefore, we have a quality-level estimate for
the entire image.

Quality score mapping. Since existing BIQA methods gen-
erally estimate a continuous quality score, we map the quality
level to a scalar value for comparison. Given the probability
distribution over the K quality anchors, p= [p0, p1, . . . , pK ],
the quality score is obtained as

s =
K∑

i=0

i ∗ pi . (2)

Since
∑K

i=0 pi = 1, the resulting quality score s is ensured to
lie in the range [0, K ].

D. Loss Function

The proposed model is end-to-end trained to solve three prob-
lems. Indeed, we treat IQA as a classification problem on differ-
ent quality levels, a regression problem to the quality score, and,
finally, a pairwise ranking problem. To this end, we combine the
three loss functions that are described below.

Ordinal cross-entropy. The cross-entropy loss is widely
used as training loss in classification problems with C cat-
egories. Let us denote the input image as X, the ground-truth
label vector as y, and the predicted probability distribution
as p of length C . The cross-entropy loss is represented as
LCE(p, y)=−

∑C
i y i log(pi ): it focuses only on maximizing

the predicted probability of the ground-truth class and ignores
the relative distance between an incorrectly predicted data sam-
ple and its ground-truth label. However, in the case of ordered
classes (e.g., aesthetic and quality assessment), the previous
behavior is not ideal because it would be advisable that the most
significant errors are those in which the expected score deviates
most from the ground-truth label.

Therefore, we define the ordinal cross-entropy (OCE) loss as
follows:

LOCE(p, y)=−(1+w)
C∑
i

y i log(pi ),

w= |argmax(y)− argmax(p)|. (3)

Here, (1+w) is a weight term that is multiplied with the
regular cross-entropy loss. Within w, argmax returns the index
of the maximum valued element in the vector and | · | denotes
the absolute value. During the training process,w= 0 for train-
ing samples that are correctly classified, with the OCE loss being
the same as the cross-entropy loss. However, the OCE loss will
be higher than cross-entropy loss for misclassified samples and
the increase in loss is proportional to how far the samples have
been misclassified from their ground-truth label locations.

Mean squared error. Let (X, y ) be the training data, where
X is the input image and y is the corresponding MOS. Given
the predicted quality scores s= (s 1, . . . , s N) and the MOS
values y= (y1, . . . , y N) for a batch of N samples, following Li
et al . [57], we first compute the mean and the L2-norm of the
centered values, for each vector,
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â =
1

N

N∑
i=1

si , b̂ =

(
N∑

i=1

|si − â |2
) 1

2

, (4)

a =
1

N

N∑
i=1

y i , b =

(
N∑

i=1

|y i − a |2
) 1

2

. (5)

Second, we normalize the predicted quality scores and
the MOS values based on their own statistics, ŝ i =

si−â
b̂

and

ŷ i =
yi−a

b . Thus, the normalized predicted quality scores
are ŝ= (ŝ 1, . . . , ŝ N) and the normalized MOS values are
ŷ= ( ŷ1, . . . , ŷ N), respectively. We finally use the mean squared
error (MSE) as a loss function,

LMSE(ŝ, ŷ)=
1

N

N∑
i=1

|ŝ− ŷ|2, (6)

which is differentiable at the origin, thus being able to produce
smoother gradients for small errors than the mean absolute error
(MAE), and penalizes larger deviations from the ground truth
more heavily.

Pairwise gaps. Although the regression loss in Eq. (6) has
implicitly modeled the sorting orders of different images, we
also use a pairwise ranking loss to model the score gaps between
different images explicitly. Given a batch of N samples consist-
ing of the predicted scores ŝ and the corresponding MOS values
ŷ normalized as previously described, the pairwise ranking loss is
computed as

Lgaps(ŝ, ŷ)=

∑N
i=1

∑N
j>i

∣∣(ŝ i − ŝ j )− ( ŷ i − ŷ j )
∣∣2

N(N − 1)/2
. (7)

Lgaps forces the absolute value of the predicted score gap
between two images to be no less than the gap between the
MOSs to model the sorting relations explicitly.

Compound loss. The loss function used for training the pro-
posed BIQA method is the combination of the aforementioned
losses and corresponds to

L = αLOCE + βLMSE + γ Lgaps, (8)

where α, β, and γ are the trade-off weights, and we set α = 10
andβ = γ = 1 empirically in all experiments.

E. Discussion

Several works in the literature exploit multi-level features for
encoding the whole image [57,62] or image patches [56].
These methods extract feature maps from several convolutional
blocks of pre-trained networks. Feature aggregation is achieved
after narrowing the maps into vectors by GAP. In neural image
assessment (NIMA) [63], the ground-truth distribution of
human ratings of a given image is expressed as an empirical
probability mass function. A fully connected regression head is
then exploited to predict the distribution of ratings. In [18,54],
the BIQA methods are trained in two phases: in the first, a
CNN learns to categorize images in quality levels, and in the
second a regression function is trained to map the representation
extracted from the CNN into a quality score. There are three

major differences between these methods and the one proposed
in this article, which are summarized as follows:

• First, the cited methods narrow multi-level feature maps
into vectors by GAP before further processing. In the proposed
method, the multi-level feature maps are instead aggregated
through the use of dilated convolution layers. Since such layers
can be learned, the properties of local distortions are better
modeled.

• Second, NIMA’s regression head is similar to the proposed
quality score mapping module. However, the former is opti-
mized using Earth mover’s distance (EMD), while the latter
exploits OCE. Our choice is motivated by the fact that EMD has
proven effective for estimating distributions, while in our case
we maximize the probability for the correct class.

• Finally, differently from [18,54], which learn the BIQA
method in two phases, the proposed method is optimized by
back-propagation in one easy end-to-end training process
because it integrates quality categorization and regression. This
aspect accelerates training and leads to a better result.

Apart from the previous differences, there are others that
concern more technical aspects, for example, the choice of the
interpolation method for feature map resampling. These aspects
deserve further investigation, which cannot be included in this
work.

4. EXPERIMENTS

In this section we detail the datasets considered for our experi-
ments, the implementation details of the proposed method, and
the evaluation metrics.

A. Data

We evaluate our method on three datasets containing consumer
photographs, therefore possibly affected by mixtures of generic
and authentic distortions. These are the LIVE in the Wild
Challenge (LitW) [20] dataset, the KonIQ-10 k (KonIQ) [15]
dataset, and Smartphone Photography Attribute and Quality
(SPAQ) [21].

LitW consists of 1162 colored images with resolution
500× 500 pixels captured from different smartphone cameras.
Images are evaluated from 8100 unique subjects via an online
crowdsourced user study. More than 350,000 ratings were col-
lected; then the MOS (in the range [0,100]) was computed for
each image.

KonIQ consists of 10,073 colored images with a resolution of
1024× 768 pixels. Through the use of crowdsourcing, images
obtained more than 1.2 million quality ratings from 1459 crowd
workers. The MOS in the range [0,100] represents the ground
truth for each image.

SPAQ is the largest dataset for BIQA currently available with
11,125 photos taken by 66 smartphones. It contains images
affected by a wide range of realistic camera distortions, includ-
ing sensor noise contamination, out-of-focus blurring, motion
blurring, contrast reduction, under-exposure, over-exposure,
color shift, and a mixture of multiple distortions above. More
than 600 subjects were invited to participate in a subjective test
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Table 1. Summary of the Datasets Employed in the Experiments
a

LitW [20] KonIQ [15] SPAQ [21]

Year 2016 2020 2020
N. images 1,162 10,073 11,125

N. cameras 15
b

N/A 66
Type of cameras DSLR/DSC/ Smartphone DSLR/DSC/Smartphone Smartphone
Resolution 500× 500 1024× 768 Various
Subjective study environment Crowdsourcing Crowdsourcing Laboratory
Extra data N/A EXIF EXIF/Scene cat./Image attr.
MOS range [0,100] [0,100] [0,100]

aDSLR, digital single-lens reflex camera; DSC, digital still camera; N/A, not available.
bLitW dataset provides the number of manufacturers only.

Fig. 3. Sample images and histograms of MOSs of the considered datasets. First row presents sample images from the three considered datasets
containing images captured by a wide variety of mobile camera devices and affected by authentic distortions caused by the capture process. The second
row shows the histogram of MOS values for the three datasets.

conducted in a well-controlled laboratory setting. The sub-
jects were asked to rate the quality of an image on a continuous
scale in [0,100] and provide annotations for five image attrib-
utes, namely brightness, hue, contrast, noise, and sharpness,
respectively.

A summary of dataset characteristics is provided in Table 1.
Figure 3 shows some samples taken from each dataset as well as
the histogram of MOS values. As it is possible to see, both LitW
and KonIQ are left-skewed MOS distributions. The MOS
values of the SPAQ dataset are equally distributed apart from the
extremes.

B. Setup

Our method is implemented using PyTorch [64] on a desktop
computer with an Intel Core i7-7700 CPU@3.60 GHz, 16 GB
DDR4 RAM 2400 MHz, and NVIDIA Titan X Pascal with
3840 CUDA cores. The operating system is Ubuntu 16.04.

Due to the limited number of images that make up current
consumer-photo quality datasets, it is impractical to train the
InceptionResNet-v2-backbone from scratch. Thus, we exploit
the architecture pre-trained to classify the 1.2 million images
of ImageNet belonging to 1000 object categories. For all the

experiments we use the same setup. Specifically, we exploit the
Adam [65] optimizer with an initial learning rate of 10−4 and
a step scheduler that reduces the learning rate every 15 epochs.
The batch size N is equal to 10.

Since the images in the KonIQ and SPAQ datasets have a high
resolution that makes them computationally unmanageable,
they are resized to 512× 384 pixels following [15]. During
training, we augment the number of images using random
horizontal flip and random erasing. Lastly, we select the best
model based on the SROCC performance obtained on the
validation set.

C. Evaluation Metrics

We evaluate the proposed method using three standard per-
formance metrics: PLCC, Spearman rank order correlation
coefficient (SROCC) and residual mean squared error (RMSE).
PLCC measures the linear correlation between MOS and
predicted scores. It is defined as

PLCC=

∑N
i (xi − x̄ )(y i − ȳ )√∑N

i (xi − x̄ )2
√∑N

i (y i − ȳ )2
, (9)
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where N is the number of samples, xi and y i are the sample at the
index i , and x̄ and ȳ are the means of each sample distribution.
We also used SROCC because it is more suitable to represent
nonlinear relations. It is defined as follows:

SROCC= 1−
6
∑N

i d2
i

N(N2 − 1)
, (10)

with N representing the number of samples and di =

(rank(xi )− rank(y i )). Lastly, RMSE is used to measure the
difference between predicted scores and MOS and is defined as

RMSE=

√∑N
i ‖y i − si‖2

N
, (11)

where y i indicates the MOS, and si is the predicted quality score.

5. RESULTS

In this section we report results on the considered datasets. The
experimental strategy for each dataset consists of randomly
dividing the data into 60% training images, 20% validation
images, and the remaining 20% images are used for testing. In
order to reduce the influence of random selection, we repeat
10 times the train-val-test split and take the median PLCC,
SROCC, and RMSE values as the final result. To ensure a fair
comparison with previous methods, we trained and validated
state-of-the-art methods on the same data splits. The data splits
used for the experiments are made publicly available.

A. Comparison with State-of-the-Art BIQA Methods

To verify the effectiveness of the proposed method compared
to previous ones, we include 10 state-of-the-art BIQA methods
whose training and evaluation original source codes are available
online. We consider both hand-crafted and deep learning-based
methods. More in detail, for the first family of methods we have
IL-NIQE [37], DIIVINE [6], BRISQUE [36], FRIQUEE
[29], CORNIA [42], and HOSA [43]; for the methods based
on deep learning instead there are WaDIQaM [50], DeepBIQ

[18], HyperIQA [56], KonCept512 [15], and Norm-in-Norm
[57]. For each method we used the default settings to run the
experiments on our data splits.

Table 2 reports the results in terms of median PLCC,
SROCC, and RMSE over 10 random repetitions of train-val-
test split. Cells with the symbol “–” indicate that we were unable
to run experiments on the adopted hardware with that method
for that dataset due to high memory demand issues. From the
results obtained it is possible to make various considerations.
First, the proposed method outperforms all previous methods
on the LitW and SPAQ datasets. On the KonIQ dataset, we
obtain lower performance than Norm-in-Norm of 0.01 for
correlation and 0.7 for RMSE. Second, as was to be expected,
deep learning-based BIQA methods far outweigh those based
on hand-crafted features. In particular, it could be noted that,
although HOSA obtained performance very similar to that of
WaDIQaM on the LitW dataset, its results are significantly
lower on the two datasets with higher cardinality and diversity.
Third, image-based BIQA methods (such as the one proposed,
Norm-in-Norm, and KonCept512) correlate better with human
judgments than patch-based methods (such as HyperIQA and
DeepBIQ). This result confirms that methods that encode the
whole image for quality estimation tend to model the inter-
actions that occur between content and distortions more like
humans.

Figure 4 shows the scatterplots on the three considered
datasets. They report the MOS with respect to the correspond-
ing predicted quality scores for all the samples considered in
the 10 iterations. We observe that the method tends to under-
estimate the quality of images with very high MOS. In SPAQ,
the opposite effect also occurs; i.e., for images with very low
MOS the predicted quality is overestimated. These behaviors
are attributable to the low number of examples at the extremes of
the MOS distributions for each dataset.

B. Cross-Dataset Performance Evaluation

In this subsection, we focus on cross-dataset experiments to
verify the robustness and generalization capacity of the proposed

Table 2. Comparison with Existing BIQA Methods
a

LitW KonIQ SPAQ

Method PLCC SROCC RMSE PLCC SROCC RMSE PLCC SROCC RMSE

IL-NIQE [37] 0.5169 0.4560 39.1210 0.5230* 0.5070* N/A 0.7210* 0.7130* N/A
DIIVINE [6] 0.6138 0.5820 16.8672 0.7051 0.6864 11.1381 0.7599 0.7557 14.0174
BRISQUE [36] 0.6402 0.6118 16.3264 0.7001 0.6907 11.2840 0.6966 0.6912 15.1402
FRIQUEE [29] 0.7170 0.6816 14.8289 – – – 0.8300* 0.8190* N/A
CORNIA [42] 0.6759 0.6334 15.7706 0.7950* 0.7800* N/A 0.7250* 0.7090* N/A
HOSA [43] 0.6615 0.6285 15.6196 0.7931 0.7664 9.4580 0.7504 0.7452 14.6642
WaDIQaM [50] 0.6746 0.6346 15.3669 0.8050* 0.7970* N/A – – –
DeepBIQ [18] 0.8512 0.8135 12.6972 0.8962 0.8841 8.9349 – – –
HyperIQA [56] 0.8624 0.8321 10.6176 0.9181 0.9032 6.3197 0.9169 0.9135 9.0202
KonCept512 [15] 0.8789 0.8484 13.2769 0.9290 0.9102 6.3102 0.9175 0.9141 9.0991
Norm-in-Norm [57] 0.8744 0.8601 10.2356 0.9407 0.9321 5.2477 0.9185 0.9168 8.3088
Proposed 0.8819 0.8607 10.1562 0.9346 0.9201 5.9605 0.9192 0.9151 8.3059

a60% of the images were used for training, 20% for validation, and the remaining 20% for testing. The median PLCC, SROCC, and RMSE over 10 random repeti-
tions are reported for each case. The best and the second-best results on each dataset are marked in bold and italic, respectively. The “-” means that the result cannot be
estimated for computational issues. The “*” means that the numbers are taken from [21,56].
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Fig. 4. Scatterplots of the MOS versus the quality score predicted by proposed method versus for (a) LitW test images, (b) KonIQ test images, and
(c) SPAQ test images.

Table 3. Cross-Dataset Experiment
a

Training LitW KonIQ SPAQ
Testing KonIQ SPAQ LitW SPAQ LitW KonIQ

HyperIQA [56] 0.7282 0.8520 0.7710 0.8313 0.7815 0.7893
KonCept512 [15] 0.7440 0.8571 0.8163 0.8578 0.7893 0.7783
Norm-in-Norm [57] 0.7481 0.8596 0.8058 0.8635 0.7679 0.7763
Proposed 0.7783 0.8688 0.8180 0.8672 0.7787 0.8173

aMethods are trained on the “Training” dataset and evaluated on the “Testing” dataset. Performance is reported in terms of SROCC. The best results are marked in
bold.

method. In these experiments, the methods are trained on a
dataset and tested on another one. More in detail, each method
is trained on the whole “training” dataset and evaluated on the
entire “testing” dataset. We compare the performance of the
proposed method with state-of-the-art methods that achieved
similar performance on the three considered datasets, namely
HyperIQA, KonCept512, and Norm-in-Norm. The results of the
cross-dataset test are summarized in Table 3. It can be seen that
our method can outperform the other three NR-IQA methods.

C. Ablation Study

In this subsection we present experiments on the LitW dataset
designed to experimentally demonstrate the effectiveness of the
design choices.

Combined BIQA problems versus regression. The pro-
posed quality score prediction module and the compound
loss for the optimization of the model add complexity to the
proposed solution not only in the training phase but also in
inference. Thus, we set up an experiment to validate the effec-
tiveness of our proposals. We compare our proposal with a
variant in which BIQA is simply treated as a regression problem.
In this variant of our method, the quality score prediction mod-
ule consists only of a linear layer that maps the 512-dimensional
features into a perceptual quality score, and the compound loss
is replaced with a simple MSE. The results of this solution are
reported in terms of median PLCC, SROCC, and RMSE in
the row labeled “MSE” of Table 4. As is possible to see from the
comparison, the performance drop of the MSE solution is very

Table 4. Comparison between the Proposed Method
and Its Variants

a

PLCC SROCC RMSE

MSE 0.7684 0.7867 13.9441
Ordinal cross-entropy 0.8532 0.8100 13.7587
Norm. MSE 0.8661 0.8503 12.0853
Pairwise gaps 0.8745 0.8555 11.4514
Single-level features 0.8654 0.8453 11.7324
Proposed 0.8819 0.8607 10.1562

aThe median PLCC, SROCC, and RMSE over 10 random repetitions are
reported for each case. The best results are marked in bold.

significant; in fact the correlations decrease by about 0.08 and
the RMSE increases by 3 compared to the Proposed .

Another important comparison is provided in Fig. 5. Here,
we show loss values and SROCC values across the epochs. We
highlight that the Proposed has faster convergence than the
MSE. The latter in fact, after 50 epochs, has not yet converged
and could reach results similar to those of the Proposed but at the
cost of a greater number of training epochs.

Contribution of each loss function. In this set of experi-
ments, we evaluate the impact on the performance of each of the
considered loss functions. Thus, we train the proposed method
only using the OCE loss, the MSE loss with normalized inputs,
and the pairwise gaps loss. The results are reported in terms
of median PLCC, SROCC, and RMSE in Table 4. Among
the three losses, the OCE loss achieves the worst results with
a PLCC of 0.8532, SROCC equal to 0.8100, and RMSE of
13.7587. The best results are instead achieved by the pairwise
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Fig. 5. (a) Loss and (b) SROCC values across epochs on the training
set of the LitW dataset.

gaps loss, which obtains a PLCC equal to 0.8745: only 0.01
lower than that of the Proposed (i.e., PLCC= 0.8819).

Multi- versus single-level features. In the third experi-
ment, we empirically demonstrate that multi-level features
provide better image encoding for estimating its quality. To this
end, the input image with shape h ×w× 3 is encoded by the
multi-level feature extractor using only the map consisting of
h
32 ×

w
32 × 1536 features extracted from the Inception-ResNet-C

level. This variant is labeled as “single-level features” in Table 4.
Using single-level features rather than multi-level features
results in minimal loss of effectiveness. In fact, single-level
SROCC corresponds to 0.8621, while multi-level SROCC is
equal to 0.8522.

6. CONCLUSION

In this paper, a novel architecture for authentically distorted
images BIQA has been proposed. Given an input image, our
model extracts the features of different layers to better encode
image impairments. The multi-level features are then used to
estimate a quality level for the input image. Finally, the quality
level is mapped into a perceptual quality score. The proposed
architecture is trained end-to-end by treating BIQA jointly
as a classification, regression, and pairwise ranking problem.
Extensive experiments have been carried out on three BIQA
datasets with authentic distortions, such as LIVE In the Wild
[20], KonIQ-10 k [15], and SPAQ [21]. The introduced
method is able to achieve good performance in intra-dataset
experiments. The results obtained for the cross-dataset exper-
iments show the high generalization capacity of the proposed
method. From the ablation study it emerges that treating BIQA
as a compound problem determines a performance gain. The
proposed method overestimates images whose MOS are very
low and underestimates images whose MOS are very high. From
a computational point of view, the method is not suitable for
deployment on devices with limited computational resources.
In fact, InceptionResNet-v2 used as a backbone to extract
multi-level features consists of a large number of parameters
and operations. Lightweight CNN architectures might be
considered in the future for improving the method efficiency.

To facilitate the reproducibility of the presented results, the
source code of the proposed method, the pre-trained models,
and the split train-val-tests are available at [66].
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