Journal of

Imaging

Article

Multiscale RGB-Guided Fusion for Hyperspectral Image
Super-Resolution

Matteo Kolyszko

W) Check for updates

Academic Editor: Nikolaos

Mitianoudis

Received: 29 December 2025
Revised: 22 January 2026

Accepted: 25 January 2026
Published: 28 January 2026
Copyright: © 2026 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license.

, Marco Buzzelli

, Simone Bianco '© and Raimondo Schettini *

Department of Informatics, Systems and Communication, University of Milano-Bicocca, Viale Sarca 336,
20125 Milan, Italy; m. kolyszko@campus.unimib.it (M.K.); marco.buzzelli@unimib.it (M.B.)
* Correspondence: raimondo.schettini@unimib.it

Abstract

Hyperspectral imaging (HSI) enables fine spectral analysis but is often limited by low
spatial resolution due to sensor constraints. To address this, we propose CGNet, a color-
guided hyperspectral super-resolution network that leverages complementary information
from low-resolution hyperspectral inputs and high-resolution RGB images. CGNet adopts
a dual-encoder design: the RGB encoder extracts hierarchical spatial features, while the
HSI encoder progressively upsamples spectral features. A multi-scale fusion decoder then
combines both modalities in a coarse-to-fine manner to reconstruct the high-resolution
HSI. Training is driven by a hybrid loss that balances L1 and Spectral Angle Mapper
(SAM), which ablation studies confirm as the most effective formulation. Experiments on
two benchmarks, ARAD1K and StereoMSI, at x4 and x 6 upscaling factors demonstrate
that CGNet consistently outperforms state-of-the-art baselines. CGNet achieves higher
PSNR and SSIM, lower SAM, and reduced AEy, confirming its ability to recover sharp
spatial structures while preserving spectral fidelity.

Keywords: hyperspectral imaging; super-resolution; RGB guidance; deep learning;
image fusion

1. Introduction

Hyperspectral imaging (HSI) captures dense spectral information across contiguous
bands, enabling fine-grained material analysis with applications in remote sensing [1],
precision agriculture [2], environmental monitoring [3], medical imaging [4], and cultural
heritage preservation [5]. Compared to conventional RGB imaging, HSI offers unique ad-
vantages in terms of material discrimination and quantitative spectral analysis. However,
the high spectral resolution of hyperspectral cameras typically comes at the expense of lim-
ited spatial resolution due to sensor and acquisition constraints. This trade-off reduces the
effectiveness of hyperspectral data in tasks requiring both spatial detail and spectral fidelity.

Hyperspectral image super-resolution (HSI-SR) aims to reconstruct a high-resolution
hyperspectral image (HR-HSI) from its low-resolution counterpart (LR-HSI). Traditional
interpolation-based techniques, such as Bicubic interpolation, provide only marginal im-
provements, while deep learning-based single-image SR models, including RCAN [6] and
EDSR [7], achieve better spatial quality but are not specifically tailored to preserve spectral
properties, often leading to distortions as shown in [8]. Hyperspectral-specific networks
such as SSPSR [8] improve spectral fidelity, but still struggle to maintain sharp spatial
structures at higher upscaling factors as evidenced in [9].
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A promising direction is to incorporate additional modalities to guide hyperspectral
reconstruction. High-resolution RGB images, often available alongside hyperspectral mea-
surements, provide complementary spatial and textural details that LR-HSI lacks. Several
RGB-guided fusion approaches, including u2MDN [10], NonReg [11], and Integrated [12],
have shown significant improvements by leveraging RGB guidance. Nonetheless, design-
ing an architecture that effectively exploits spatial cues from RGB while simultaneously
preserving spectral fidelity from HSI remains a challenging problem.

In this paper, we introduce CGNet, a color-guided hyperspectral super-resolution
framework designed for natural-scene imagery, that integrates low-resolution hyperspectral
data with high-resolution RGB observations. The architecture is based on a dual-encoder
design and a multi-scale fusion decoder, enabling effective cross-modal feature interaction
while preserving spectral fidelity and recovering fine spatial structures.

We summarize the main contributions of this work as follows:

¢  We develop a lightweight and efficient fusion mechanism that enables stable cross-
modal integration across multiple spatial scales, improving spectral preservation
without sacrificing spatial detail.

¢ We introduce a training strategy that balances pixel-wise and spectral objectives, L1
and Spectral Angle Mapper (SAM), and demonstrate through ablation that this balance
substantially improves both spatial reconstruction and spectral accuracy.

*  We conduct extensive experiments across multiple datasets, sensor types, and both
reflectance and radiance-based domains, showing that CGNet maintains consistent
performance and strong generalization in diverse real-world settings.

Overall, CGNet establishes a new state-of-the-art in hyperspectral super-resolution,
achieving superior spatial detail recovery and spectral fidelity.

The rest of this paper is organized as follows: Section 2 reviews related works in hy-
perspectral super-resolution. Section 3 presents the architecture of CGNet and its building
blocks. Section 4 describes the datasets, evaluation metrics, and implementation details.
Quantitative and qualitative results are discussed in Section 5, followed by conclusions in
Section 6.

2. Related Works

In this section, we review the most relevant studies on single HSI super-resolution
and fusion-based HSI super-resolution.

2.1. Single HSI Super-Resolution

Single-image hyperspectral super-resolution is a long-standing and challenging prob-
lem, mainly because a single low-resolution (LR) hyperspectral observation can correspond
to multiple plausible high-resolution (HR) solutions. This inherent ill-posedness has moti-
vated the adoption of deep learning techniques, which have recently achieved remarkable
progress in low-level vision tasks such as [13-15]. Specifically, convolutional neural net-
works (CNNs) have been widely employed to reconstruct HR hyperspectral images from
their LR counterparts [8,13,16-18].

Early work by Mei et al. [13] proposed a three-dimensional fully convolutional archi-
tecture capable of exploiting both spatial and spectral correlations. Sun et al. [16] further
introduced a feature pyramid strategy to capture multi-scale information. Jiang et al. [8] de-
signed a method based on group convolution to better encode spatial-spectral priors, while
Li et al. [17] explored hybrid 2D and 3D convolutional layers. In addition, Fu et al. [18] pro-
posed a bidirectional 3D quasi-recurrent neural network (BiQRNN) to strengthen spectral
dependency modeling.
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More recently, transformer-based models [19-21] have opened new research direc-
tions: Hu et al. [22] and Liu et al. [23] explored their potential for hyperspectral restoration.
Zhang et al. [9] introduced ESSAformer, which leverages spectral correlation coefficients
and an efficient self-attention mechanism to enlarge the receptive field without significantly
increasing computational cost. More recently, Zhang et al. [24] proposed a multiscale
spatial-spectral CNN-Transformer network that integrates dilated convolutions for local
multiscale feature extraction with a sparse spectral transformer to model global spectral
dependencies in a coarse-to-fine manner. Nevertheless, the limited availability of hyper-
spectral training data and the lack of high-frequency spatial details in LR-HSI remain
critical obstacles for single-image super-resolution methods.

2.2. Fusion-Based HSI Super-Resolution

Single-image hyperspectral super-resolution methods are fundamentally constrained
by the absence of high-frequency spatial details in the low-resolution input. To alleviate
this limitation, fusion-based techniques introduce an auxiliary modality, typically a high-
resolution RGB or multispectral image, under the assumption that the additional data
contain complementary spatial textures useful for enhancing the hyperspectral target.
In most works, these methods require strictly aligned LR-HSI and HR-RGB (or MSI)
pairs, which are generally synthesized by spatially and spectrally downsampling a high-
resolution HSIL.

Early research in this direction relied on prior-driven optimization. For example,
sparse representation and dictionary learning methods were among the first attempts to
inject high-resolution cues from RGB into HSI [25-27]. Matrix factorization [28] and tensor
decomposition strategies [29] were also explored to jointly model spatial and spectral
structures. Later studies incorporated manifold learning and Bayesian inference to better
capture spatial-spectral dependencies [30,31].

With the advent of deep learning, CNN-based frameworks have become the main-
stream solution. Several works designed end-to-end fusion pipelines to transfer spatial
details from RGB into HSI while preserving spectral fidelity [32-34]. Attention mechanisms
and degradation-aware modules have further improved robustness and reconstruction
accuracy. For instance, Hu et al. [35] proposed a deep spatio-spectral attention CNN, while
Guo et al. [36] introduced DAEM, which adaptively estimates degradation kernels during
fusion. More recently, diffusion-based approaches such as HSR-Diff [37] refined HR-HSI
outputs through iterative generative modeling. Transformer-based architectures have also
been incorporated to better capture long-range dependencies between modalities [12,38,39].
More recently, Zhang et al. [40] proposed a dual-branch network with mutual guidance,
where hyperspectral and multispectral features are processed in parallel and calibrated
through bidirectional transformer-based attention. By explicitly reconciling modality
differences before fusion, their approach improves spatial-spectral consistency while main-
taining a relatively low computational cost. Recent advances in medical image analysis
have demonstrated the effectiveness of multiscale and hierarchical feature fusion strategies
for dense prediction and reconstruction tasks, particularly through scale-aware pyramidal
representations that improve spatial coherence across resolution levels [41,42]. However,
most medical imaging frameworks are developed for purely spatial or spatiotemporal data
and are optimized for tasks such as segmentation, classification, or structural reconstruc-
tion, without explicitly addressing spectral consistency. In hyperspectral super-resolution,
preserving the geometric relationships between spectral bands under spatial upsampling
is a fundamental requirement that goes beyond spatial accuracy alone. While the pro-
posed framework shares a high-level multiscale design philosophy with recent medical
imaging approaches, it differs substantially in its fusion strategy and supervision, which
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are explicitly designed to protect spectral fidelity through scale-aligned cross-modal in-
teractions and spectral-angle-based constraints. As such, the proposed method should
be regarded as complementary to, rather than a direct extension of, existing multiscale
medical imaging models.

The proposed CGNet falls within the class of fusion-based RGB-guided hyperspectral
super-resolution methods, which exploit the complementary characteristics of RGB and
hyperspectral data to recover high-resolution images with both rich spatial detail and
accurate spectral information. At a high level, CGNet shares common design principles
with existing RGB-guided architectures, such as the use of parallel processing streams for
RGB and hyperspectral inputs. However, it departs from prior approaches in the way
fusion, scale alignment, and spectral preservation are explicitly handled.

While several existing methods adopt dual-stream designs to separately extract spatial
and spectral features, CGNet introduces a more structured multiscale interaction between
modalities. This design enables effective information exchange across resolutions while
maintaining strict control over spectral fidelity.

Overall, CGNet differs from previous RGB-guided approaches in three main aspects:

¢  Fusion strategy: explicit multiscale, coarse-to-fine feature fusion.

®  Scale alignment: hierarchical resolution matching via progressive upsampling.

*  Spectral protection: dedicated hyperspectral encoding combined with SAM-based
supervision.

3. Proposed Method

In this section, we first formulate the problem of RGB-guided hyperspectral super-
resolution. We then present the overall architecture of CGNet and describe its three main
components: the RGB encoder, the HSI encoder, and the fusion decoder. An overview of

the framework is shown in Figure 1.

Figure 1. Overview of the proposed CGNet architecture. The network takes as input a low-resolution
hyperspectral image and a high-resolution RGB image. It employs two parallel encoders to extract
multiscale spectral and spatial features, which are progressively fused in a coarse-to-fine manner by
the fusion decoder. The final output is a super-resolved hyperspectral image with full spatial and
spectral fidelity.

3.1. Problem Formulation

Let S{ g € RO be a low-resolution hyperspectral image with C spectral bands and
spatial dimensions (1, w), and let Iyg € R3XHXW be 5 high-resolution RGB image of the
same scene, where the following applies:

(HW)=(r-h, r-w), r € {4,6}.

The goal is to recover the corresponding high-resolution hyperspectral cube Syr €
REXHXW preserving the spectral information of Sy g while restoring the spatial details

available in Igg.

https:/ /doi.org/10.3390/jimaging12020061


https://doi.org/10.3390/jimaging12020061

J. Imaging 2026, 12, 61

50f24

We formulate this task as learning a parametric function Fy(-) such that the
following applies:

Ssk = Fo(Sir, Inr) ~ Sur, 1)

where Sgr denotes the reconstructed high-resolution hyperspectral image and 6 are the
learnable parameters. The model parameters are optimized using a loss function that
balances spatial and spectral accuracy, as detailed in Section 5.4.1.

3.2. Model Architecture

CGNet is a color-guided hyperspectral super-resolution architecture that fuses low-
resolution hyperspectral data Sir with high-resolution RGB guidance Iyr to produce
a high-resolution hyperspectral estimate Sgg. As illustrated in Figure 1, the network
processes the two inputs with parallel encoders and fuses their representations through a
multiscale decoder.

CGNet is composed of three main components:

*  RGB Encoder: Extracts a hierarchy of spatial features from Iy, capturing fine textures
and structural cues at multiple resolutions.

e  HSI Encoder: Extracts spectrally rich features from Sy and progressively upsamples
them to match the spatial resolutions of the RGB features.

e  Fusion Decoder: Integrates multiscale features from both encoders in a coarse-to-fine
manner and reconstructs the final high-resolution hyperspectral image.

The overall forward pass can be written as follows:

Ser = D(EHSI(SLR)/ ERGB(IHR))/ )

where Epgi(-) and Egrgg(-), respectively, denote the HSI and RGB encoders, and D(-, )
denotes the fusion decoder.

RGB Encoder. The RGB encoder Ergg, illustrated in Figure 2, extracts a hierarchy of
spatial features from the high-resolution RGB input Iyyg € R3*H*W Tts role is to capture
fine textures, edges, and structural patterns at multiple scales, which serve as spatial
guidance during hyperspectral reconstruction.

Each stage of the encoder is implemented using the Conv3XC block introduced
by Wan et al. [43]. Let C(-; p) denote such a block with stride p. The encoder applies
three sequential transformations:

F{OP = C(Ipg; p = 1), ®3)
FECR = C(FRCE; = 2) @
Fy = C(F% p =2), (5)

which produce the multiscale feature pyramid:

Erca(Inr) = {F¥GB, FXCB, FgGB}- (6)

The feature maps have the following spatial resolutions:

FlfGB c RCXHXW, (7)
FEGB c RCX%X%[ (8)
FRGB ¢ RCX%X%[ )
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where all feature maps share the same number of channels C = 64. The first stage preserves
full spatial detail and captures fine-grained RGB textures. The subsequent downsampling
stages increase the receptive field and extract progressively higher-level structures.

RGB
> F1

FRGB

b

> 'RGB
F3

y
Conv3X

y
Conv3X

IHR
Figure 2. Architecture of the proposed RGB encoder (Ergp). The module takes as input the high-
resolution RGB image and extracts spatial features at multiple scales through a sequence of convolu-

tional blocks with increasing stride. These hierarchical features capture both fine-grained details and
broader contextual information, and are used to guide the reconstruction process in the decoder.

HSI Encoder. The HSI encoder Eygp, shown in Figure 3, is designed to extract
spectrally informative features from the low-resolution hyperspectral input Sy g and to
progressively upsample them to higher spatial resolutions. This module complements the
RGB encoder by providing spectral context at multiple scales that can be aligned with the
RGB feature maps in the decoder.

Let C(-; p) denote a Conv3XC block with stride p, and let ¢ (-) denote an upsampling
block composed of a 5 x 5 convolution followed by PixelShuffle [44]. The HSI encoder
applies the following sequence of operations:

Sl = (S p=1), (10)
FSIST — 7/ (FHST), (11)
F5S1 = 1 (F3), (12)

and outputs the multiscale feature pyramid
Ensi(Str) = {F?SI, F, F?SI}- (13)

The three feature maps have the following spatial resolutions:

FI;ISI c RCXth, (14)
FZHSI e RCXZhXZw, (15)
F?SI c RCX4h><4w’ (16)

where all feature maps share the same number of channels C = 64. This design simplifies
cross-modal fusion with the RGB feature maps FgGB, FgGB, and FlfGB, which are defined at
matching spatial resolutions.

Overall, the hierarchical upsampling structure of Epjgp enables the network to propa-
gate rich spectral information from the original low-resolution grid to increasingly finer
spatial domains. In this way, the hyperspectral features can be effectively aligned with the
RGB guidance at each scale, providing a strong spectral prior for the fusion decoder.

Fusion Decoder. The fusion decoder D(-), illustrated in Figure 4, reconstructs the
high-resolution hyperspectral output by progressively merging the multiscale feature
representations extracted by the two encoders. Let {F{ISI, F?SI, FgISI} denote the features
from the HSI encoder and {FRCB, FRGB FRGB} those from the RGB encoder.
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Figure 3. Architecture of the proposed HSI encoder (Eyg). The encoder extracts low-level spectral
features from the input hyperspectral image and progressively upsamples them using convolution
and PixelShuffle operations. The resulting multiscale representations match the spatial resolutions of
the RGB features and enable effective cross-modal fusion in the decoder.

The decoding process is formulated as follows:
Sor = D({FIS}2, {FICP)1L ), (17)

where Sgg € RE*H*W denotes the reconstructed high-resolution hyperspectral cube.

The lowest-resolution hyperspectral feature FSI € RC*/*® js concatenated with the
coarsest RGB feature FYCB € RC*"*©_ The fused tensor is processed by an upsampling
block U (), composed of a Conv3XC module followed by PixelShuffle:

X1 = M(Concat(F{ISI, FgGB) ) (18)

The upsampled feature x; is aligned with F5! and FRCB. The three tensors are
concatenated and processed through a second upsampling block:

Xy = L[(Concat(xl, F5S, FEGB)). (19)

At the highest resolution, x; is concatenated with the finest hyperspectral feature
FgISI and the full-resolution RGB feature F?GB. A final Conv3XC block with stride p = 1
produces the reconstructed output:

Ser = C(Concat(xz, FgISI, FlfGB> ;P = 1). (20)

This yields the final super-resolved hyperspectral estimate Sgg € RE*H*W,

The fusion strategy adopted in the decoder is motivated by the different semantic
properties of features extracted at different depths in the RGB and hyperspectral encoders.
Shallow features primarily encode low-level spatial details, such as edges and textures,
while deeper features capture more abstract and context-aware representations. In the
RGB branch, deeper features provide robust structural cues with reduced sensitivity to
local noise, whereas shallow RGB features preserve fine spatial details. Conversely, in the
hyperspectral branch, shallow features retain detailed spectral information, while deeper
features encode more global spectral-spatial context. Based on this observation, the decoder
pairs deep RGB features with shallow hyperspectral features at coarse resolutions to inject
reliable structural guidance while preserving fine-grained spectral information. At higher
resolutions, shallow RGB features are paired with deeper hyperspectral features to refine
spatial details while maintaining globally consistent spectral representations. The fusion
operation itself is implemented via simple feature concatenation; therefore, the effectiveness
of the decoder arises from the cross-level feature pairing rather than from a complex fusion
operator. This cross-level interaction exploits the complementary strengths of RGB and
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hyperspectral modalities at different semantic levels, enabling effective spatial enhancement
without compromising spectral fidelity.

RGB 'RGB
F 2 Fl

l l

(] (]
FP—s 515 515
- — B3 5 — — 3 5
[=] [ o [
Fr— 3| = 3| =

o I o I

gSR
HST HSI
F, 2 F. 3

Figure 4. Overview of the fusion decoder module. Given multiscale feature pyramids from the HSI
and RGB encoders, the decoder performs a progressive fusion and upsampling across resolution levels.
At each stage, features are concatenated and processed through a PixelShuffle-based upsampling
block. The final output is generated by a convolutional reconstruction block that produces the
high-resolution hyperspectral image.

Regarding architectural hyperparameters, the design choices are guided by a trade-off
between reconstruction accuracy and computational efficiency. The number of feature
channels is kept moderate and fixed to 64 across the network, as the proposed multiscale
fusion strategy and Conv3XC blocks provide sufficient representational capacity without
requiring excessively wide feature maps. Kernel sizes are set to 3 x 3, which allows
preserving local spatial structures while maintaining computational efficiency. Instead
of relying on larger kernels to increase the receptive field, CGNet enlarges the effective
receptive field through hierarchical multiscale processing and progressive fusion across
resolutions. Finally, the number of scales is determined by the target upsampling factor
and by the need to perform resolution enhancement progressively rather than in a single
step. In the current design, two upsampling stages are employed, each with a limited
per-stage scaling factor, avoiding a direct large-scale increase (e.g., x4) in one operation.
This progressive strategy stabilizes training and enables more effective cross-modal feature
alignment at intermediate resolutions.

4. Experimental Setup

In this section, we describe the experimental setup used to evaluate our method. We
present the datasets, the evaluation metrics, and the implementation details.

4.1. Datasets

Our approach is evaluated on two benchmark hyperspectral datasets, which span
a variety of acquisition conditions, spectral resolutions, and scene categories: ARAD1K
and StereoMSI.

4.1.1. ARADI1K Dataset

The ARADIK dataset was introduced as part of the NTIRE 2022 Spectral Recovery
Challenge [45] and remains one of the most comprehensive datasets for spectral image
reconstruction. It includes 1000 real-world hyperspectral scenes, captured using a Specim
IQ push-broom camera. Each scene features a native resolution of 512 x 512 pixels and
originally comprises 204 spectral channels ranging from 400 nm to 1000 nm. For the purpose
of spectral reconstruction in the visible range, the data is preprocessed through radiometric
calibration and uniformly downsampled to 31 bands in the 400-700 nm range (with a 10 nm
step), resulting in final image dimensions of 482 x 512 x 31. Since the original test split
does not include corresponding hyperspectral labels, we adopt a modified partitioning of
the dataset, using 850 samples for training, 50 for validation, and 50 for testing.
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4.1.2. StereoMSI Dataset

The StereoMSI dataset, released as part of the PIRM 2018 Spectral Image Super-
Resolution Challenge [46], serves as a standard benchmark for evaluating both RGB-guided
and single-sensor spectral super-resolution techniques. It comprises 350 stereo pairs consist-
ing of RGB and multispectral images, recorded across a diverse set of natural and man-made
environments such as forests, offices, industrial zones, and desert areas near Canberra,
Australia. Each stereo pair consists of a high-resolution RGB image with a resolution of
960 x 480 pixels, and a corresponding low-resolution multispectral image of 480 x 240 pixels.
The spectral image is acquired using a snapshot sensor based on a 4 x 4 mosaic filter array,
yielding 16 effective spectral bands within the visible spectrum (470-620 nm).

4.2. Evaluation Metrics

To assess the effectiveness of the proposed spectral super-resolution method, we
adopt three widely recognized evaluation metrics [47]: Spectral Angle Mapper (SAM) [48],
Peak Signal-to-Noise Ratio (PSNR), and Structural Similarity Index Measure (SSIM) [49].
These metrics capture complementary aspects of reconstruction quality, ranging from
spectral accuracy (SAM) to per-band reconstruction fidelity (PSNR) and structural similarity
across spectral channels (SSIM), thus providing a comprehensive evaluation framework.
Moreover, the same metrics are consistently adopted by recent state-of-the-art RGB-guided
hyperspectral super-resolution methods evaluated on ARADIK and StereoMS]I, enabling a
fair and direct comparison under a unified experimental protocol [10-12].

4.2.1. Spectral Angle Mapper (SAM)

The Spectral Angle Mapper (SAM) is a widely adopted metric in hyperspectral image
analysis for assessing spectral consistency between a reconstructed pixel and its ground-
truth counterpart. It quantifies the angle between two spectral vectors, treating them as
points in a high-dimensional space. As such, it focuses more on the shape of the spectra
than on their absolute values. Given a ground-truth spectrum r and a predicted spectrum ¥,
SAM is defined as follows:

SAM(r, ) = cos ! << ) ) (21)
[rl2 - [£]2
The SAM is measured in radians. The computation is applied pixel-wise, and the average
SAM over all valid pixels in an image is taken as the image-level score. The final reported
value corresponds to the mean SAM across the test set. Lower values indicate better spectral
alignment between prediction and ground truth.

4.2.2. Peak Signal-to-Noise Ratio (PSNR)

PSNR quantifies the pixel-level reconstruction accuracy by evaluating the ratio be-
tween the peak possible signal value and the magnitude of reconstruction errors. It is
derived from the Mean Squared Error (MSE) between the predicted hyperspectral image
[ € REXWXC and the corresponding ground truth I € RF*W*C where H, W, and C
represent the spatial height, width, and number of spectral bands, respectively.

The MSE is calculated as follows:

1
MSE = T

< 2
2( ~lije) (22)

m:
T Mg

From the MSE, the PSNR is computed in decibels (dB) as follows:

(23)

2
PSNR = 10 - log;, <MAX )

MSE

https://doi.org/10.3390/jimaging12020061


https://doi.org/10.3390/jimaging12020061

J. Imaging 2026, 12, 61

10 of 24

where MAX denotes the maximum possible pixel value (typically 1.0 for normalized
reflectance or radiance data). A higher PSNR indicates smaller reconstruction errors and
thus better fidelity to the ground truth.

4.2.3. Structural Similarity Index (SSIM)

The Structural Similarity Index Measure (SSIM) is a perceptual metric that evaluates
the similarity between two images based on luminance, contrast, and structural information.
Although originally introduced for grayscale images, SSIM is widely adopted for assessing
multi-channel data such as hyperspectral or multispectral images.

In our case, SSIM is computed independently on each spectral band and then averaged
to produce a single scalar score. Given a ground-truth patch I and a reconstructed patch I,
SSIM is formulated as follows:

(2ugp; + C1)(207; + C)

SSIM(I, ) = ,
(&0 (47 +ui +Ci)(0f + 07 +Ca)

(24)

where y; and p; are the local means, (712 and (Tlg are the local variances, and 07; is the local
covariance between the reference and predicted patches. The constants C; and C; are small
regularization terms to ensure numerical stability.

SSIM is calculated using a sliding Gaussian window (typically of size 11 x 11) over
each spectral channel. The final SSIM score is obtained by averaging spatially across all
pixels and spectrally across all channels. The metric ranges from 0 to 1, where values closer
to 1 indicate higher structural similarity between the predicted and reference images.

4.2.4. Color Difference Metric (AEy)

To assess the perceptual color fidelity between the reconstructed and reference hyper-
spectral images, we compute the DeltaE2000 (AEqy) color difference metric, which is widely
used in color science for quantifying human-visible discrepancies.

The AEg value measures the perceptual distance between two colors represented
in the CIE Lab color space. Given two spectra—one from the ground truth and one
reconstructed—we first convert them to tristimulus values using a standard observer
model (e.g., CIE 1931 2°) and an illuminant (typically D65), and then transform them to
the CIE Lab space. The perceptual color difference is then computed according to the
CIEDE2000 formula, which accounts for improvements over previous models by including
corrections for lightness, chroma, and hue.

For two colors with Lab coordinates (L1, a1, b1) and (Ly, az, by), the AEy is computed
as follows:

AL’ \? AC' \? AH \? AC' AH'
Afoo = \/<kL5L) * (kcsc) * (kHSH> JrRT(kCSC) <kH5H) ®)

where AL, AC’, and AH’ represent the differences in lightness, chroma, and hue, respec-

tively. The terms Sy, Sc, and Sp are weighting functions, k; = k¢ = kg = 1 are parametric
factors (in most settings), and Rr is a rotation term that accounts for the interaction between
chroma and hue.

The AE score is computed per pixel after spectral-to-RGB conversion and averaged
across the image. Lower values of AEy indicate better colorimetric agreement, with values
below 1 generally considered imperceptible to the human eye.

4.3. Implementation Details

The proposed CGNet network was implemented in PyTorch version 2.10 and trained
on a single NVIDIA TITAN X GPU. Training was carried out for a maximum of 1000 epochs;
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however, an early stopping criterion was employed to prevent overfitting, terminating the

optimization process when the validation loss failed to improve for 100 consecutive epochs.

With this strategy, training converged after 560 epochs, requiring approximately 21 h in total.
Model parameters were optimized using the Adam algorithm, with an initial learning

rate of 5 x 10™* and a weight decay of 1 x 10~°. The learning rate was dynamically reduced

by a factor of 0.5 whenever the validation loss did not decrease for 50 successive epochs.
As training objective, we employed a combined loss function defined as follows:

L=ua L1+ (1—a) Lsam, (26)

with & = 0.7. This configuration was selected based on the results of our ablation study
presented in Section 5.4.1, which demonstrated that it provides the best trade-off between
spatial reconstruction accuracy and spectral fidelity.

5. Results

We evaluate CGNet on two hyperspectral benchmarks, ARAD1K and StereoMS],
reporting results at upscaling factors x4 and x6. The comparison includes classical inter-
polation (Bicubic), single-image super-resolution networks originally designed for RGB
images (RCAN [6], EDSR [7]), a hyperspectral-specific method (SSPSR [8]), and RGB-
guided fusion approaches (u2ZMDN [10], NonReg [11], Integrated [12]), alongside our
model. To ensure a fair comparison, each baseline method is trained and evaluated under
two configurations: the original training setting reported by the respective authors and a
unified training pipeline identical to that of CGNet. In the unified training setting, the same
optimization strategy, learning rate schedule, early stopping criterion, and learning rate
decay strategy are applied to all methods, including CGNet and the baseline models,
with identical monitoring metrics and patience values. For each method, we report the
best performance achieved across the two configurations. Quantitative comparisons on
ARADIK are summarized in Table 1, while results on StereoMSI are reported in Table 2;
metrics include SAM, PSNR, SSIM, and AE.

Table 1. Comparison of methods at x4 and x6 scales for ARAD1K. Metrics include SAM, PSNR,
SSIM, and AEy. For each metric, for each scale factor, best results in bold. The arrows indicate the
optimization direction: T means higher is better, while | means lower is better.

Color

Scale Guidance Model SAM] PSNR1 SSIM1 AEgol

Bicubic 0.031 33.21 88.60 0.165

No RCAN [6] 0.039 36.61 93.12 0.148

SSPSR [8] 0.027 36.56 9291 0.151

. EDSR [7] 0.029 37.25 93.70 0.143
X

u2MDN [10] 0.032 42.76 97.99 0.092

Yes NonReg [11] 0.026 43.04 98.02 0.090

Integrated [12] 0.027 43.60 98.29 0.083

Ours 0.025 43.72 98.33 0.071

Bicubic 0.040 30.99 83.32 0.210

No RCAN [6] 0.050 33.51 88.25 0.185

SSPSR [8] 0.037 33.59 88.42 0.182

6 EDSR [7] 0.040 34.02 89.10 0.176
X

u2MDN [10] 0.043 39.04 95.79 0.127

Yes NonReg [11] 0.035 39.29 96.02 0.119

Integrated [12] 0.037 39.79 96.36 0.115

Ours 0.031 41.96 97.72 0.102
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Table 2. Comparison of methods at x4 and x6 scales for StereoMSI. Metrics include SAM, PSNR,
SSIM, and AEy. For each metric, for each scale factor, best results in bold. The arrows indicate the
optimization direction: 1 means higher is better, while | means lower is better.

Color

Scale Guidance Model SAM| PSNR?T SSIM? AEgd

Bicubic 0.131 35.28 93.04 0.215

No RCAN [6] 0.199 33.28 92.21 0.242

SSPSR [8] 0.197 35.79 9291 0.230

A EDSR [7] 0.189 37.25 93.58 0.221
X

u2MDN [10] 0.110 37.16 94.21 0.180

Yos NonReg [11] 0.146 37.63 94.23 0.175

Integrated [12] 0.103 38.15 94.97 0.162

Ours 0.085 39.24 96.60 0.140

Bicubic 0.185 31.12 84.10 0.280

No RCAN [6] 0.127 31.45 84.75 0.265

SSPSR [8] 0.160 31.90 84.73 0.258

6 EDSR [7] 0.120 31.76 85.46 0.250
X

u2MDN [10] 0.115 33.51 89.65 0.215

Yes NonReg [11] 0.151 33.59 89.12 0.210

Integrated [12] 0.118 34.02 90.73 0.195

Ours 0.090 38.55 96.25 0.160

5.1. Results on ARADI1K and StereoMSI

Tables 1 and 2 summarize the quantitative performance on ARAD1K and StereoMSI,
respectively. Across both datasets, single-image baselines (Bicubic, RCAN [6], SSPSR [8],
EDSR [7]) achieve only moderate reconstruction quality. Relying solely on LR-HSI, these
models fail to recover high-frequency spatial structures and often introduce spectral distor-
tions, leading to lower PSNR/SSIM and substantially higher SAM and AEgg scores. This
confirms the ill-posedness of hyperspectral super-resolution without auxiliary guidance.

Methods that incorporate RGB information exhibit clear and consistent gains across
both datasets. Fusion-based approaches such as u2MDN [10], NonReg [11], and Inte-
grated [12] leverage the high-resolution spatial priors provided by the RGB modality,
resulting in improved detail reconstruction and enhanced spectral consistency. These
improvements are reflected in reduced SAM and AE, values. Our model achieves the best
performance on both ARAD1K and StereoMSI at both the upscaling factors x4 and x6. Rel-
ative to the strongest competing methods, it consistently delivers higher PSNR/SSIM and
lower SAM and AEgy. The advantage is particularly pronounced at x6, where competing
approaches exhibit a sharper decline in reconstruction fidelity.

Figures 5 and 6 visually compare spatial reconstructions. From the reported images, it
is possible to observe that several competing methods tend to produce smoother textures or
exhibit distortions in fine structural details, whereas our approach better preserves edges
and small objects. Error maps (Figures 7 and 8) further demonstrate that our method gener-
ates lower and more spatially uniform residuals, indicating improved cross-band stability.

Finally, pixel-wise spectral plots in Figures 9 and 10 confirm that our model yields
spectral signatures closely matching the ground truth across the entire visible range. While
other models typically diverge beyond 550-600 nm, our method consistently provides more
accurate reconstructions in this wavelength range. Overall, the results on ARAD1K and
StereoMSI demonstrate that the proposed framework achieves state-of-the-art performance
and generalizes effectively across datasets with different characteristics—recovering fine
spatial detail while preserving high spectral fidelity.
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GT Bicubic u2MDN NonReg Integrated Ours

Figure 5. Visual comparison of reconstructed hyperspectral images from ARADI1K at wavelengths
480 nm, 580 nm, and 680 nm, under x6 super-resolution. Rows correspond to spectral bands; columns
to different methods.

5.2. Cross-Dataset Generalization

To evaluate the generalization capability of CGNet, we conduct a cross-dataset experi-
ment where the model is trained on ARAD1K and directly tested on StereoMSI without
any fine-tuning.

GT Bicubic u2MDN Integrated Ours

Figure 6. Visual comparison of reconstructed hyperspectral images from StereoMSI at wavelengths
477 nm, 537 nm, and 617 nm, under x6 super-resolution. Rows correspond to spectral bands; columns
to different methods.
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Bicubic

Bicubic

1.0
0.6
0.4

u2MDN NonReg Integrated Ours

Figure 7. Error maps from ARADI1K at wavelengths 480 nm, 580 nm, and 680 nm, under x6 super-
resolution. Rows correspond to spectral bands; columns to different methods. Brighter regions
represent higher reconstruction errors, highlighting differences in spatial accuracy among the models.

1.0

u2MDN NonReg Integrated Ours

Figure 8. Error maps from StereoMSI at wavelengths 477 nm, 537 nm, and 617 nm, under x6 super-
resolution. Rows correspond to spectral bands; columns to different methods. Brighter regions
represent higher reconstruction errors, highlighting differences in spatial accuracy among the models.

Table 3 reports the cross-dataset generalization results obtained by training the
models on ARADIK and directly testing them on StereoMSI without any fine-tuning.
This experiment represents a challenging setting due to the significant domain shift be-
tween the two datasets, including differences in sensor characteristics, spectral sampling,
and scene content. As expected, all methods experience a noticeable degradation in re-
construction quality under cross-dataset evaluation. In particular, PSNR decreases by
approximately 8 dB for all approaches, indicating the difficulty of transferring spatial re-
construction capabilities across datasets. Nevertheless, CGNet consistently achieves the
highest PSNR and SSIM at both x4 and x6 scales, suggesting superior preservation of
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spatial structures even in the presence of severe domain shift. Notably, CGNet exhibits
a smaller drop in SSIM compared to competing methods, especially at x4, where the
degradation is limited to 7 points versus 8 points for other models, and at x6, where the
drop remains lower than that of competing approaches. This behavior indicates improved
structural generalization, likely due to the explicit multiscale fusion strategy and the sepa-
ration of spatial and spectral processing streams. Overall, while cross-dataset evaluation
leads to an inevitable performance drop for all methods, CGNet consistently exhibits a
smaller degradation and retains a clear advantage over competing RGB-guided approaches.
These results confirm that the proposed architecture generalizes more effectively across
datasets with different spectral and spatial characteristics, validating the robustness of the
dual-encoder and multiscale fusion design.

0250 0.175 006 p=
0225 /// 0.150 —— Integrated
. 005 —— NonReg
0200 _ o 0.125 —— cgnet
o —— u2MDN
Q 0175 0.04 u
g 0.100
o= 0.150
'g 0075 0
0.125
8
0100 — 6T 0050 — GT 002
: ~—— Integrated —— Integrated
0075 —— NonReg 0.025 ~—— NonReg 001
~ — cgnet — = — cgnet
0.050 u2MDN 0.000 —— U2MDN
0.00

400 450 500 550 600 650 700 400 450 500 550 600 650 700 400 450 500 550 600 650 700
Wavelength (nm)
Figure 9. Spectral evaluation of reconstructed HSIs on ARAD1K at x6 super-resolution. The top panel
shows an sRGB rendering of the reconstructed image with three representative pixels marked. The
bottom panel reports the spectral signatures corresponding to these pixels, comparing different
methods with the ground truth.

- GT

~—— Integrated
—— NonReg
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0225 =X 08
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Figure 10. Spectral evaluation of reconstructed HSIs on StereoMSI at x 6 super-resolution. The top panel
shows an sRGB rendering of the reconstructed image with three representative pixels marked. The
bottom panel reports the spectral signatures corresponding to these pixels, comparing different
methods with the ground truth.
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Table 3. Cross-dataset evaluation on StereoMSI when training on ARAD1K. All compared methods
leverage RGB guidance. Metrics include SAM, PSNR, SSIM and AE. Best results for each scale are
highlighted in bold. The arrows indicate the optimization direction: 1 means higher is better, while |
means lower is better.

Scale Model SAM| PSNR1T SSIM1 AEyl
u2MDN 0.275 29.16 86.21 0.378
4 NonReg 0.365 29.63 86.23 0.368
Integrated 0.258 30.15 86.97 0.340
Ours 0.213 31.24 89.60 0.294
u2MDN 0.288 25.51 79.65 0.452
<6 NonReg 0.378 25.59 79.12 0.441
Integrated 0.295 26.02 80.73 0.410
Ours 0.225 30.55 87.25 0.336

5.3. Computational Efficiency Analysis

Table 4 presents a detailed comparison between reconstruction accuracy and compu-
tational efficiency at the x4 scale on the ARADIK dataset. While several color-guided
methods achieve strong reconstruction performance, their practical applicability is often
constrained by high inference time or excessive computational overhead.

Despite having a higher number of parameters and GFLOPs compared to some
lightweight architectures, the proposed method achieves the second fastest inference time
among all learning-based approaches. This result highlights that computational efficiency
in practice is not solely determined by model size or theoretical complexity, but also by
architectural design and data flow efficiency.

In particular, while NonReg attains the lowest runtime due to its highly optimized
non-iterative formulation, our model substantially outperforms it in terms of spectral
and spatial reconstruction accuracy, achieving the best overall SAM, PSNR, and SSIM.
Compared to u2MDN, which exhibits extremely low parameter count and GFLOPs, our
approach is significantly faster at inference, demonstrating superior hardware efficiency
despite higher nominal complexity.

Overall, the proposed method achieves an advantageous balance between recon-
struction quality and real-world inference efficiency, making it suitable for practical high-
resolution hyperspectral imaging applications.

Table 4. Computational efficiency and reconstruction performance comparison at x4 scale on the
ARADI1K dataset. Reported metrics include spectral accuracy (SAM), spatial fidelity (PSNR, SSIM),
model complexity (number of parameters and GFLOPs), and inference time per image. Best results
for each metric are highlighted in bold, second best results underlined. The arrows indicate the
optimization direction: T means higher is better, while | means lower is better.
Scale Color Guidance Model SAM| PSNRT SSIM?T Params M) GFLOPs|  Time (S)]
Bicubic 0.031 33.21 88.60 / / 0.001
No RCAN [6] 0.039 36.61 93.12 15.62 245.2 0.127
SSPSR [8] 0.027 36.56 92.91 22.52 902.6 0.370
4 EDSR [7] 0.029 37.25 93.70 61.51 776.7 0.640
u2MDN [10] 0.032 42.76 97.99 0.01 10.48 0.710
Yes NonReg [11] 0.026 43.04 98.02 213 96.6 0.019
Integrated [12]  0.027 43.60 98.29 / / 238.0
Ours 0.025 43.72 98.33 3.16 113.10 0.034
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5.4. Ablation Study

Three ablation studies are conducted to thoroughly understand the proposed network.
All the experiments are based on the Arad1K dataset with a scale factor of x4.

5.4.1. Ablation Study on Loss Function

We further investigate the impact of different loss formulations on the performance of
the proposed framework. In particular, we compare:

1. A weighted combination of pixel-wise L1 loss and the Spectral Angle Mapper
(SAM) loss:
Lirisam = a - Li1+ (1 —a) - Lsam, (27)

with different values of & € {0.3,0.5,0.7};

2. Pixel-wise L1 loss alone, corresponding to the special case of the previous formulation
witha = 1:

L1 = |H - Hur

¥ (28)

3. Aregularization strategy based on spatial and spectral total variation (TV) losses:
Loy — ﬁspatial ﬁspectral )
TV — ~1v + TV ’ ( 9)

where given a hyperspectral image X € RF*W>K the spatial TV term is defined as

follows:
tial
LR = Z (‘XHl,j,k = Xijk| + ‘Xz',j+1,k — Xijk ), (30)
and the spectral TV term as follows:
tral
LR = Z‘Xi,j,kJrl - Xi,j,k‘- (31)

ijk

Spatial TV promotes piecewise-smooth structures while preserving edges across the
spatial domain, whereas spectral TV enforces smooth evolution across adjacent wave-
length channels, consistent with the natural behavior of reflectance spectra.

Beyond empirical evaluation, the complementarity between the L1 and SAM losses can
be explained by their distinct behaviors at the gradient level. The SAM loss operates on the
angular similarity between spectral vectors and is inherently scale-invariant, as it depends
only on the normalized direction of the spectra. Consequently, its gradients primarily
enforce consistency in spectral shape, encouraging the preservation of relative inter-band
relationships regardless of absolute intensity. This property is particularly important for
hyperspectral reconstruction, where accurate spectral signatures are more critical than
exact pixel-wise magnitudes. In contrast, the L1 loss provides pixel-wise supervision
with gradients directly proportional to local reconstruction errors. This leads to stable
optimization and strongly penalizes absolute deviations, making L1 especially effective
at preserving spatial structures and sharp edges in the reconstructed images. However,
when used alone, L1 does not explicitly constrain the spectral geometry, which can result
in distortions of spectral shape despite good spatial fidelity. When combined, L1 and
SAM provide complementary supervision: SAM constrains the spectral geometry through
scale-invariant angular consistency, while L1 anchors the reconstruction to accurate spatial
intensity patterns. This complementary gradient behavior explains why their combination
yields improved performance across both spectral and spatial metrics.

This theoretical complementarity is reflected in the quantitative results reported in
Table 5. The combined L1+SAM loss consistently outperforms the L1-only baseline across
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all spectral metrics, indicating that integrating angular spectral supervision complements
pixel-wise reconstruction and yields more accurate hyperspectral estimates. The parameter
« controls the relative importance of the two terms. A larger weight on L1 (« = 0.7) achieves
the highest PSNR (43.96) and SSIM (98.54), suggesting that stronger pixel-based supervision
helps recover sharper spatial details while the SAM term still maintains spectral stability.
In contrast, « = 0.3 achieves the lowest SAM (0.0249) and AEy (0.063), showing that
emphasizing the spectral component improves angular similarity and perceptual color
accuracy, with a moderate reduction in spatial metrics.

Training with L1 alone results in the weakest spectral fidelity (SAM = 0.0326,
AEgy = 0.080), confirming that pixel-wise regression by itself does not fully preserve spec-
tral structure. The TV-based loss mainly acts as a smoothness prior: it reduces noise and
improves local consistency, but its gradients are less effective at enforcing precise spectral or
spatial correspondence. As a result, its overall accuracy remains between pure L1 and the
L1+SAM combinations (SAM = 0.0279, AE(, = 0.070). In summary, combining L1 and SAM
provides the best overall results. The setting « = 0.7 offers the strongest reconstruction in
terms of PSNR and SSIM, while « = 0.3 is preferable when spectral accuracy and perceptual
color fidelity are the primary goals.

Table 5. Ablation study on different loss functions. Metrics include SAM, PSNR, SSIM, and AEy.
Best results for each metric are highlighted in bold. The arrows indicate the optimization direction:
1 means higher is better, while | means lower is better.

Loss SAM| PSNR1 SSIM1 AEgd
(=0.3)
L saMm 0.0249 42.75 97.98 0.063
(0=0.5)
L1 sam 0.0250 43.65 98.36 0.067
(=0.7)
L sam 0.0255 43.96 98.54 0.069
L11 0.0326 43.40 98.26 0.080
L1v 0.0279 43.11 98.06 0.070

5.4.2. Ablation Study on Network Architecture

To motivate the architectural choices of the proposed network, we conduct an ablation
study to evaluate the impact of different convolutional blocks and upsampling strategies,
analyzing their effect on both reconstruction accuracy and computational efficiency. All ex-
periments are conducted using the best-performing loss function identified in the previous
ablation study.

The results visible in Table 6 show that replacing standard convolution with Conv3XC
consistently improves reconstruction accuracy without increasing computational cost, as ev-
idenced by the identical GFLOPs when using transposed convolution. This confirms the
effectiveness of Conv3XC in enhancing representational capacity while preserving inference
efficiency through re-parameterization. A more pronounced performance gain is observed
when adopting PixelShuffle instead of transposed convolution, indicating that the choice
of upsampling strategy plays a crucial role in high-resolution reconstruction. PixelShuffle
leads to substantial improvements in PSNR and SSIM, while requiring additional compu-
tational resources. Overall, the combination of Conv3XC and PixelShuffle achieves the
best trade-off between reconstruction quality and efficiency, yielding the highest accuracy
across all metrics while maintaining a computational cost.
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Table 6. Ablation study on architectural design choices. We compare standard convolution and
Conv3XC blocks combined with different upsampling strategies. Metrics include SAM, PSNR,
SSIM, and GFLOPs. Best results for each metric are highlighted in bold. The arrows indicate the
optimization direction: T means higher is better, while | means lower is better.

Block Upsampling SAM/| PSNR?T SSIM? GFLOPs|
Conv2D ConvTranspose 0.0351 40.25 95.18 100.74
Conv3XC  ConvTranspose 0.0308 41.99 96.10 100.74
Conv2D PixelShuffle 0.0280 42.70 97.70 113.10
Conv3XC  PixelShuffle 0.0255 43.96 98.54 113.10

5.4.3. Ablation Study on Robustness to Spatial Misregistration

To evaluate the sensitivity of the proposed method to spatial misalignment between
the low-resolution hyperspectral input and the high-resolution RGB guidance, we conduct
a controlled ablation study in which we synthetically misalign only the RGB image. The low
resolution input and the ground-truth are kept perfectly aligned. This setup mimics realistic
acquisition conditions, where independent sensors are calibrated and registered, yet small
residual misregistrations inevitably remain [50].

We consider three global geometric transformations applied to the RGB guidance:
rotation, translation, and isotropic scaling. For every transformation type, we define a
set of distortion levels and, for each image in the test set, we randomly sample the actual
transformation parameters from a uniform distribution inside the corresponding range.
The transformed RGB is then passed to the network together with the original HSI.

Rotation:

We sample an in-plane rotation angle:
0 ~U[—a,ual,

with
a € {0.00°, 0.05°, 0.10°, 0.20°, 0.50°}.

The affine transformation is applied around the image center, and the resulting image is
resampled on the original grid.

Translation:

Horizontal and vertical shifts are sampled independently as follows:
Ax, Ay ~U[-T,T],

with
T € {0.00, 0.25, 0.50, 1.00, 2.00} pixels.

Scaling:

We apply an isotropic scaling factor:
Elad u[smin/ Smax]/
considering the following ranges:

(Smin, Smax) € {(1.00,1.00), (0.99,1.01), (0.98,1.02)}.
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Table 7 shows that the method is almost unaffected by rotations up to 0.10°, yielding
identical SAM, PSNR and SSIM values to the perfectly aligned case. A noticeable degrada-
tion appears for & = 0.20°, and becomes substantial at 0.50°, where PSNR drops by more
than 4 dB and SSIM decreases by over 2 points. These results indicate that the network can
tolerate sub-degree misregistration, but even moderate rotations introduce spectral and
spatial inconsistencies that cannot be fully compensated by the fusion model.

Table 7. Ablation study on rotational misregistration of the RGB guidance. Metrics include SAM,
PSNR, and SSIM. The arrows indicate the optimization direction: 1 means higher is better, while |
means lower is better.

o SAM. PSNRT SSIM+1
0.00° 0.0250 43.72 98.33
0.05° 0.0250 43.72 98.33
0.10° 0.0250 43.72 98.33
0.20° 0.0256 4227 97.83
0.50° 0.0261 39.56 96.32

A similar behaviour is observed for translational misalignment as shown in Table 8.
Sub-pixel shifts (T < 0.50) have essentially no impact on reconstruction quality, confirming
the model’s robustness in the most realistic misalignment regime. However, performance
drops sharply for shifts of 1-2 pixels: SAM increases by nearly 15% and PSNR decreases
by up to 7 dB compared to the aligned baseline. This highlights that accurate sub-pixel
registration between the RGB guidance and the HSI input is crucial for achieving high-
quality reconstruction.

Table 8. Ablation study on translational misregistration of the RGB guidance. Metrics include SAM,
PSNR, and SSIM. The arrows indicate the optimization direction: 1 means higher is better, while |
means lower is better.

T SAM. PSNRT SSIM+1
0.00 0.0250 43.72 98.33
0.25 0.0250 43.72 98.33
0.50 0.0250 43.72 98.33
1.00 0.0271 39.02 96.01
2.00 0.0283 36.09 92.26

The results for isotropic scaling are shown in Table 9. A small scale mismatch of +1%
already leads to a significant drop in PSNR (—6 dB) and SSIM, and a further increase to
£2% results in the worst performance among the three transformations. Unlike rotation
and translation, which affect the RGB image locally or directionally, isotropic scaling
introduces a global structural discrepancy that systematically misaligns spatial details
across modalities. This makes scale mismatch particularly challenging for alignment-
dependent fusion architectures.

Table 9. Ablation study on isotropic scaling misregistration of the RGB guidance. Metrics include
SAM, PSNR and SSIM. The arrows indicate the optimization direction: 1 means higher is better, while
| means lower is better.

s SAM. PSNRT SSIM1
(1.0, 1.0) 0.0250 43.72 98.33
(0.99, 1.01) 0.0270 37.67 95.11
(0.98,1.02) 0.0291 36.02 91.40
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Overall, these ablation results demonstrate that the proposed approach is robust
to very small geometric discrepancies but remains sensitive to larger misregistrations,
especially beyond sub-pixel shifts, sub-degree rotations, or scale mismatches exceeding 1%.
This emphasizes the importance of accurate cross-sensor calibration and registration when
deploying RGB-guided hyperspectral super-resolution in practical settings.

While the proposed robustness analysis provides useful insights into the sensitivity of
the model to spatial misregistration, it relies on synthetic global affine perturbations applied
to the RGB guidance. This experimental setup approximates realistic multi-sensor acqui-
sition scenarios, where sensors are independently calibrated and residual misalignments
typically manifest as small global transformations. However, real-world acquisitions may
also exhibit more complex misregistration patterns, including locally varying distortions
caused by optical differences, rolling shutter effects, lens distortions, or scene-dependent
parallax, which cannot be fully captured by global affine models. Non-rigid or spatially
varying misalignments, such as local warping or depth-induced parallax, are not explic-
itly addressed in this study. Handling such cases would likely require either explicit
deformable alignment mechanisms or architectures that are less dependent on strict pixel-
wise correspondence between modalities. An interesting direction for future work is the
integration of learned alignment strategies, such as deformable convolution or feature-level
cross-modal alignment modules, which could enable the network to compensate for more
complex misregistration patterns. Alternatively, joint optimization of alignment and super-
resolution within a unified framework may further improve robustness in unconstrained
acquisition settings.

6. Conclusions

In this work, we presented CGNet, a multiscale RGB-guided fusion framework for
hyperspectral image super-resolution, designed to exploit the spatial richness of RGB
imagery while preserving the spectral fidelity of the hyperspectral signal.

Extensive experimental results demonstrate that CGNet consistently outperforms state-
of-the-art approaches on multiple benchmarks, achieving superior performance in terms of
SAM, PSNR, SSIM, and AEqy. In particular, the proposed method exhibits strong spectral
preservation capabilities, confirming its effectiveness in maintaining spectral consistency
while enhancing spatial details.

While PSNR, SSIM, SAM, and AEy are widely adopted for benchmarking hyperspec-
tral super-resolution methods and provide a necessary first-order assessment of reconstruc-
tion fidelity, we acknowledge that such generic metrics do not fully capture task-specific
utility in downstream applications. In practice, small spectral or spatial reconstruction
errors may have disproportionate effects on subsequent tasks such as material classification,
spectral unmixing, or medical image analysis, where subtle spectral variations can be
critical. Investigating the relationship between reconstruction quality and downstream task
performance therefore represents an important direction for future research.

We further conducted an extensive experimental analysis to better understand the
practical behavior of CGNet beyond reconstruction accuracy. In particular, the compu-
tational efficiency study highlights that, despite a higher nominal model complexity in
terms of parameters and GFLOPs compared to some lightweight designs, CGNet achieves
one of the fastest inference times among learning-based RGB-guided approaches. This
demonstrates that real-world efficiency is strongly influenced by architectural design and
data-flow organization rather than theoretical complexity alone, and confirms the suitability
of CGNet for practical deployment.

In addition, a comprehensive set of ablation studies was performed to analyze the
contribution of the loss formulation, architectural components, and robustness to spa-
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tial misregistration. The loss ablation confirms the complementary roles of L1 and SAM
supervision in jointly preserving spatial structures and spectral shape. The architectural
ablation validates the effectiveness of the proposed Conv3XC blocks and PixelShuffle-based
upsampling in achieving a favorable balance between reconstruction accuracy and effi-
ciency. Finally, the misregistration ablation demonstrates that CGNet remains stable under
very small geometric deviations, while performance degrades when misalignment exceeds
sub-degree rotations, sub-pixel translations, or scale discrepancies above 1% Together, these
analyses provide a clearer understanding of the design choices and practical limitations of
the proposed framework.

Overall, CGNet provides an effective and computationally efficient solution for RGB-
guided hyperspectral image super-resolution. Future work will focus on improving ro-
bustness to complex cross-modal misalignments by integrating explicit alignment modules
and self-supervised registration strategies. In particular, incorporating learnable geometric
transformation components, such as homography estimation, deformable convolutions,
or optical-flow-based warping networks, may further enhance spatial consistency under
realistic acquisition conditions.
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