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This paper presents a texture descriptor for color texture classification specially designed to be robust against
changes in the illumination conditions. The descriptor combines a histogram of local binary patterns (LBPs) with
a novel featuremeasuring the distribution of local color contrast. The proposed descriptor is invariant with respect
to rotations and translations of the image plane and with respect to several transformations in the color space. We
evaluated the proposed descriptor on the Outex test suite, by measuring the classification accuracy in the case in
which training and test images have been acquired under different illuminants. The results obtained show that our
descriptor outperforms the original LBP approach and its color variants, even when these are computed after color
normalization. Moreover, it also outperforms several other color texture descriptors in the state of the art. © 2014
Optical Society of America

OCIS codes: (100.2960) Image analysis; (100.5010) Pattern recognition; (100.3008) Image recognition,
algorithms and filters; (330.1690) Color.
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1. INTRODUCTION
The combination of color and texture features is very
common in texture classification [1]. These two visual cues
are often treated as orthogonal. In fact, studies about human
perception suggest that texture and color information are
processed separately [2].

The importance of color in texture classification has been
thoroughly explored by Bianconi et al. [3]. They proposed a
taxonomy for the classification of the color/texture descrip-
tors in the state of the art. They also evaluated these descrip-
tors on a standard data set. The results show that color is
indeed a very important feature for texture classification.
In fact, they obtained performance very close to the maximum
just by using marginal histograms in the sRGB color space.
The evaluation of Bianconi et al., however, does not take into
account changes in illumination. When lighting conditions are
allowed to change, the increased intra-class variability may
easily cause a drop in classification accuracy. The reader
can refer to the work of Drbohlav and Leonardis [4] for an
in-depth comparative analysis of texture methods under vary-
ing viewpoints and illumination, as well as to the work of
Kandaswamy et al. [5] for a comparison among texture analy-
sis schemes under nonideal conditions in general.

In practice, variable lighting conditions can be dealt with by
simply ignoring the contribution of color and by focusing ex-
clusively on the texture. This simple approach is supported by
the study of Mäenpää and Pietikäinen [1], in which a variety of
strategies for the combination of color and texture features
have been experimented. They clearly confirmed that color
features can be extremely effective for the classification of
textures when the lighting conditions are fixed. However,
under varying illumination conditions they found that the best

performance is achieved by using histograms of local binary
patterns (LBPs) computed on the gray-scale image.

Besides the trivial solution of completely disregarding
color, there are two main approaches that address the issue
of changes in lighting conditions: the first consists in perform-
ing the feature extraction step after a chromatic normalization
procedure such as gray world [6], Retinex [7], gray edge [8,9],
or comprehensive color image normalization [10]. The second
consists in extracting invariant features from the images.

An example of the first approach has been proposed by
Khan et al. [11]. They considered a diagonal/offset model for
illumination variations, on the basis of which they deduced an
image normalization transformation. Then, Gabor filters are
extracted from the normalized images. The features they ob-
tained provided very good results in the context of texture
classification across illumination changes.

The second approach has been followed by Finlayson et al.,
who proposed rank-based features obtained from invariant
color representations [12]. Seifi etal., instead,proposedtochar-
acterize color textures by analyzing the rank correlation be-
tween pixels located in the neighborhood from each other.
Theyobtainedacorrelationmeasure that is related to thecolors
of the pixels, and is not sensitive to illumination changes [13].

In this paper we present a texture descriptor that properly
combines a histogram of LBPs with a feature encoding the dis-
tribution of local color contrast (LCC). LBPs [14] are among
the most effective texture features in the state of the art. They
are computed on the gray-scale image, and have been de-
signed to be robust against changes in the lighting conditions,
such as those causing variations in the local contrast.

The second feature, the distribution of LCC, is designed to
preserve a useful part of color information and, at the same
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time, to discard the part that is most affected by changes in
illumination. Our previous investigation on this topic showed
us not only the effectiveness of measuring the local variability
of the color of the pixels, but also how well this kind of
information complements the LBP approach [15,16]. This fact
distinguishes our approach from previous attempts to incor-
porate color information in the LBP framework [17,18], which
resulted in an excess of sensitivity with respect to changes in
lighting conditions.

To evaluate our descriptor we used a data set that has been
previously used in several other works on this topic
[1,11,19,20]. This is the Outex-14 data set, a collection of tex-
ture images that have been acquired under three different
illuminants [21].

To prove the effectiveness of the proposed approach, we
did the following:

• we evaluated the influence of the parameters on the
performance of the descriptor;

• we compared the performance of the proposed descrip-
tor with that obtained with several LBP-based features, with
and without the use of color normalization methods;

• we compared the performance of our descriptor with
that of several other methods from the state of the art.

2. PROPOSED DESCRIPTOR
In this work we present a texture descriptor that is designed to
be robust with respect to changes in illumination. Differently
from most works in the state of the art, where this kind of
robustness is achieved by completely disregarding color, we
propose a measure of LCC that preserves a useful part of color
information and, at the same time, discards the part that is
often affected by changes in illumination.

The descriptor is formed by concatenating two feature vec-
tors: the first consists in a histogram of LBPs, while the second
represents the distribution of LCC.

A. Local Binary Patterns
Despite their remarkable discriminative power, the definition
of LBPs is quite simple [22]. Briefly, LBPs are computed by
thresholding the value of the neighbors of each pixel with the
value of the pixel itself. More in detail, given the number n of
neighbors and the neighborhood radius r, for each pixel the
LBPn;r code is computed as follows:

LBPn;r�ĝ� �
Xn−1
p�0

s�gp − ĝ�2p; (1)

where ĝ is the gray level of the current pixel, g0;…; gn−1 are
the gray levels of its neighbors, and s is the step function de-
fined as s�x� � 1 if x ≥ 0; s�x� � 0 otherwise. The n neighbors
considered lie on a circle of radius r centered on the current
pixel: the gray value gp is obtained by interpolating the image
at a displacement �r cos�2πp∕n��; r sin�2πp∕n��.

To form a feature vector, the occurrences of the local pat-
terns are counted into a histogram. More precisely, the feature
extraction procedure is the following: (i) input images are
converted to gray-scale, (ii) Eq. (1) is applied for each pixel
to compute the local patterns, (iii) the occurrences of the
patterns are counted in a histogram, and (iv) the histogram

is normalized to sum one. Conversion to gray-scale can be
performed in several ways [23,24].

In practice, not all the 2n patterns are equally significant.
Only patterns describing a somewhat regular neighborhood
are considered. These patterns are called “uniform” and are
defined as those for which there are at most two 0/1 transi-
tions between adjacent bits in the code. All nonuniform pat-
terns are accounted for in a single bin of the histogram.

In this work we set n � 16 and r � 2. Therefore, the LBP
histogram has 243 bins (242 for the uniform patterns and one
for the nonuniform patterns; see Pietikäinen et al. [22]).

B. Local Color Contrast
Color information is usually represented as color vectors c �
�c1; c2; c3� consisting of triplets of values corresponding to the
components along the axis of a given color space. For the sake
of simplicity we considered only the RGB color space, but the
method described here can be easily computed in other color
spaces. The LCC is measured by comparing the color at a
given location with the average color in a surrounding neigh-
borhood. To make it robust against changes in the color of the
illuminant, the LCC θ is computed in terms of the angular dif-
ference between the two color vectors:

θ � arccos
� hĉ; c̄i
‖ĉ‖ · ‖c̄‖

�
; (2)

where ĉ is the color of the current pixel, c̄ is average color of
the neighborhood, and h·; ·i and ‖ · ‖ denote the inner product
and the Euclidean norm. When the denominator is null, we
simply set θ � 0.

Inspired by the LBP approach, the average color is com-
puted on a circular neighborhood of radius r and cardinality n:

c̄ � 1
n

Xn−1
p�0

cp; (3)

where the vector cp is obtained by a bilinear resampling of
the color image at the location of ĉ displaced by
�r cos�2πp∕n�; r sin�2πp∕n��. Figure 1 shows a diagram of
the computation of the LCC θ. A LCC map is formed by com-
puting the LCC at all the locations in the image. For instance,
Fig. 2 shows an example of the LCC map obtained with

Fig. 1. Diagram representing the computation of the LCC corre-
sponding to the neighborhood defined by the parameters n � 16
and r � 2. The color vector c̄ is computed by averaging the 16 neigh-
bors. Then, the local contrast is measured by the angle θ between the
average c̄ and the central color vector ĉ.
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different neighborhoods. It can be noticed that the values are
always positive: this is due to the choice of the RGB color
space, where the components always assume positive values.
Therefore the angles between twoRGB vectors necessarily fall
in the range �0; π∕2�. We used histograms to represent the dis-
tribution of the LCC. The angular difference is uniformly quan-
tized in Q bins. Actually, the cases in which θ exceeds π∕4 are
exceptional. Therefore, we decided to quantize only the range
�0; π∕4�. The very few cases in which the upper bound is
exceeded are accounted for in the last bin of the histogram.
Figure 2 also shows histograms obtained with Q � 256 and
three different neighborhoods. The figure shows that the larger
the neighborhood, the higher the color contrast values. This is
expected, since for large neighborhoods the average color
tends to diverge more from the color of the central pixel.

The feature proposed here has been designed by taking into
account our previous investigation where we introduced and
evaluated the intensity color contrast descriptor (ICCD) [15].
This was based on the measure of color contrast defined as
the angular difference between the color vector of the pixel
and the average of the normalized color vectors in a square
neighborhood. The average color is defined as

c̄ � 1

�2W � 1�2
XW
i�−W

XW
j�−W

cij
‖cij‖

; (4)

where W determines the size of the neighborhood, and cij de-
notes the color of the pixel at a displacement �i; j� with re-
spect to the central pixel. Null vectors are ignored in the
summation. In that work we observed that (i) the unit normali-
zation of the color vectors makes the descriptor sensitive to
image noise and (ii) better performance is obtained for small
neighborhoods. In the new LCC descriptor we removed the
normalization and we reduced to the minimum the size of
the neighborhood. The older ICCD assigned a uniform weight
to all the neighbors, while LCC weights more the brighter

pixels, for which color information is more reliable. We also
realized that a circular shape makes the LCC invariant with
respect to rotations on the image plane. Moreover, since LBPs
and LCC share the same neighborhood, it would be easier to
design multiscale classification strategies (this topic, how-
ever, has not been addressed in this work). As a consequence,
with respect to ICCD, the LCC has one parameter less (the
size of the neighborhood), rotation invariance, and a slightly
better performance.

In summary, the distribution of LCC enjoys the following
properties:

• it is invariant with respect to rotations and translations
of the image plane, due to the circular shape of the neighbor-
hood and to the use of a histogram representation;

• it is invariant to uniform scalings in the color space, due
to the normalization of the vectors in Eq. (2);

• it is invariant to rotations in the color space, because of
the use of an angular distance.

The last two properties make the distribution of LCC robust
with respect to changes in the illumination conditions. More-
over, the final descriptor can be computed very quickly; in fact
feature extraction requires a number of operations that is pro-
portional to the total number of pixels M , and to the size n of
the neighborhood (O�Mn�), which corresponds to the same
computational complexity of LBP-like features.

Note that the LCC histogram cannot be considered purely
as a color feature. In fact it completely disregards the infor-
mation about the “dominant color” (i.e., uniform patches have
zero color contrast, independently of their color).

C. Combining of LBPs and LCC
The final descriptor is obtained by combining the LBP and
LCC features. A comparison of the combination strategies
for color and texture features has been discussed by Khan
et al. [25]. They distinguished among two main approaches:

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7
color contrast (rad)

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7
color contrast (rad)

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7
color contrast (rad)

(a) (b) (c) (d)

(e) (f) (g)

Fig. 2. (b)–(d) LCC maps and (e)–(f) LCC distributions obtained from a sample image (a). The neighborhoods considered are, from left to right,
n � 8 and r � 1, n � 16 and r � 2, and n � 24 and r � 3. In the maps, brighter pixels stand for higher values of LCC.
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early and late fusion (they also proposed a more sophisticated
Portmanteau fusion, not considered here). Early fusion in-
volves binding the two visual cues at the pixel level. Late fu-
sion consists in processing the visual cues independently and
in combining them at the image level. They concluded that late
fusion provides superior performance in those cases in which
one of the visual cues changes significantly. Therefore, since
we are clearly addressing one of these cases (changes in the
illuminant color, for instance, may leave unchanged the ach-
romatic texture) we decided to adopt the late fusion strategy.

The combined descriptor D is formed by concatenating the
histogram of LBPs (HLBP) and the histogram of the color con-
trast values (HLCC). The relative importance of the two feature
vectors may depend on the specific task at hand. Therefore,
we decided to introduce a final parameterw that determines a
linear scaling to be applied to the second feature vector before
the final combination:

D �
�

HLBP

w ×HLCC

�
: (5)

When w is zero, only the LBP histogram is considered. As w
increases, the contribution of LCC grows, and that of LBPs
becomes progressively more marginal. The optimal value of
w clearly depends on the amount of variation of illumination
conditions.

3. EXPERIMENTS
In the experiments, we first tuned the descriptor and evalu-
ated its sensitivity with respect to the parameters. Then, we
compared its performance with that obtained by replacing the
LBP feature described in Section 2.A, with other LBP-based
features. A further comparison has been made with the results
that can be achieved by computing the texture descriptors
after the application of color normalization methods. Finally
we compared the performance of our descriptor against that
of several other methods from the state of the art.

For additional results on the same data set, the reader can
refer to the works of Bianconi et al. [3] and to that of Mäenpää
and Pietikäinen [1].

A. Data Set and Classification Problems
To study the robustness of the proposed features to lighting
variations we considered the Outex-14 test suite, which is part
of the Outex collection [21] (the data set is available at the
address http://www.outex.oulu.fi). The suite contains images
that depict textures of 68 different classes acquired under
three different light sources, each positioned differently:
the 2856 K incandescent CIE A (denoted as “inca”), the
2300 K horizon sunlight (denoted as “horizon”), and the
4000 K fluorescent TL84 (denoted as “TL84”). Texture images
have been obtained by subdividing texture photographs in 20
subimages of size 128 × 128 pixels. The photographs have
been acquired with a Sony DXC-755P camera calibrated using
the “inca” illuminant. Images are encoded in linear camera
RGB space [1]. The suite contains, for each light source,
1360 images: 680 for training and 680 for test. Figure 3 shows
the intra-class variability for some of the 68 classes across the
three illuminants.

We experimented with different subsets of texture images
from the Outex-14 data set obtained by considering all the

possible combinations of illuminants for the training and
the test sets. For instance, considering the training and test set
from “inca”we obtained the subset “inca/inca” (i/i), while con-
sidering the training set from “inca” and test set from “hori-
zon” or from “TL84” we obtained the subsets “inca/horizon”
(i/h) or “inca/TL84” (i/t). In this way, we obtained nine differ-
ent classification problems.

Note that the authors of the data set indicate the “inca” il-
luminant for the training images, and the union of the images
taken under the other two illuminants for the test set. Other
works about texture analysis under variable illumination de-
tailed the results by separating the performance with the
“horizon” and the “TL84” test sets (our i/h and i/t subsets). It
is also important to point out that the Outex collection con-
tains another suite, the Outex-13, that is composed of the sub-
set of images, contained in the Outex-14, acquired under
“inca” and thus corresponding to the subset i/i.

In all the experiments we used the nearest neighbor clas-
sification strategy: given an image in the test set, its distance
with respect to all the training images is computed. The pre-
diction of the classifier is the class of the closest training set
image. For this purpose, after some preliminary tests in which
we evaluated the most common distance measures, we
decided to use the χ2 distance

χ2�x; y� � 1
2

XN
i�1

�xi − yi�2
xi � yi

; (6)

where x and y are two feature vectors of nonnegative values.
The χ2 distance has been demonstrated to provide good
performance when applied to histograms [22]. Performance
is reported as classification rates (i.e., the ratio between
the number of correctly classified images and the number
of test images).

B. Tuning of the Parameters
To evaluate the goodness of the proposed descriptor we first
studied how much the classification performance is affected
by its parameters. In particular, we computed the classifica-
tion rates obtained by varying the weight w that modulates
the contribution of LBP and LCC features, and the number
of bins Q that forms the LCC histogram.

Figure 4(a) shows the results obtained by combining
LCC with LBPs computed on the luminance image (obtained
as described in the OutTex Web site at the address

Fig. 3. Examples of images in six of the 68 classes. Each column
contains images from a different class. The first row contains images
under “inca”, the second row contains images under “TL84”, and the
last row contains images under “horizon” (best viewed in color).
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http://www.outex.oulu.fi/index.php?page=image_acquisition)
with Q � 256 and varying the combination weight w. For w �
0 the plot reports the results obtained only by using LBPs
without any contribution from LCC. Two classification rates
are considered: one is the average of the three fixed-
illuminant conditions (i/i, h/h and t/t), the other is the average
of the six conditions with variable illuminant (i/h, i/t, h/i, h/t, t/
i, t/h). In general, the addition of the color contrast feature to
the LBP descriptor helps to better discriminate across texture
classes. However, when the LCC contribution is too much the
performances tend to decrease. It can also be noted that this
behavior is more evident when the illuminant changes. Since
we are particularly interested in the case of variable illumina-
tion, in the following we will consider the value w � 0.15 that
corresponds to the best performance (77.1%) obtained in the
case of variable illumination.

Figure 4(b) shows a similar analysis for the number of bins
of the LCC histogram. The best average performance is
achieved at Q � 512 with an accuracy of 85.6%, and at Q �
128with an accuracy of 77.1% for the subsets without and with
illuminant variation, respectively. Note that the performance
obtained for values of Q ranging from 32 to 1024 is almost uni-
form. We also observed a similar behavior for other values of
the combination factor w (not reported here). In the following
we will consider Q � 256. This value is compatible with the
number of bins of the most frequently used LBP configuration
in these experiments (LBPu

16;2), which is 243.

C. Color Variants of LBP Features
LBP features can be extended in several ways to take into ac-
count color information. The easiest one is to compute them
on each color channel independently, and to concatenate the
obtained histograms into a single feature vector [1]. This ap-
proach can be directly applied to the red, green, and blue
channels of the input RGB image, or to the components of
any other color space (we considered the RGB, HSV, CIE-
Lab, and Ohta’s I1I2I3 color spaces, where the conversion
to CIE-Lab as been obtained as described in [1]). Within this
approach, it is quite possible that potentially useful informa-
tion is lost, such as the information about co-occurrences of
local patterns across different color channels.

Opponent color LBP (OCLBP) [17] tries to incorporate
cross-channel information in the LBP framework: LBPs are

extracted from each color channel independently, and then
for pairs of color channels so that the center pixel is taken
from one channel and the neighboring pixels from the other.
In total, six histograms are computed: three for the R, G, and B
channels, and three for the combinations R/G, R/B, and G/B.
The histograms are concatenated to form the feature vector.

Connah and Finlayson [18] used 3D joint histograms of LBP
values computed from the three R,G,B channels. In order to
reduce the number of combinations of different patterns on
the three channels, the patterns considered are restricted to
the LBP8;1 operator with rotation invariance and uniform pat-
terns. Therefore, their final histogram has 10 × 10 × 10 � 1000
components. We will refer to this variant as “Connah and
Finlayson” (CF).

Table 1 reports the performance obtained by these variants
of LBP features. It is clear that color information is very useful
when training and test images are taken under the same illu-
minant. In this case, the OCLBP descriptor allows us to
achieve a classification rate of about 93.3%, which is by far the
best performance. However, changes in illumination make
cross-channel information completely unreliable, to the point
that OCLBP obtains only 10.2% of classification accuracy. For
variable lighting conditions the best strategy seems to be to
just ignore color information, and to compute the LBP
histogram on the luminance image (71.9% of classification
accuracy).

Table 2 shows the results obtained by concatenating the
color variants of LBPs to the LCC histogram. When training
and test illuminants are the same, the introduction of LCC
increases the average performance of all the descriptors
except OCLBP. The best performance with illuminant varia-
tion is obtained by the combination of LCC with LBPs
computed on the luminance image with a classification accu-
racy of 77.1%, which is more than 5% better than the second
best combination (71.9% for LBP-L, in Table 1).

Figure 5 summarizes the results obtained with illuminant
variation by reporting for each method the minimum, average,
and maximum classification rates obtained with the six com-
binations of training and test illuminants. The figure clearly
shows how, with the exception of the CF method, the inclu-
sion of LCC consistently improves the classification rate. The
introduction of LCC also makes the results more robust in
terms of worst-case performance. For instance, for LBP-L

 65

 70

 75

 80

 85

 90

0.0 0.01 0.02 0.05 0.10 0.15 0.25 0.50 0.75 1.00 1.25 1.50 2.0

C
la

ss
ifi

ca
tio

n 
ra

te
 (

%
)

w

LBP-Y + LCC

Same illuminant
Illuminant variation

 65

 70

 75

 80

 85

 90

1 2 4 8 16 32 64 128 256 512 1024

C
la

ss
ifi

ca
tio

n 
ra

te
 (

%
)

Q

LBP-Y + LCC

Same illuminant
Illuminant variation

(b)(a)
Fig. 4. Performance of the combination of LBPu

16;2 and LCC obtained by varying (a) combination weight w and (b) number of bins Q of the LCC
histogram. In the first plot Q was fixed to 256, and in the second w was fixed to 0.15.
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the worst combination is i/h, corresponding to a classification
rate of 68.2%. The addition of LCC raised the worst-case clas-
sification rate up by 6.5% (74.7% for h/i). In most cases, the
worst-case performance obtained with LCC is better than
the average classification rate obtained without it.

D. Color Normalization Methods
An alternative to the use of illumination invariant features is to
apply a color normalization method before feature extraction.
In order to include this strategy in the comparison, we consid-
ered two variants of the Retinex method [26,27], the gray
world [6], two variants of edge-based algorithm, the gray edge
[8] and the weighted gray-edge method [9], and the compre-
hensive normalization [10].

The first Retinex method, denoted here as McCann99, is
described in [26], and the second, denoted as Frankle–
McCann, is described in [28]. Specifically, we used the imple-
mentations of both methods described in [27] that improve the

computational efficiency while preserving the underlying
principles.

The Retinex theory is based on the assumption that the per-
ception of the color of an object is not determined by the spec-
tral composition of the light stimulus but is determined by the
result of the retina and visual cortex processing [29]. The algo-
rithms considered compute the lightness at a given image pixel
by comparing the pixel’s value to that of other pixels. The strat-
egy in which the pixel comparison is performed makes the
main difference between these algorithms. The McCann99

algorithm considers a multiresolution pyramid of the input
image. Comparisons are initially calculated at a given scale,
for instance, the top level of the pyramid, and then propagated
down the other levels. The Frankle–McCann algorithm does
not use the multiresolution approach and makes single pixel
comparisons with variable separations. A single pixel eventu-
ally averages different products from all other pixels.

The gray-world algorithm is based on the assumption that
the average value of the R, G, and B components of a given
image should converge to a gray color given a sufficient
amount of color variations [6].

Edge-based color constancy methods are based on the
assumption that the average edge difference in a scene is ach-
romatic [8]. Different edge types exist in real-world images,
such as material, shadow, and highlight edges. The basic
version of the gray-edge algorithm estimates the illuminant
by using all types of image derivatives [8]. Due to the fact that
different edge types may have a distinctive influence on the
illuminant estimation, the weighted gray edge gives more im-
portance to some types of edges, such as those corresponding
to shadows and specularity [9].

The comprehensive normalization is an iterative procedure
that removes image dependency on lighting geometry and il-
lumination color. It is a very simple method that iterates two
normalization steps until a stable state is reached. The RGB

Table 1. Evaluation of Several Variants of LBPsa

Same Illuminant (%) Illuminant Variation (%)

Features i/i t/t h/h avg i/t i/h t/i t/h h/i h/t avg

LBP-L 81.0 79.0 82.7 80.9 68.5 68.2 71.6 77.9 68.8 76.2 71.9

LBP-RGB 86.3 86.0 88.2 86.9 71.3 48.8 72.4 46.9 58.2 57.4 59.2
LBP-HSV 88.1 88.5 88.2 88.3 43.5 58.5 45.4 44.9 67.1 47.5 51.2
LBP-Lab 88.5 84.9 89.3 87.6 42.4 77.9 47.7 40.7 77.5 43.2 54.9
LBP-I1I2I3 86.3 83.4 89.4 86.4 53.5 58.0 54.7 54.6 66.8 54.6 57.0
OCLBP 93.1 96.2 90.7 93.3 8.5 15.3 8.2 2.7 23.8 2.8 10.2
CF 73.8 75.7 73.1 74.2 42.8 25.7 42.1 19.7 32.5 28.4 31.9

aFor each column, the best result is reported in bold.

Table 2. Evaluation of Several Variants of LBPs Combined with the LCC Descriptora

Same Illuminant (%) Illuminant Variation (%)

Features i/i t/t h/h avg i/t i/h t/i t/h h/i h/t avg

LCC� LBP − L 85.3 85.2 86.2 85.5 76.8 75.4 80.9 79.0 74.7 75.7 77.1

LCC� LBP − RGB 88.8 87.8 90.3 89.0 78.1 59.9 79.6 58.4 64.6 61.9 67.1
LCC� LBP − HSV 89.3 89.4 91.9 90.2 52.7 63.5 57.1 54.0 73.8 56.5 59.6
LCC� LBP − Lab 90.2 87.4 91.5 89.7 51.0 81.8 56.2 51.3 81.3 50.0 62.0
LCC� LBP − I1I2I3 87.1 85.2 91.6 87.9 60.4 66.8 65.3 57.5 75.4 61.6 64.5
LCC� OCLBP 35.6 39.4 36.0 37.0 18.4 18.2 18.7 11.5 19.7 9.6 16.0
LCC� CF 28.2 30.9 32.8 30.6 16.8 16.3 16.6 10.0 17.2 8.4 14.2

aFor each column, the best result is reported in bold.
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Fig. 5. Average classification rates obtained in the case of variable il-
lumination.Thebars indicate theminimumandmaximumperformance
obtained on the six combinations of training and test illuminants.
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pixel normalization removes dependence on lighting geom-
etry, while the R, G, and B channel normalization removes
dependence on the illuminant color.

Finally, we also included in the comparison an ideal correc-
tion of the illuminant obtained by exploiting the knowledge of
the acquisition device and of the illuminants under which the
pictures have been taken. To do so, we used a chromatic adap-
tation transform based on the Von Kries model [30]. The use of
a CAT is possible since the authors of the data set made avail-
able the color conversion matrix from RGB camera values to
CIE XYZ tristimulus values, together with the spectral power
distributions of the three illuminants. The CAT chosen is the
CAT02 [31], but different choices could be made [32,33]. The
equal energy CIE E standard illuminant has been chosen as
the destination inside the CAT.

Tables 3 and 4 report the performance obtained by these
color normalization algorithms combined with several var-
iants of LBP features and evaluated on the subsets without
and with illuminant variations. Although the use of color nor-
malization gives, in most of the cases, a slight improvement of
performance, for none of the LBP variants is such an improve-
ment larger than that obtained with the combination with the
proposed LCC histogram.

E. Comparison with Other Methods Robust to
Illuminant Conditions
Table 5 reports a comparison between the best performance
obtained in the previous experiments and some methods in
the state of the art. Precisely, we considered the OCLBP that
achieved the maximum performance on the i/i subset (namely
the Outex-13), and the proposed descriptor (LBP-L combined

with the LCC) that achieved the maximum average on the
Outex-14.

Furthermore, we considered three other methods in the
state of the art. The first is a combination of three variants
of LBPs, that is, LBPu

8;1, LBP
u
16;3, and LBPu

24;5, applied to the
Lab color space [1]. The last two methods use the Gabor4;6
features after an image color normalization. More precisely,
the method described in [20] was applied to both Outex 13
and 14, and features were calculated on the luminance and
RGB color space. The method described in [19] has been
applied only to Outex-14.

On Outex-14, our descriptor outperformed all the other al-
ternatives considered. On Outex-13 (i.e., without illuminant
variations) OCLBP obtained the best performance.

Kandaswamy et al. also reported the results obtained by
applying their method to an ad hoc color space obtained by
the combination of the luminance, the red and green channels

Table 3. Average Accuracy of Several Variants of LBPs Combined with Different Preprocessing Methods

Experimented on Subsets without Illuminant Variationsa

Same Illuminant (%)

Preprocessing LBP-L LBP-RGB LBP-HSV LBP-Lab LBP − I1I2I3 OCLBP CF

— 80.9 86.9 88.3 87.6 86.4 93.3 74.2
Retinex McCann 80.3 86.4 83.0 87.3 84.7 81.0 73.7
Retinex Frankle 79.2 86.2 82.0 87.7 85.1 80.0 72.7
Gray world 80.0 86.7 84.3 87.9 84.1 88.3 69.9
Gray edge 81.5 86.9 85.8 88.0 82.4 85.4 73.9
Weighted gray edge 82.2 86.9 86.2 88.1 82.3 83.9 74.4
Comprehensive norm. 42.7 73.1 70.0 76.0 67.2 78.7 48.7
CAT02 81.5 88.5 88.2 83.3 85.5 93.0 79.0

aFor each column, the best result is reported in bold.

Table 4. Average Accuracy of Several Variants of LBPs Combined with Different Preprocessing Methods

Experimented on Subsets with Illuminant Variationsa

Illuminant Variation (%)

Preprocessing LBP-L LBP-RGB LBP-HSV LBP-Lab LBP-I1I2I3 OCLBP CF

— 71.9 59.2 51.2 54.9 57.0 10.2 31.7
Retinex McCann 69.6 57.2 46.9 54.4 54.9 8.8 29.4
Retinex Frankle 70.4 57.2 47.5 54.5 54.8 9.0 29.9
Gray world 69.5 63.3 55.8 62.0 58.3 51.2 35.5

Gray edge 69.8 59.2 39.7 64.7 57.1 23.5 31.9
Weighted gray edge 69.0 59.2 38.5 64.9 56.9 22.5 31.9
Comprehensive norm. 22.8 35.1 32.0 37.1 29.7 33.6 18.3
CAT02 72.6 63.6 43.3 64.6 61.9 28.3 34.0

aFor each column, the best result is reported in bold.

Table 5. Comparison of Best LBPs with Best LBPs�
LCC and Other Methods in the State of the Arta

Outex-13 Outex-14

Method i/i i/t i/h avg

OCLBP [17] 93.1 8.5 15.3 12.0
LBPu

16;2 − L� ICCD [15] 89.0 — — 75.6
LBPu

8;1 � LBPu
16;3 � LBPu

24;5 on Lab [1] 87.8 — — 67.8
Khan et al. on L [20] — 69.2 73.3 71.3
Khan et al. on Colors [20] 84.8 74.4 53.6 64.0
Kandaswamy et al. on L [19] — 73.5 75.9 74.7
LBPu

16;2 − L� LCC (proposed) 85.3 76.8 75.4 76.1

aFor each column, the best result is reported in bold.
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(denoted as RGL). This choice is not general, and depends on
the particular characteristics of the Outex-14 data set. By ex-
ploiting the RGL color space, they achieved a significantly
higher classification accuracy, 76.3% on i/t and 77.8% on i/h,
obtaining an average accuracy of 77.1%. We decided to con-
sider the RGL color space as well, for the computation of the
LCC feature. The results we obtained confirm that RGL is in-
deed a good color space for the classification of Outex images.
More in detail, we obtained a classification accuracy of 76.9%
on i/t and 79.1% on i/h, for an average of 78.0%.

4. DISCUSSION AND CONCLUSIONS
On the basis of their results on the Outex-14 data set, Mäenpää
and Pietikäinen concluded their seminal work with the obser-
vation that, under varying illumination conditions, gray-scale
texture features work clearly better than color-based features
[1]. In this paper we demonstrated that color information can
be processed in such a way that the resulting descriptor
clearly outperforms intensity-based approaches on the same
Outex-14 test suite.

More in detail, we proposed a descriptor that is formed by
combining a histogram of LBPs with a feature encoding the
distribution of a measure of the LCC. An extensive evaluation
on the Outex data set showed that its performance is superior
to that of the other gray-scale and color descriptors in the
state of the art, especially in the case of variable illumination
conditions. We also considered the usage of variants of LBP
features after the application of color normalization methods.
None of the combinations of features and normalization meth-
ods achieved good results in the case of variable illumination,
even in the case in which a priori information about the illu-
minant is exploited.

More investigation should be devoted to the issue of the
proper combination of the two parts of the proposed descrip-
tor. In fact, theoptimal valueof theparameterwdependson the
variability of the illumination condition. We plan to study how
to measure such a variability and how to adaptively determine
the best value for w. To do so a new data set is required, since
none of the existing ones provide images taken under a large
number of controlled lighting conditions [34].

The descriptor proposed here has been mainly designed to
be robust with respect to variations of the color of the illumi-
nant. However, we speculate that even bigger challenges may
be posed by variations of the illuminant position and by the
possible presence of multiple illuminants. In fact, in a prelimi-
nary work we verified that when only the illuminant’s color is
allowed to change there are simple descriptors that are pretty
much invariant [35]. In the future, we plan to further investi-
gate all the sources of variation in the appearance of color
textures.

†The authors contributed equally to this work.
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