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Attentive monitoring of multiple video streams

driven by a Bayesian foraging strategy
Paolo Napoletano, Member, IEEE, Giuseppe Boccignone and Francesco Tisato

Abstract—In this paper we shall consider the problem of
deploying attention to subsets of the video streams for collating
the most relevant data and information of interest related
to a given task. We formalize this monitoring problem as a
foraging problem. We propose a probabilistic framework to
model observer’s attentive behavior as the behavior of a forager.
The forager, moment to moment, focuses its attention on the
most informative stream/camera, detects interesting objects or
activities, or switches to a more profitable stream.

The approach proposed here is suitable to be exploited for
multi-stream video summarisation. Meanwhile, it can serve as a
preliminary step for more sophisticated video surveillance, e.g.
activity and behavior analysis. Experimental results achieved
on the UCR Videoweb Activities Dataset, a publicly available
dataset, are presented to illustrate the utility of the proposed
technique.

Index Terms—Multi-camera video surveillance; Multi-stream
summarisation; Cognitive Dynamic Surveillance; Attentive vi-
sion; Activity detection; Foraging theory; Intelligent sensors

I. INTRODUCTION

THE volume of data collected by current networks of

cameras for video surveillance clearly overburdens the

monitoring ability of human viewers to stay focused on a

task. Further, much of the data that can be collected from

multiple video streams is uneventful. Thus, the need for the

discovery and the selection of activities occurring within and

across videos for collating information most relevant to the

given task has fostered the field of multi-stream summarise.

At the heart of multi-stream summarisation there is a

“choose and leave” problem that moment to moment an ideal

or optimal observer (say, a software agent) must solve: choose

the most informative stream; detect, if any, interesting activ-

ities occurring within the current stream; leave the handled

stream for the next “best” stream.

In this paper, we provide a different perspective to such

“choose and leave” problem based on a principled framework

that unifies overt visual attention behavior and optimal forag-

ing. The framework we propose is just one, but a novel, way

of formulating the multi-stream summarisation problem and

solution (see Section II, for a discussion).

In a nutshell, we consider the foraging landscape of multiple

streams, each video stream being a foraging patch, and the

ideal observer playing the role of the visual forager (cfr. Table

I). According to Optimal Foraging Theory (OFT), a forager
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that feeds on patchily distributed preys or resources, spends

its time traveling between patches or searching and handling

food within patches [1]. While searching, it gradually depletes

the food, hence, the benefit of staying in the patch is likely to

gradually diminish with time. Moment to moment, striving to

maximize its foraging efficiency and energy intake, the forager

should make decisions: Which is the best patch to search?

Which prey, if any, should be chased within the patch? When

to leave the current patch for a richer one?

Here visual foraging corresponds to the time-varying overt

deployment of visual attention achieved through oculomotor

actions, namely, gaze shifts. Tantamount to the forager, the

observer is pressed to maximize his information intake over

time under a given task, by moment-to-moment sampling

the most informative subsets of video streams. All together,

TABLE I
RELATIONSHIP BETWEEN ATTENTIVE VISION AND FORAGING

Multi-stream attentive processing Patchy landscape foraging

Observer Forager

Observer’s gaze shift Forager’s relocation

Video stream Patch

Proto-object Candidate prey

Detected object Prey

Stream selection Patch choice

Deploying attention to object Prey choice and handling

Disengaging from object Prey leave

Stream leave Patch leave or giving-up

choosing the “best” stream, deploying attention to within-

stream activities, leaving the attended stream, represent the

unfolding of a dynamic decision making process. Such mon-

itoring decisions have to be made by relying upon automatic

interpretation of scenes for detecting actions and activities. To

be consistent with the terminology proposed in the literature

[2], an action refers to a sequence of movements executed by

a single object ( e.g., “human walking” or “vehicle turning

right”). An activity contains a number of sequential actions,

most likely involving multiple objects that interact or co-exist

in a shared common space monitored by single or multiple

cameras (e.g., “passengers walking on a train platform and

sitting down on a bench”). The ultimate goal of activity

modelling is to understand behavior, i.e. the meaning of

activity in the shape of a semantic description. Clearly, ac-

tion/activity/behavior analysis entails the capability of spotting

objects that are of interest for the given surveillance task.

Thus, in the work presented here the visual objects of

interest occurring in video streams are the preys to be chased

and handled by the visual forager. Decisions at the finer level

of a single stream concern which object is to be chosen
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vision problems and distributed optimal control strategies

brought on by the multi-stream setting [18], [19], [20]. On

the other hand, difficulties arise when dealing with large

video corpora and with dynamic video streams, e.g. on-line

summarisation in visual sensor networks [16], a case which is

more related to our scenario.

In this view, beyond multi-camera summarisation, it is of

interest work concerning multi-camera surveillance, where

manual coordination becomes unmanageable when the number

of cameras is large. To some extent, the “choice and leave”

problem previously introduced bears relationships with two

challenging issues: camera assignment (which camera is being

used to extract essential information) and camera handoff

(the process of finding the next best camera). Indeed, the

complexity of these problems on large networks is such that

Qureshi and Terzopoulos [21] have proposed the use of virtual

environments to demonstrate camera selection and handover

strategies. Two remarkable papers address the issue of de-

signing a general framework inspired by non-conventional

theoretical analyses, in a vein similar to the work presented

here. Li and Bhanu [22] have presented an approach based on

game-theory. Camera selection is based on a utility function

that is computed by a bargaining among cameras capturing the

tracking object. Esterle et al. [23] adopted a fully decentralised

socio-economic approach for online handover in smart camera

networks. Autonomous cameras exchange responsibility for

tracking objects in a market mechanism in order to maximize

their own utility. When a handover is required, an auction is

initiated and cameras that have received the auction initiation

try to detect the object within their the field of view.

At this point it is worth noting that, in the effort towards a

general framework for stream selection and handling, all works

above, differently from the approach we present here, are

quite agnostic about the image analysis techniques to adopt.

They mostly rely on basic tools (e.g., dense optical flow [15],

Camshift tracking manually initialized [22], simple frame-

to-frame SIFT computation [23]). However, from a general

standpoint, moving object detection and recognition, tracking,

behavioral analysis are stages that deeply involve the realms of

image processing and machine vision. In these research areas,

one major concern that has been an omnipresent topic during

the last years is how to restrict the large amount of visual data

to a manageable rate [19], [18].

Yet to tackle information overload, biological vision systems

have evolved a remarkable capability: visual attention, which

gates relevant information to subsequent complex processes

(e.g., object recognition). A series of studies published under

the headings of Animate [24], or Active Vision [25] has

investigated how the concepts of human selective attention

can be exploited for computational systems dealing with a

large amount of image data (for an extensive review, see [26]).

Indeed, determining the most interesting regions of an image

in a “natural”, human-like way is a promising approach to

improve computational vision systems.

Surprisingly enough, the issue of attention has been hitherto

overlooked by most approaches in video surveillance, moni-

toring and summarisation [14], [16], apart from those in the

emerging domain of smart camera networks embedding pan-

tilt-zoom (PTZ) cameras. PTZ cameras can actively change

intrinsic and extrinsic parameters to adapt their field of view

(FOV) to specific tasks [19], [20]. In such domain, active

vision is a pillar [19], [18], since FOV adaptation can be

exploited to focus the “video-network attention” on areas of

interest. In PTZ networks, each of the cameras is assumed to

have its own embedded target detection module, a distributed

tracker that provides an estimate of the state of each target in

the scene, and a distributed camera control mechanism [20].

Control issues have been central to this field: the large amount

of camera nodes in these networks and the tight resource

limitations requires balancing among conflicting goals [27],

[21]. In this respect, the exploitation vs. exploration dilemma is

cogent here much like in our work. For example, Sommerlade

and Reid [28] present a probabilistic approach to maximize

the expected mutual information gain as a measure for the

utility of each parameter setting and task. The approach allows

balancing conflicting objectives such as target detection and

obtaining high resolution images of each target. Active dis-

tributed optimal control has been given a Bayesian formulation

in a game theoretic setting. The Bayesian formulation enables

automatic trading-off of objective maximization versus the risk

of losing track of any target; the game-theoretic design allows

the global problem to be decoupled into local problems at each

PTZ camera [29], [30].

In most cases visual routines and control are treated as

related but technically distinct problems [20]. Clearly, these

involve a number of fundamental challenges to the existing

technology in computer vision and the quest for efficient and

scalable distributed vision algorithms [18]. The primary goal

of these systems has been tracking distinct targets, where

adopted schemes are extensions of the classic Kalman Filter

to the distributed estimation framework [20]. However, it is

important to note that tracking is but one aspect of multi-

stream analysis and of visual attentive behavior ([2], but

see Section III-B for a discussion). To sum up, while the

development of PTZ networks has cast interest for active

vision techniques that are at the heart of the attentive vision

paradigm [24], [25], yet even in this field we are far from a

full exploitation of tools made available by such paradigm.

There are some exceptions to this general state of affairs.

The use of visual attention has been proposed by Kankanhalli

et al.[31]. They embrace the broad perspective of multimedia

data streams, but the stream selection process is yet handled

within the classic framework of optimization theory and rely-

ing on an attention measure (saturation, [31]). Interestingly,

they resort to the MVT result, but only for experimental

evaluation purposes. In our work the Bayesian extension of

the MVT is at the core of the process. The interesting work

by Chiappino et al. [13] proposes a bio-inspired algorithm

for attention focusing on densely populated areas and for

detecting anomalies in crowd. Their technique relies on an

entropy measure and in some respect bears some resemblance

to the pre-attentive monitoring stage of our model. Martinel

et al. [32] identify the salient regions of a given person, for

person re-identification across non-overlapping camera views.

Recent work on video summarisation has borrowed salience

representations from the visual attention realm. Ejaz et al. [33]
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choose key frames as salient frames on the basis of low-level

salience. High-level salience based on most important objects

and people is exploited in [34] for summarisation, so that the

storyboard frames reflect the key object-driven events. Albeit

not explicitly dealing with salience, since building upon sparse

coding summarisation , Zhao and Xing [35] differentiate from

[17] and generate video summaries by combining segments

that cannot be reconstructed using the learned dictionary.

Indeed, this approach, which incorporates in summaries un-

seen and interesting contents, is equivalent to denote salient

those events that are unpredictable on prior knowledge (salient

as “surprising”, [26]). Either [34] and [35] only consider

single-stream summarisation. The use of high-level saliency

to handle the multi-stream case has been addressed in [36],

hinging on [37]; this method can be considered as a baseline

deterministic solution to the problem addressed here (cfr., for

further analysis, Section VIII).

Our method is fundamentally different from all of the above

approaches. We work within the attentive framework but the

main novelty is that by focusing on the gaze as the principal

paradigm for active perception, we reformulate the deployment

of gaze to a video stream or to objects within the stream

as a stochastic foraging problem. This way we unify intra-

and inter-stream analyses. More precisely, the main technical

contributions of this paper lie in the following.

First, based on OFT, a stochastic extension of the MVT is

proposed, which defines an optimal strategy for a Bayesian

visual forager. The strategy combines in a principled way

global information from the landscape of streams with local

information gained in attentive within-stream analysis. The

complexity measure that is used is apt to be exploited for

within-patch analysis (e.g, from group of people to single

person behavior), much like some foragers do by exploiting a

hierarchy of patch aggregation levels [38].

Second, the visual attention problem is formulated as a

foraging problem by extending previous work on Lévy flights

as a prior for sampling gaze shift amplitudes [39], which

mainly relied on bottom-up salience. At the same time, task

dependence is introduced, which is not achieved through ad

hoc procedures. It is naturally integrated within attentional

mechanisms in terms of rewards experienced in the attentive

stage when the stream is explored. This issue is seldom taken

into account in computational models of visual attention (see

[26], [6] but in particular Tatler et al [40]). A preliminary

study on this challenging problem has been presented in [41],

but limited to the task of searching for text in static images.

III. MODEL OVERVIEW

In this Section we present an overview of the model to frame

detailed discussion of its key aspects covered in Sections IV

(pre-attentive analysis), V (stream choice), VI (within-stream

attentive analysis) and VII (Bayesian strategy for stream

leave).

Recall from Section I that the input to our sys-

tem is a visual landscape of K video streams, each

stream being a sequence of time parametrized frames

{I(k)(1), I(k)(2), · · · , I(k)(t), · · · }, where t is the time param-

eter and k ∈ [1, · · · ,K]. Denote D the spatial support of I(k),

and r
(k) ∈ D the coordinates of a point in such domain. By

relying on the perception/action cycle outlined in Fig. 1, at any

point t in time, we designate the current gazed frame I
(k)(t)

of stream k as the relevant video frame to be selected and

included in the final output summarisation

To such end, each video stream is the equivalent of a

foraging patch (cfr. Table I) and objects of interest (preys)

occur within the stream. In OFT terms, it is assumed that: the

landscape is stochastic; the forager has sensing capabilities and

it can gain information on patch quality and available preys

as it forages. Thus, the model is conceived in a probabilistic

framework. Use the following random variables (RVs):

• T: a RV with |T| values corresponding to the task

pursued by the observer.

• O: a multinomial RV with |O| values corresponding to

objects known by the observer

As a case study, we deal with actions and activities involving

people. Thus, the given task T corresponds to “pay attention

to people within the scene”. To this purpose, the classes of

objects of interest for the observer are represented by faces

and human bodies, i.e., O = {face, body}.

The observer engages in a perception/action cycle to ac-

complish the given task (Fig.1). Actions are represented by

the moment-to-moment relocations of gaze, say rF (t− 1) 7→
rF (t), where rF (t − 1) and rF (t) are the old and new gaze

positions, respectively. We deal with two kinds of relocations:

i) from current video stream k to the next selected k′ (between-

patch shift), i.e. r
(k)
F (t−1) 7→ r

(k′)
F (t); ii) from one position to

another within the selected stream (within-patch gaze shifts),

r
(k)
F (t − 1) 7→ r

(k)
F (t). Since we assume unitary time for

between-stream shifts, in the following we will drop the k
index and simply use rF to denote the center of the FoA

within the frame without ambiguity. Relocations occur because

of decisions taken by the observer upon his own perceptual

inferences. In turn, moment to moment, perceptual inferences

are conditioned on the observer’s current FoA set by the gaze

shift action.

A. Perceptual component

Perceptual inference stands on the visual features that can be

extracted from raw data streams, a feature being a function f :
I(t) → Ff (t). In keeping with the visual attention literature

[6], we distinguish between two kinds of features:

• bottom-up or feed-forward features, say F|I - such as

edge, texture, color, motion features - corresponding to

those that biological visual systems learn along evolution

or in early development stages for identifying sources

of stimulus information available in the environment

(phyletic features, [8]);

• top-down or object-based features, i.e. F|O.

There is a large variety of bottom-up features that could

be used (see [26]). Following [42], we first compute, at each

point r in the spatial support of the frame I(t) from the

given stream, spatio-temporal first derivatives (w.r.t temporally

adjacent frames I(t− 1) and I(t+1)). These are exploited to

estimate, within a window, local covariance matrices Cr ∈
R

3×3, which in turn are used to compute space-time local
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on future prospects for food on the current patch, which in turn

depends on posterior information about this patch. This issue is

addressed in the framework of optimal Bayesian foraging [48],

[49] (cfr., Section VII).

IV. PRE-ATTENTIVE SENSING

The goal of this stage is to infer a proto-object representa-

tion of all the K patches within the spatial landscape (Fig. 3,

top row). To this end, the posterior P (L(k)(t) | I
(k)(t)) ≈

P (L(k)(t), I(k)(t)) is calculated from the joint pdf. In the

derivations that follows we omit the time index t for notational

simplicity.

Rewrite the joint pdf factorization in Eq. 1 under

the assumption of object-based feature independence,

i.e.,
∏

f,f
′ P (O,F

(k)
f |O,L(k),O(k),X

(k)
f ,Ff

′ |I, I
(k)|T, rF ).

Then P (L(k), I(k)) is obtained by marginalizing over

RVs X
(k)
f ,F

(k)
f |O,F

(k)

f
′ |I
,O and O(k). Use the following:

∑
O P (O(k)|L(k)) = 1 by definition; P (L(k)) = Unif

by assumption;
∑

O P (F
(k)
f |O|O)P (O|T) = P (F

(k)
f |O|T) =

P (F
(k)
f |O) by local conditional independence in G. Thus:

P (L(k) | I(k)) ≈
∏

f,f
′

∑

X
(k)
f

,F
(k)

f|O
,F

(k)

f
′
|I

P (X
(k)
f | L(k)(t),F

(k)
f |O)

P (I(k) | F
(k)

f
′ |I
,X

(k)
f , rF )P (F

(k)
f |O). (2)

The term P (F
(k)
f |O) is a prior “tuning” the preference for

specific object-based features. In the pre-attentive stage we

assume a uniform prior, i.e. P (F
(k)
f |O) = Unif., and restrict

to feed-forward features F
(k)

|I. Then, Eq. 2 boils down to the

probabilistic form of a classic feed-forward saliency map (see

Fig. 3), namely,

P (L(k) | I(k)) ≈
∏

f,f
′

∑

X
(k)
f

,F
(k)

f|O
,F

(k)

f
′
|I

P (X
(k)
f | L(k),F

(k)
f |O)·

P (I(k) | F
(k)

f
′ |I
,X

(k)
f , rF ), (3)

where the likelihood P (X
(k)
f |L(k),F

(k)
f |O) is modulated by

bottom-up feature likelihood P (I(k)|F
(k)

f
′ |I
,X

(k)
f , rF ).

Given the priority map, a set O(k)(t) = {O
(k)
p (t)}NP

p=1 of

NP proto-objects or candidate preys can be sampled from it.

Following [39], we exploit a sparse representation of proto-

objects. These are conceived in terms of “potential bites”,

namely interest points sampled from the proto-object. At any

given time t, each proto-object is characterised by different

shape and location, i.e., O
(k)
p (t) = (O

(k)
p (t),Θp(t)). Here

O
(k)
p (t) = {r

(k)
i,p }

Ni,p

i=1 is the sparse representation of proto-

object p as the cluster of Ni,p IPs sampled from it; Θ
(k)
p (t)

is a parametric description of a proto-object, Θ
(k)
p (t) =

(M
(k)
p (t), θ

(k)
p ).

The set M
(k)
p (t) = {m

(k)
p (r, t)}r∈L stands for a map of

binary RVs indicating at time t the presence or absence of

proto-object p, and the overall map of proto-objects is given by

M(k)(t) =
⋃Np

p=1 M
(k)
p (t). Location and shape of the proto-

object are parametrized via θ
(k)
p . Assume independent proto-

objects:

M(k)(t) ∼ P (M(k)(t)|L(k)(t)), (4)

and for p = 1, · · · , NP

θ(k)p (t) ∼ P (θ(k)p (t)|M(k)
p (t) = 1,L(k)(t)), (5)

O(k)
p (t) ∼ P (O(k)

p (t)|θ(k)p (t),M(k)
p (t) = 1,L(k)(t)). (6)

The first step (Eq. 4) samples the proto-object map from the

landscape. The second (Eq. 5) samples proto-object parameters

θ(t)
(k)
p = (µ

(k)
p (t),Σ

(k)
p (t))).

Here, M(k)(t) is drawn from the priority map by deriv-

ing a preliminary binary map M̃(k)(t) = m̂(k)(r, t)}r∈L,

such that m̂(k)(r, t) = 1 if P (L(k)(t)|I(k)(t)) > TM , and

m̂(k)(r, t) = 0 otherwise. The threshold TM is adaptively set

so as to achieve 95% significance level in deciding whether

the given priority values are in the extreme tails of the pdf.

The procedure is based on the assumption that an informative

proto-object is a relatively rare region and thus results in

values which are in the tails of P (L(k)(t)|I(k)(t)). Then,

following [50], M(k)(t) = {M
(k)
p (t)}NP

p=1 is obtained as

M
(k)
p (t) = {m

(k)
p (r, t)|ℓ(B, r, t) = p}r∈L, where the function

ℓ labels M̃(t) around r.

We set the maximum number of proto-object to NP = 15
to retain the most important ones.

As to Eq. 5, the proto-object map provides the necessary

spatial support for a 2D ellipse maximum-likelihood approx-

imation of each proto-object, whose location and shape are

parametrized as θ
(k)
p = (µ

(k)
p ,Σ

(k)
p ) for p = 1, · · · , Np (see

[39] for a formal justification).

In the third step (Eq. 6), the procedure generates clusters

of IPs, one cluster for each proto-object p (see Fig. 3). By

assuming a Gaussian distribution centered on the proto-object

- thus with mean µ
(k)
p and covariance matrix Σ

(k)
p given by

the axes parameters of the 2D ellipse fitting the proto-object

shape -, Eq. (6) can be further specified as [39]:

r
(k)
i,p ∼ N (r(k)p ;µ(k)

p (t),Σ(k)
p (t)), i = 1, · · · , Ni,p. (7)

We set Ns = 50 the maximum number of IPs and for each

proto-object p, we sample {r
(k)
i,p }

Ni,p

i=1 from a Gaussian centered

on the proto-object as in (7). The number of IPs per proto-

object is estimated as Ni,p = ⌈Ns ×
Ap∑
p Ap

⌉, Ap = πσx,pσy,p

being the size (area) of proto-object p. Eventually, the set of

all IPs characterising the pre-attentively perceived proto-object

can be obtained as O(t) =
⋃Np

p=1{r
(k)
i,p (t)}

Ni,p

i=1 .

V. STREAM SELECTION

Streams vary in the number of objects they contain and

maybe other characteristics such as the ease with which

individual items are found. We assume that in the pre-attentive

stage, the choice of the observer to spot a stream, is drawn on

the basis of some global index of interest characterizing each

stream in the visual landscape. In ecological modelling for

instance, one such index is the landscape entropy determined

by dispersion/concentration of preys [1].
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Here, generalizing these assumptions, we introduce the

time-varying configurational complexity C(k)(t) of the k-th

stream. Intuitively, by considering each stream a dynamic

system, we resort to the general principle that complex systems

are neither completely random neither perfectly ordered and

complexity should reach its maximum at a level of randomness

away from these extremes [51]. For instance, a crowded scene

with many pedestrians moving represents a disordered system

(high entropy, low order) as opposed to a scene where no

activities take place (low entropy, high order). The highest

complexity is thus reached when specific activities occur:

e.g., a group of people meeting. To formalize the relationship

between stream complexity and stream selection we proceed

as follows. Given C(k)(t), k = 1, · · · ,K, the choice of the

k-th stream is obtained by sampling from the categorical

distribution

k ∼
K∏

k=1

[
P (C(k)(t))

]k
, (8)

with

P (C(k)(t)) =
C(k)(t))

∑K

k=1 C
(k)(t))

. (9)

Keeping to [51], complexity C(k)(t) is defined in terms of

order/disorder of the system,

C(k)(t) = ∆(k)(t) · Ω(k)(t), (10)

where ∆(k) ≡ H(k)/H
(k)
sup is the disorder parameter, Ω(k) =

1 − ∆(k) is the order parameter, and H(k) the Boltzmann-

Gibbs-Shannon (BGS) entropy with H
(k)
sup its supremum. H(k)

and H
(k)
sup are calculated as follows.

For each stream k, we compute the BGS entropy H as a

function of the spatial configuration of the sampled IPs. The

spatial domain D is partitioned into a configuration space of

cells (rectangular windows), i.e., {w(rc)}
Nw

c=1, each cell being

centered at rc. By assigning each IP to the corresponding

window, the probability for point rs to be within cell c at

time t can be estimated as P (k)(c, t) ≃ 1
Ns

∑Ns

s=1 χs,c, where

χs,c = 1 if rs ∈ w(rc) and 0 otherwise.

Thus, H(k)(t) = −kB
∑Nw

c=1 P
(k)(c, t) logP (k)(c, t), and

(10) can be easily computed. Since dealing with a ficti-

tious thermodynamical system, we set Boltzmann’s constant

kB = 1. The supremum of H(k)(t) is Hsup = logNw and

it is associated to a completely unconstrained process, that

is a process where H(k)(t) = const, since with reflecting

boundary conditions the asymptotic distribution is uniform.

When stream k is chosen at time t−1, attention is deployed

to the stream via the gaze shift rF (t − 1) → rF (t), and the

“entering time” tin = t is set.

VI. ATTENTIVE STREAM HANDLING

When gaze is deployed to the k-th stream, the rF (tin)
is positioned at the centre of the frame, and foveation is

simulated by blurring I
(k)(tin) through an isotropic Gaussian

function centered at rF (tin), whose variance is taken as the

radius of a FoA, σ = |FOA|. This is approximately given

by 1/8min[width, height], where width × height = |D|,
|D| being the dimension of the frame support D. This way

we obtain the foveated image, which provides the input for

the next processing steps. The foveation process is updated

for every gaze shift within the patch that involves a large

relocation (saccade), but not during small relocations, i.e. fixa-

tional or pursuit eye movements. At this stage, differently from

pre-attentive analysis, the observer exploits the full priority

posterior as formulated in Eq. 2, rather than the reduced form

specified in Eq. 3. In other terms, the object-based feature

likelihood, P (F
(k)
|O |O), is taken into account.

Object search is performed by sampling, from current

location rF , a set of candidate gaze shifts rF (t) → r
(k)
new(t+1)

(cfr. Fig.3, bottom-right picture). In simulation, candidate point

sampling is performed as in [39]. In a nutshell, r
(k)
new(t+1) are

sampled via a Langevin-type stochastic differential equation,

where the drift component is a function of IPs’ configuration,

and the stochastic component is sampled from the Lévy α-

stable distribution. The latter accounts for prior oculomotor

biases on gaze shifts. We use different α-stable parameters

for the different types of gaze shifts - fixational, pursuit and

saccadic shifts -, that have been learned from eye-tracking

experiments of human subjects observing videos under the

same task considered here. The time-varying choice of the

family of parameters is conditioned on the current complexity

index C(k)(t) ([39] for details).

Denote R(k) the reward consequent on a gaze shift. Then,

next location is chosen to maximize the expected reward:

rF (t+ 1) = argmax
r
(k)
new

E
[
R

(k)

r
(k)
new

]
. (11)

The expected reward is computed with reference to the value

of proto-objects available within the stream,

E
[
R

(k)

r
(k)
new

]
=

∑

p∈I
(k)
V

V al(O(k)
p (t))P (O(k)

p (t)|r(k)new(t+ 1),T).

(12)

Here V al is the average value of proto-object Op(t) with

respect to the posterior P (L(k)(t)|I(k)(t)), which, by using

samples generated via Eq. 7, can be simply evaluated as

V al(O(k)
p (t)) ≃

∑

i∈Ip

P (L
(k)
i (t)|I(k)(t)). (13)

The observer samples Nnew candidate gaze shifts. Using

Eqs. 7 and 13, Eq. 12 can be written as

E
[
R

(k)

r
(k)
new

]
=

∑

p∈I
(k)
V

∑

i∈Ip

V al(r
(k)
i,p (t))N (r

(k)
i,p (t)|r

(k)
new(t+ 1),Σs), (14)

where Σs defines the region around r
(k)
new(t+ 1). In foraging

terms, Eq. 12 formalises the expected reward of gaining

valuable bites of food (IPs) in the neighbourhood of the

candidate shift rnew.

Note that effective reward R(k)(t) is gained by the observer

only if the gaze shift is deployed to a point r that sets a FoA

overlapping an object of interest for the task (in the simulation,

for simplicity, R(k)(t) = 1 when a face or a body is detected,

and 0 in other cases). Thus, as the observer attentively explores

the stream, he updates his estimate of stream quality in terms
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of accumulated rewards, which will provide the underlying

support for the stream giving-up strategy.

A final remark concerns the number of objects that can be

detected within the stream. Attentive analysis is sequential by

definition. In principle, all relevant objects in the scene can be

eventually scrutinized, provided that enough time is granted to

the observer. For instance, as to detection performance, current

implementation of the model exploits adaboost face and body

detectors that have been trained on a much larger dataset than

original Viola-Jones detectors, leading to about 90% detection

accuracy (considering a minimal detectable region of 40 ×
40 pixel area). But cogently, the actual number of scrutinized

objects is the result of observer’s trade-off between the quality

of the visited stream and the potential quality of the other K−1
streams. Namely, it depends on the stream giving-up time as

dynamically determined by the Bayesian strategy.

VII. THE BAYESIAN GIVING-UP STRATEGY

In this Section we consider the core problem of switching

from one stream to another. In foraging theory this issue

is addressed as “How long should a forager persevere in a

patch?”. Two approaches can be pursued: i) patch-based or

global/distal models; ii) prey-based or local/proximal models.

These are, for historical reasons, subject to separate analyses

and modeling [1]. The Bayesian strategy we propose here aims

at filling such gap.

A. Global models. Charnov’s Marginal Value Theorem

In the scenario envisaged by Charnov [5] the landscape

is composed of food patches that deliver food rewards as a

smooth decreasing flow. Briefly, Charnov’s MVT states that

a patch leave decision should be taken when the expected

current rate of information return falls below the mean rate that

can be gained from other patches. MVT considers food intake

as a continuous deterministic process where foragers assess

patch profitability by the instantaneous net energy intake rate.

In its original formulation, it provides the optimal solution

to the problem, although only once the prey distribution has

already been learnt; it assumes omniscient foragers (i.e. with

a full knowledge of preys and patch distribution). The model

is purely functional, nevertheless it is important for generating

two testable qualitative predictions [52]: 1) patch time should

increase with prey density in the patch; 2) patch times should

increase with increasing average travel time in the habitat and

should decrease with increasing average host density in the

patches.

B. Local models

The MVT and its stochastic generalization do not take into

account the behavioral proximate mechanisms used by for-

agers to control patch time or to obtain information about prey

distribution [52]. Such a representation of intake dynamics is

inadequate to account for the real search/capture processes

occurring within the patch. These, in most cases, are discrete

and stochastic events in nature. For instance, Wolfe [4] has

examined human foraging in a visual search context, showing

that departures from MVT emerge when patch quality varies

and when visual information is degraded.

Experience on a patch, in terms of cumulative reward, gives

information on current patch type and on future rewards. A

good policy should make use of this information and vary

the giving-up time with experience. In this perspective, as an

alternative to MVT, local models, e.g., Waage’s [38], assume

that the motivation of a forager to remain and search on a

particular patch would be linearly correlated with host density.

As long as this “responsiveness” is above a given (local)

threshold, the forager does not leave the patch [38]. As a

consequence, the total time spent within the patch, say ∆
(k)
w ,

eventually depends on the experience of the animal within that

patch.

C. Distal and proximal strategies in an uncertain world

To deal with uncertainty [48], [49], a forager should per-

severe in a patch as long as the probability of the next

observation being successful is greater than the probability

of the first observation in one among the K−1 patches being

successful, taking into account the time it takes to make those

observations.

Recall that complexity C(k)(t) is used as a pre-attentive

stochastic proxy of the likelihood that the k-th stream yields

a reward R(k)(t) to the observer. Thus, P (C(k)(t)) defined in

Eq. 9 stands for the prior probability of objects being primed

for patch k (in OFT, the base rate [1]).

A common detection or gain function, that is the probability

of reinforcement vs. time, is an exponential distribution of

times to detection [49], and can be defined in terms of the

conditional probability of gaining a reward in stream k by

time t, given that it has been primed via complexity C(k)(t):

P (R(k)(t) | C(k)(t)) = 1− exp(−λt) (15)

where λ is the detection rate. Then, by generalising the two

patch analysis discussed in [49], the following holds.

Proposition 7.1: Denote 〈C(k)(t)〉i 6=k the average complex-

ity of the K − 1 streams other than k. Under the hypothesis

that at t = 0, C(k)(0) > 〈C(k)(t)〉i 6=k, leaving the k-th stream

when

C(k)(t) exp(−λt) = 〈C(k)(t)〉i 6=k, t > 0, (16)

defines an optimal Bayesian strategy for the observer.

Proof: See Appendix A.

The strategy summarised via Eq. 16 can be considered

as a Bayesian version of the MVT-based strategy [5]. In

order to reconcile the distal functional constraint formalised

through Eq. 16, with the behavioral proximate mechanisms

used by foragers within the patch, we put a prior distribution

on the λ parameter of the exponential distribution in the form

of a Gamma distribution, i.e., Gamma(λ; ν(k),∆(k)), where

ν(k),∆(k) are now hyper-parameters governing the distribution

of the λ parameter. Assume that when the observer selects the

stream, the initial prior is Gamma(λ; ν
(k)
0 ,∆

(k)
0 ).

The hyper-parameters ν
(k)
0 ,∆

(k)
0 represent initial values of

expected rewards and “capture” time, respectively, thus stand

for “a priori” estimates of stream profitability. For t > tin,
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the posterior over λ can be computed via Bayes’ rule as

Gamma(λ; ν(k),∆(k)) ∝ exp(−λt)Gamma(λ; ν
(k)
0 ,∆

(k)
0 ).

Since the Gamma distribution is a conjugate prior, the

Bayesian update only calls for the determination of the hyper-

parameter update

ν(k) = ν
(k)
0 + n, ∆(k) = ∆

(k)
0 +

n∑

i=1

∆(tn), (17)

n being the number of handled objects, that is the num-

ber of rewards effectively gained up to current time, i.e.,∑t′

t=tin
R(k)(t), and ∆(tn) the interval of time spent on the

n-th proto-objects. The latter, in general, can be further decom-

posed as ∆(tn) = TDn+THn, where TDn and THn denote

the time to spot and handle the n-th proto-object, respectively.

Clearly, time TDn elapses for any proto-object within the

stream, whilst THn is only taken into account when the object

has been detected as such (e.g., a moving proto-object as a

pedestrian) and actual object handling occurs (e.g., tracking the

pedestrian), otherwise THn = 0. In the experimental analyses

we will assume, for generality, TDn = δDφ(|Proto|) and

THn = δHφ(|Object|), where δD and δH are times to process

elements (pixels, super-pixels, point representation or parts)

defining the prey, which depend on the specific algorithm

adopted; φ(| · |) is a function (linear, quadratic, etc) of the

dimension of the processed item.

Eventually, when hyper-parameters have been computed

(Eq. 17), a suitable value for λ can be obtained as the expected

value λ = EGamma [λ] =
ν(k)

∆(k) . As a consequence, the total

within-stream time ∆
(k)
w depends on the experience of the

observer within that stream

Here, this proximal mechanism is formally related to the

distal global quality of all streams, via the condition specified

through Eq. 16 so that the decision threshold is dynamically

modulated by the pre-attentive observer’s perception across

streams. As a result, even though on a short-time scale the

observer might experience local motivational increments due

to rewards, on a longer time scale the motivation to stay within

the current stream will progressively decrease.

VIII. EXPERIMENTAL WORK

A. Dataset

We used a portion of the the UCR Videoweb Activities

Dataset [53], a publicly available dataset containing data

recorded from multiple outdoor wireless cameras. The dataset

contains 4 days of recording and several scenes for each

day, about 2.5 hours of video displaying dozens of activities

along with annotation. For the first three days, each scene

is composed of a collection of human activities and motions

which forms a continuous storyline.

The dataset is designed for evaluating the performance of

human-activity recognition algorithms, and it features multiple

human activities viewed from multiple cameras located asym-

metrically with overlapping and non-overlapping views, with

varying degrees of illumination and lighting conditions. This

amounts to a large variety of simple actions such as walking,

running, and waving.

We experimented on three different scenes recorded in

three different days. Here we present results obtained from

scene 1, recorded in the second day (eight camera record-

ings). Results from the other scenes are reported as Sup-

plementary Material. The scene contains the streams identi-

fied by the following ids: cam16, cam17, cam20, cam21,

cam27, cam31, cam36, cam37. Each video is at 30 fps and

cameras are not time-synchronized. We synchronized video

streams by applying the following shifts between cameras:

[cam16 : 291, cam17 : 191, cam20 : 0, cam21 : 0, cam27 :
389, cam31 : 241, cam36 : 0, cam37 : 373]. Cameras cam20,

cam21 and cam36 can be used as time reference. Since the

video of the camera cam21 is the shortest (≈ 8000 frames),

the analyzes presented in the following consider the frames

between 1 and 8000.

Annotated activities are: argue within two feet, pickup

object, raised arms, reading book, running, sit cross legged,

sit on bench, spin while talking, stand up, talk on phone, text

on phone. All are performed by humans.

As previously discussed, we are not concerned with action

or activity recognition. Nevertheless, the dataset provides a

suitable benchmark. The baseline aim of the model is to

dynamically set the FoA on the most informative subsets of the

video streams in order to capture atomic events that are at the

core of the activities actually recorded. In this perspective, the

virtual forager operates under the task “pay attention to people

within the scene”, so that the classes of objects of interest are

represented by faces and human bodies. The output collection

of subsets from all streams can eventually be evaluated in

terms of the retrieved activities marked in the ground-truth.

B. Experimental evaluation

Evaluation of results should consider the two dimensions

of i) visual representation and ii) giving-up strategy. For

instance, it is not straightforwardly granted that a pre-attentive

representation for choosing the patch/video might perform

better (beyond computational efficiency considerations) than

an attentive representation, where all objects of interest are

detected before selecting the video stream.

As to the giving-up time choice, any strategy should in prin-

ciple perform better than random choice. Again, this should

not be given for granted, since in a complex scenario a bias-

free, random allocation could perform better than expected.

Further, a pure Charnov-based strategy, or a deterministic

one, e.g. [36], could offer a reasonable solution. Under this

rationale, evaluation takes into account the following analyses.

1) Representations of visual information: Aside from the

basic priority map representation (denoted M in the remainder

of this Section), which is exploited by our model (Eqs. 3 and

2 for the pre-attentive and attentive stages, respectively), the

following alternatives have been considered.

• Static (denoted S): the baseline salience computation

by Itti et al. [54]. The method combines orientation,

intensity and color contrast features in a purely bottom-up

scheme. The frame-based saliency map is converted in a

probability map (as in [37]) so to implement the bottom-

up priority map (Eq. 3). Attentive exploration is driven
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On the other hand, by marginalizing over k, the distribution

of the activities in the data set is recovered, i.e. P (e) =∑
k P (k, e). It can be noted that (cfr. Fig. 4) such distribution

is not uniform: some activities are under-represented compared

to other activities. This class imbalance problem entails two

issues. First, any kind of processing performed to select

subsets of the video streams for collating the most relevant

data and information of interest should preserve the shape

of such distribution, i.e. P̃ (e) ≈ P (e), where P̃ (e) is the

marginal distribution after processing. Second, non uniformity

should be accounted for when defining quantitative evaluation

measures [56]. Indeed, a suitable metric should reveal the true

behavior of the method over minority and majority activities:

the assessments of over-represented and under-represented

activities should contribute equally to the assessment of the

whole method. To cope with such a problem we jointly use

two assessment metrics: the standard accuracy and the macro

average accuracy [56].

Denote: NPe the number of positives, i.e., the number

of times the activity e occurs in the entire recorded scene,

independently of the camera; TPe the number of true positives

for activity e, i.e., the number of frames of the output video

sequence that contain activity e. Given NPe and TPe for each

activity, the following can be defined.

• Standard Accuracy A =
∑E

e=1 TPe∑
E
e=1 NPe

. Note that this is

a global measure that does not take into account the

accuracy achieved on a single activity. From now on we

will refer to this metric simply as accuracy.

• Macro Average Accuracy avg(A) = 1
E

∑E

e=1 Ae =
1
E

∑E

e=1
TPe

NPe
. This is the arithmetic average of the partial

accuracy Ae of each activity. It allows each partial

accuracy to contribute equally to the method assessment.

We will refer to this metric simply as average accuracy.

D. Parameters and experiments setup

We used 1000 frames to setup strategy parameters:

• Bayesian: the initial hyper-parameters ν
(k)
0 ,∆

(k)
0 ;

• Random: the parameter bw of the probability distribution;

• Deterministic: the within-stream time parameter ∆w that

modulates camera switches;

• Charnov: the slope of the gain function δ.

The remaining 7000 frames have been used for testing giving-

up strategies against the different visual representations previ-

ously introduced.

Note that a further constraint is to be taken into account

for a fair performance assessment. In foraging terms, it is the

number of times the forager chooses to explore a new patch;

namely the number of camera switches.

While in general, the estimated parameters are those that

maximize performance of a method, here parameters have

been selected so to maximize the accuracy (or average ac-

curacy) while keeping the number of camera switches below

a given boundary condition. A measure of the accuracy of

the system, should not be given as an absolute value, but

the selection of subsets of the video streams should be

performed to collate a “meaningful” summary in which the

switching frequency is bounded. To thoroughly address this

surmise, the accuracy behavior as function of the number of

camera switches has been studied. The overall result can be

summarised as: first, all representation schemes, apart from

S, combined with the Bayesian giving-up strategy, achieve

their best performance at a small number of camera switches;

second, all giving-up strategies combined with the visual

information method M achieve their best performance at a

small number of camera switches (cfr., Fig. 14a and 14b of

Supplementary Material). That being the experimental evi-

dence, a reasonable upper bound can be determined either by

taking into account the intrinsic limitations of the human visual

system and/or, semantically, the characteristics of time activity

distribution in the dataset. As to the first issue, consider that

human subjects looking at videos explore the scene through

saccadic eye-movements with maximal saccade duration of

approximately 160 ms and 340 ms average post-saccadic

fixational time (when cognitive processing takes place)[57].

Post-saccadic exploration can be even longer in case of pursuit

(depending on task). Thus, a reasonable time to be granted

for visual foraging is approximately one second (e.g, one/two

saccades followed by pursuit, or two/tree control saccades with

brief fixations). The length of the test scene is about 7000
frames, 30 fps frame rate, thus a conservative upper bound

for the number of switches is about 240. This is somehow

consistent with empirical analysis of accuracy over switch

number, where above 300 camera switches strategies become

comparable to the random strategy, in some cases worse.

Under the circumstances, we slightly relax the upper bound to

280.

As regards activity duration, note that the average length of

each activity occurring in the scene across cameras is about

500 frames. Ideally, a camera switch should take place after

having observed a full activity. Thus, given a stream length

of 7000 frames, an upper bound estimate for the number of

camera switches is about 14. Since each boundary condition

might determine a different set of parameters, distinct learning

and testing phases have been performed for each boundary

condition, that is #cam switch < 280 and #cam switch < 14.

E. Results

Table II and Table III report quantitative assessment of

results achieved by the different foraging strategies dependent

on the available visual representations. Table II has been

obtained by considering the upper bound #cam switch < 280;

Table III relates to the condition #cam switch < 14.

Beyond the fact that the M/Bayesian scheme, at the core of

the proposed model, overcomes other schemes both in terms

of accuracy and average accuracy, some interesting results are

worth a comment.

First, the proposed Bayesian giving-up strategy performs

better than other strategies, in terms of both standard and

average accuracy, independent of the visual representation

adopted. At the same time, it is not affected by the chosen

upper bound on the number of camera switches, whilst for

other strategies the “semantic” upper bound (#cam switch

< 14) pairs with a slight decrease in performance. Both results
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(t=1,cam=27) (t=58,cam=31) (t=119,cam=27) (t=157,cam=16)

(t=1007,cam=31) (t=2369,cam=16) (t=2808,cam=17) (t=3452,cam=16)

(t=3499,cam=31) (t=5480,cam=16) (t=5517,cam=21) (t=5960,cam=31)

(t=6604,cam=16) (t=6661,cam=21)

Fig. 8. A typical output of the M/Bayesian scheme, which recaps the foraging
activity: the subset of frames extracted captures the most important data for the
surveillance analysis task. Here, the output sequence is summarised through
the camera switches performed by the optimal Bayesian observer. From the
first at t=1 (top-left) to the last at t=6661 (bottom-right). In each camera frame
the actual FoA is displayed as a white/blue circle.

his attention on the most informative stream/camera, detects

interesting objects for the task at hand, switches from the

current stream to a more informative one. Experimental results

achieved on the UCR Videoweb Activities Dataset, have been

presented to assess the performance of the proposed technique.

To the best of our knowledge the model proposed here is novel

for the multi-camera surveillance research field.

The approach could be either straightforwardly exploited for

i) reducing the manual operator fatigue for multiple monitor

situation or ii) as a preliminary step for intelligent surveillance

relying on the analysis of actions, activities and behaviors.

There are however some current limitations in the model that

should be addressed for on-field application.

As to the first scenario, the actual visual foraging of a

human operator should be taken into account for learning

model parameters, which should entail two steps. First, mobile

eye-tracking of operator’s gaze behavior can be performed in

the experimental setting of a typical control center with the

human engaged in inspecting a number of camera monitors

on the wall. There are few experiments of this sort in the

psychological literature (e.g. [4]) but limited to simple target

visual search. In the present work, eye-tracking data from

human subjects have been used, but limited to the inference

of parameters of distributions related to oculomotor biases;

namely, the prior for sampling gaze shifts within the stream

[40], [39]. Second, the components of the model should be

implemented in order to allow full learning. For what regards

the visual component (Fig.2), in a time-varying perspective,

it can be conceived as a time slice of a Dynamic Bayesian

Network; then, distribution parameters can be learned with

a variety of methods available [45]. Foraging parameters of

the executive component can be inferred using optimization

methods that have been proposed for dealing with actual

forager behaviors in a variety of patch/prey conditions [48].

For what concerns high-level intelligent analysis, current

implementation of the model focuses on local object analysis

and does not consider different levels of semantic information

captured by cameras with different scales and angles. Attentive

modeling of actions, activities and behaviors is a hot field

in computer vision and results obtained up to now could be

integrated within our framework with moderate effort. As it

has been shown in the experimental analyses, the model offers

a probabilistic framework in which it is easy to accommodate a

variety of available state-of-the-art attention-based algorithms

[26]. Further, note that the Bayesian strategy (Eq. 16) basically

relies on the configurational complexity C(k)(t), which, in

turn, is based on spatial entropy. The latter is a mesoscopic

quantity that summarises and can be derived from a variety

of ”atomic ” visual measures (e.g, see [13]). However, from

a strict engineering perspective much depends on the specific

field of application that is to be addressed.

In the specific case of multi-stream summarisation, for

instance, the method can be used as such, similarly to

Kankanhalli et al. [31]. Alternatively, it is suitable to provide

a principled base to approaches such as those performing

correspondence-free multi-camera activity analysis [14].

An interesting issue is the applicability of the approach to

the case of online multi-camera systems. This case compels

to take into account the architectural complexities of the

network. The latter can be factored in terms of distribution,

mobility and degree of motion of the sensors [58]. As to the

distribution issue, the pre-attentive control loop is suitable

to be considered for a straightforward fully decentralized

implementation, while the attentive loop could be designed

at different levels of distribution. Interestingly enough, the

ecological Bayesian handoff mechanism is suitable to embed

resource-aware conditions, e.g., energy consumption, that are

also considered in actual animal foraging. For what concerns

the degree of motion of the sensors, clearly, the visual attention

rationale that is behind our model calls for considering smart

camera networks embedding PTZ cameras that are able to

dynamically modify their FOV. In this case, for what concerns

single camera activities, techniques developed in the active

vision field are apt to be embedded in within-frame analysis

either at the pre-attentive or the attentive stage [19]. However,

at some point multi-camera activity analysis requires fusing

information from multiple camera views. The data fusion

problem has not been explicitly considered in this paper. Yet

observational data may be combined, or fused, at a variety of

levels [59], again depending on the architecture devised for a

specific application.

In ongoing research we are considering multimodal data-

fusion at the sensor level for audio/video integration in ambient

intelligence. To such end the perceptual component can be

straightforwardly extended to cope with other sources of in-

formation. Indeed, crossmodal integration can apparently arise

before attentional selection is completed [60], which can be

accounted for by exploiting the priority map for representing

cross modal integration at this level. Addressing fusion at

higher levels calls for software architecture abstractions to

allow components to interact even if they rely on different spa-

tial models. In this perspective, we are adapting a framework

of space-based communication, to serve as an architectural
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support for foraging in augmented ecologies [61].

APPENDIX A

PROOF OF PROPOSITION 7.1

For an optimal Bayesian observer the decision to leave the

current stream is based on the posterior probability that a

reward can be gained within the stream (complexity), given

that no reward has been gained by time t; via Bayes’ rule:

P (C(k)(t) | ¬R(k)(t)) =
P (¬R(k)(t) | C(k)(t))P (C(k)(t))

P (¬R(k)(t))
(18)

where P (¬R(k)(t)) = 1 − P (R(k)(t)), P (R(k)(t)) denoting

the marginal likelihood of being rewarded. Using the detection

function, Eq.15, the likelihood of not gaining reward is

P (¬R(k)(t) | C(k)(t)) = exp(−λt). (19)

Since, by definition, reward can be actually gained only within

the currently visited stream,

P (R(k)(t)) =
∑

C(t)∈{C(k)}K
k=1

P (C(t))P (R(k)(t) | C(t)) =

P (C(k)(t))P (R(k)(t) | C(k)(t)).
(20)

Taking into account that P (¬R(k)(t)) = 1 − P (R(k)(t)), the

definition of the detection function, Eq. 15 and Eq. 20

P (¬R(k)(t)) = 1− P (C(k)(t))(1− exp(−λt)). (21)

By the total law of probability, 1 − P (C(k)(t)) =∑
i 6=k P (C(i)(t)), thus previous equation can be written as

P (¬R(k)(t)) =
∑

i 6=k

P (C(i)(t))− P (C(k)(t)) exp(−λt). (22)

Plugging into the posterior (Eq. 18) and rearranging

P (C(k)(t) | ¬R(k)(t)) =

P (C(k)(t))

exp(λt)
∑

i 6=k P (C(i)(t))− P (C(k)(t))
.

(23)

Optimal behavior consist in switching when the posterior is

equal for all streams, thus

1

K
=

P (C(k)(t))

exp(λt)
∑

i 6=k P (C(i)(t))− P (C(k)(t))
(24)

which gives the condition:

KP (C(k)(t)) = exp(λt)
∑

i 6=k

P (C(i)(t)) + P (C(k)(t)). (25)

Rearranging terms, using the prior probability P (C(k)(t)), Eq.

9, and inserting in Eq. 25, then the optimal condition for

stream leaving, boils down to

C(k)(t) exp(−λt) =
1

K − 1

∑

i 6=k

C(i)(t), (26)

which proofs Eq. 16.
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