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Abstract Life expectancy keeps growing and, among

elderly people, accidental falls occur frequently. A system

able to promptly detect falls would help in reducing the

injuries that a fall could cause. Such a system should meet

the needs of the people to which is designed, so that it is

actually used. In particular, the system should be minimally

invasive and inexpensive. Thanks to the fact that most of

the smartphones embed accelerometers and powerful pro-

cessing unit, they are good candidates both as data acqui-

sition devices and as platforms to host fall detection

systems. For this reason, in the last years several fall

detection methods have been experimented on smartphone

accelerometer data. Most of them have been tuned with

simulated falls because, to date, datasets of real-world falls

are not available. This article evaluates the effectiveness of

methods that detect falls as anomalies. To this end, we

compared traditional approaches with anomaly detectors.

In particular, we experienced the kNN and the SVM

methods using both the one-class and two-classes config-

urations. The comparison involved three different collec-

tions of accelerometer data, and four different data

representations. Empirical results demonstrated that, in

most of the cases, falls are not required to design an

effective fall detector.

Keywords Fall detection � Anomaly detection � Novelty
detection � Accelerometer data � Smartphone

1 Introduction

Falls are a major health risk that impacts the quality of life

of elderly people. When a fall occurs, a prompt notification

would help in reducing the injuries that the fall could

cause. An effective fall detection system should address the

following requirements (Abbate et al. 2012): (1) automatic

notification of occurred falls; (2) promptness in order to

provide quick help; (3) reliability of the fall detection

techniques; (4) communication capabilities in order to alert

the caregivers; (5) usability in order to facilitating users’

acceptance.

Several solutions have been proposed: some of them

addressing the problem as a whole, and others focusing on

one specific requirement. The contribution of this article is

related to the reliability of the fall detection techniques.

Several factors characterize a fall detection technique:

from the sensors used to acquire data, to the features

extracted; from the algorithms used to detect falls, to the

types of datasets used to train the algorithm. The approa-

ches that have been proposed differ for the choices with

respect to those factors.

For what concerns data acquisition, ambient sensors,

wearable sensors, or a combination of the two, are the

principal data sources used in these techniques (Mubashir

et al. 2013; Chen et al. 2012). Many recent approaches

investigate the possibility of using the sensors provided by

smartphones (Medrano et al. 2014; Sposaro and Tyson

2009; Abbate et al. 2012), which are widespread and

require almost no installation or set-up. Moreover, they do

not introduce any additional cost, can be used in any place,

and are accepted by end users because they are already part

of their everyday life.

The techniques also differ in the data type used to detect

falls. Most popular fall detection techniques exploit
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accelerometer data as the main input to discriminate

between falls and activities of daily living (ADL). Fig-

ure 1a shows an example of accelerometer data repre-

senting a fall that are extracted from the dataset provided

by Medrano et al. (2014). In particular, the fall was

recorded with a smartphone Galaxy mini. Figure 1b illus-

trates the accelerometer data recorded by two sensors

respectively placed on a Galaxy S II [from the dataset

by Anguita et al. (2013)] and a Galaxy Nexus (recorded by

ourselves). These data capture the walk performed by two

different subjects. It is possible to notice that the captured

data share a general trend. This suggests the possibility of

defining a method for the detection of falls that can be

general and independent from the specific devices.

To verify the effectiveness of the method used by the

technique to detect falls, data acquired by the sensors are

arranged into labeled datasets containing both ADL and

falls, usually simulated by volunteers. Often, datasets are

elaborated in order to obtain features: from simple raw

data to more complex indicator (e.g., magnitude and

Fourier transform) whose processing requires time and

computational resources. Methods can be principally

divided into two main categories: domain knowledge- and

machine learning techniques-based (Mirchevska et al.

2014). The approaches currently proposed, regardless of

their classification, have in common the fact that they

require a set of falls in their training phase. Unfortunately,

human simulations are significantly different from real-

world falls (Klenk et al. 2011), and this could make those

fall detection techniques not feasible for real-world

applications.

For this reason, Medrano et al. (2014) experimented the

use of a machine learning technique based on one-class

classifier that has only been trained on ADL to detect falls
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Fig. 1 Examples of

accelerometer data: a A fall as

acquired by a smartphone. b A

walking activity from two

different smartphones

performed by two different

subjects
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as anomalies with respect to ADL. In particular, their

experimentation was conducted with a k-Nearest Neigh-

bour (kNN) classifier. As data representation they used the

magnitude that does not require an huge amount of

resources to be calculated. Medrano et al. (2014) experi-

mented on a publicly available dataset containing both

ADL and falls simulated by several human subjects and

recorded by the same device. Moreover, Medrano et al.

(2014) also experienced a two-classes Support Vector

Machine (SVM) on the same dataset. SVM has produced

slightly better results with respect to the one-class kNN.

Thus, they concluded that anomaly detectors are infeasible

in detecting falls. Finally, in the article they explicitly state

that data are acquired by accelerometers mounted on

smartphones. This suggests that it was taken into consid-

eration the idea of running the analysed methods on

smartphones. From our point of view, a smartphone hardly

support the execution of a SVM ensuring good perfor-

mance. Indeed, as Mazhelis (2006) states, SVMs feature

very high computational requirements for training. Since

the final aim is also to provide a continuous learning sys-

tem, the high complexity of the training phase is critical

when the deployment occurs on a mobile device with

limited computational power and, most of all, with limited

power resources. Indeed, energy consumption is today one

of the main issue in mobile computing, especially when

dealing with physical sensors (Pejovic and Musolesi 2015).

The aim of our work is to evaluate the effectiveness of

methods that detect falls as anomalies with respect to tra-

ditional approaches that use two-classes classifiers to dis-

tinguish between falls and ADL. We compared anomaly

detectors based on one-class kNN and SVM with tradi-

tional detectors based on two-classes kNN and SVM. We

considered four different data representations calculated

from accelerometer data acquired by smartphones: raw

data, magnitude, accelerometer features, and local tem-

poral patterns. We evaluated the classifiers with respect to

the variations of acquisition conditions: different sensors,

different human subjects, different sensor positions. All the

experiments have been conducted on two publicly avail-

able datasets (Medrano et al. 2014; Anguita et al. 2013) of

accelerometer data acquired by smartphones. Evaluation

metrics, such as area under the curve (AUC), sensitivity

and specificity, confirmed, in most of the cases, that

anomaly detection techniques are quite robust against

variations of acquisition conditions.

The rest of the paper is organised as follows: Sect. 2

introduces the motivations of our work and discusses

related work; Sect. 3 outlines the experiment design;

Sect. 4 presents the results of the experimentations; Sect. 5

discusses the achieved results; finally Sect. 6 provides

some details about the future directions.

2 Motivation and related work

In the near future the number of elderly people is expected

to grow. Indeed, the World Population Ageing Report

states that the global share of elderly people (aged 60 years

or over) will reach more than 21 % by 2050 (more than 2

billion people) (United Nations 2013). Ageing results from

the demographic transition, a process where reductions in

mortality are followed by reductions in fertility (United

Nations 2013; Carone and Costello 2006). The increasing

trend of life expectancy has been directly proportional to

the increase in disability (Karmarkar 2009). Thus, oldest

people represent the greatest challenge in providing health-

related services and identifying ways to assist them in

maintaining independence (Mann 2004). Indeed, the

31.2 % of people aged 80–84, and 49.5 % of those over

age 85, require assistance with everyday activities (Federal

Interagency Forum on Aging-Related Statistics - National

Center for Health Statistics 2012). This increment results in

a growing need for supports (human or technological) that

enable the older population to perform daily activities (US

Census Bureau 2013).

Intensive research efforts have been and are still focused

on the identification of solutions that from one side auto-

matically assist elderly people in performing daily activi-

ties and, on the other side, promptly detect anomalous

situations related to diseases or to situations purely related

to the old age, such as the worsening of the mild cognitive

impairment (Acampora et al. 2013), the prompt identifi-

cation of conditions favorable to heart failures (Deshmukh

and Shilaskar 2015), and the prompt detection of fall-

s (Mubashir et al. 2013).

Falls are a major health risk that impacts the quality of

life of elderly people. Among elderly people, accidental

falls occur frequently: the 30 % of the over 65 population

falls at least once per year; the proportion increases rapidly

with age (Tromp et al. 2001). Moreover, fallers who are

not able to get up more likely require hospitalization or,

even worse, die (Tinetti et al. 1993). Thus, several

approaches have been proposed to prompt detect falls.

They mainly differ with respect to (1) the sensors used to

acquire data, (2) the data representation (features) used by

the method, and (3) the method used to detect falls.

Table 1 summarizes the analysis performed on a set of

significative approaches. The table has been specifically

designed to highlight the characteristic features of each

approach in terms of (1) sensors, (2) data representation

and (3) methods. In particular, the first two columns show

the method and the training set configuration respectively.

The third column states whether the approach requires a set

of falls to train the algorithm. The fourth column lists the

set of features used to infer a fall. Finally, the fifth and
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sixth columns respectively specify the type of wearable

sensor used to sense data (ad hoc solutions or smartphone’s

sensors) and the involved sensors.

Table 1 aims at providing an idea of how many different

approaches are proposed. Most of the approaches rely on

data coming from ad-hoc wearable sensing devices, only a

few on smartphone’s sensors. The mainly used sensors are

accelerometers. The approaches use features that are very

different each other, some of them very complex in terms

of computation. Half of the approaches is based on

thresholds-based techniques and the other half on machine

learning techniques. Finally, most of the approaches are

based on methods that require a set of fall to train the

underlying algorithm.

Other approaches not outlined in Table 1 can be found

in the many surveys dedicated to the fall detection (e.g.,

Mubashir et al. 2013; Mohamed et al. 2014; Hijaz et al.

2010). Among the others, Bagal et al. (2012) is particularly

interesting because it compares the most popular tech-

niques for the identification of falls based on accelerometer

data.

2.1 Sensors and data representation

Fall detection methods rely on data acquired by sensing

devices. Images, accelerometer data, audio, angular

velocities are only a few examples of data. Data are cap-

tured by environmental or wearable sensors or by a com-

bination of both (Mubashir et al. 2013; Chen et al. 2012).

Ambient sensors introduce many issues such as privacy,

installation costs, and invasiveness. Moreover, a person can

fall everywhere. Thus, wearable senors are more indicated

for the specific application domain. Under the umbrella of

wearable sensors fall ad-hoc solutions and smartphones’

sensors. Ad-hoc solutions generally include a microcon-

troller and a set of attached sensors. Such artifacts are then

placed in specific area of the body (e.g., wrist, arm, ankle).

Thus, they require an explicit acceptance by the elderly

people. On the opposite, smartphones are generally present

in everyday life. Therefore, the use of smartphones do not

require changes in daily habits and do not involve addi-

tional costs.

Despite the type of wearable device, most of the

approaches use accelerometers, a few accelerometers with

gyroscopes. For this reason, our experimentation has con-

sidered accelerometers only.

As regards features, Table 1 shows how the various

approaches use features of different nature. Therefore,

there not exists a common trend. The unique feature that is

found with greater frequency is magnitude.

It is possible to notice that some of the used features are

generic such as the magnitude, the energy, and the standard

deviation. Others are specifically related to the application

domain, such as the time of free fall, the time of reverse

impact, and the time of inactivity.

Some of them are performing (such as, magnitude and

Fourier transform), but require high processing times and/

or considerable computing resources with respect to the

application domain and, in case of smartphone, to the

device on which the features will be calculated. Indeed,

timeliness and lightness in the computation are crucial

factors so that those features can be used with effectiveness

on smartphones.

2.2 Methods

Methods can be divided into domain knowledge- and

machine learning techniques-based (Mirchevska et al.

2014): the former usually apply heuristics, while the latter

usually rely on the definition of classifiers able to detect

falls. From our perspective, regardless of the type, what

differentiates the techniques is the need for data repre-

senting falls in the data set used to train the algorithm.

Most of the proposed approaches require falls in the

training data set in order to properly configure their

method. Falls are mostly realized relying on volunteers that

are asked to perform daily activities (such as, sitting,

walking, and so on) and to simulate falls.

Even if the achieved results by those approaches are

very promising, it is quite difficult to generalize the results

because almost always the experimentation is limited to

one ad-hoc data set only. In addition, as stated by Klenk

et al. (2011), simulated falls significantly differ from real-

world falls. Thus, having simulated falls in the training

dataset could lead to realize classifiers that may show

different behaviours with real-world falls.

For the above considerations, a method based on the

detection of anomalies with respect to ADL may be a better

solution for this kind of application domain. Fall detection

is not the only case in which the detection of anomalies is

the better choice in designing a classifier. There are many

other situations in which real-world data are very difficult

to achieve: imagine a system able to infer terrorist attacks.

Real world training sets are very rare or even not existing.

From the related work analysis, only Medrano et al. (2014)

have assessed the robustness of one-class classifiers trained

with a set of ADL. Indeed, Medrano et al. (2014) agree

with us stating that ‘‘traditional approaches to this problem

suffer from a high false positive rate, particularly, when the

collected sensor data are biased toward normal data while

the abnormal events are rare’’.

Medrano et al. (2014) also experimented a two-classes

SVM (Support Vector Machine). They concluded that

SVM allows to obtain best results with respect to one-class

kNN classifier in detecting anomalies. Although the

goodness of the results, the training of a SVM would be
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more expensive in terms of computation resources than the

training process of a kNN-based one-class classifier.

3 Experiment design

In this article we focus on methods that detect falls

exploiting smartphone accelerometer data. In particular, we

evaluated the robustness of anomaly detectors compared to

traditional detectors that, in turn, are tuned with fall

instances. To this end, we designed several experimental

setups by varying both materials and methods:

• Data we have created three different collections of

smartphone accelerometer data by mixing the data of

two publicly available smartphone accelerometer

data (Medrano et al. 2014; Anguita et al. 2013) that

have been recorded by different devices with different

setups. We have created two sets of these collections

selecting different sizes of time window of the

accelerometer data. Experimenting on these collections

permits to assess the robustness with respect to changes

in acquisition conditions.

• Feature vectors we experimented four different feature

vectors ranging from the most simple to the most

complex ones: raw data, magnitude, accelerometer

features, local temporal patterns. Assessing the good-

ness of feature vectors is very meaningful especially in

a mobile and real time environment where the compu-

tational capacity may be limited.

• Classification schema we compared two different

classification schemas based on the k-Nearest Neigh-

bour (kNN) classifier (Fix and Hodges 1951): one-class

(corresponding to the anomaly detector) versus two-

classes. Moreover, we also compared the results

achieved with the one-class and the two-classes clas-

sification schemas based on the Support Vector

Machines (SVM) classifier (Cortes and Vapnik 1995).

3.1 Publicly available datasets

One of the considered datasets contains both Activities of

Daily Living (ADL) and falls performed by ten partici-

pants, 7 males and 3 females, ranging from 20 to 42 years

old (Medrano et al. 2014). The ADL set has been recorded

during real-life conditions: participants carried a smart-

phone in their pocket for at least one week to record

everyday behaviour. On average, about 800 ADL instances

were collected from each subject during this period. Par-

ticipants simulated eight different types of falls: forward

falls, backward falls, left and right-lateral falls, syncope,

sitting on empty chair, falls using compensation strategies

to prevent the impact, and falls with contact to an obstacle

before hitting the ground. Participants wore a smartphone

in both their two pockets (left and right) and performed the

falls on a soft mattress in a laboratory environment. They

repeated each fall three times for a total of 24 fall simu-

lations. The dataset contains 503 falls1 and 7816 ADL.

Accelerations have been recorded through the built-in

triaxial accelerometer of a Samsung Galaxy Mini phone

running the Android operating system version 2.2. The

sampling rate was not stable, with a value of about 45� 12

Hz. During the daily life monitoring, whenever a peak in

the acceleration magnitude was detected to be higher than

1.5 g (g = gravity acceleration), a new data instance was

recorded. Each data instance included information in a time

window of 6 s around the peak. During each fall simula-

tion, a 6 s width time window around the highest peak has

been recorded. Afterwards, the offset error of each axis was

removed and an interpolation was performed to get a

sample every 2 ms (50 Hz). We will refer to this set of data

as dataset1.

The other dataset considered contains only ADL per-

formed by a group of 30 volunteers with ages ranging from

19 to 48 years (Anguita et al. 2013). Each person was

instructed to follow a protocol of 6 activities: standing,

sitting, laying down, walking, walking downstairs, and

upstairs. Each subject performed the protocol twice while

wearing a Samsung Galaxy S II smartphone: on the first

trial the smartphone was fixed on the left side of the belt,

and on the second it was placed by the user himself as

preferred. The tasks were performed in laboratory condi-

tions but volunteers were asked to perform freely the

sequence of activities for a more naturalistic dataset. The

accelerometer signals were pre-processed by applying

noise filters and then sampled in fixed-width sliding win-

dows of 2.56 s and 50 % overlap, thus obtaining 128

readings/window. The total number of accelerometer

instances is 10,299. We will refer to this set of data as

dataset2.

For the analysis presented in this paper, we considered

two different sub-windows of the accelerometer patterns

taken around the peak. More in details, we considered two

sub-windows of:

• 2.56 s corresponding to a vector 128 samples;

• 1 s corresponding to a vector of 51 values.

3.2 Data collections description

As discussed before, we have created three different col-

lections of smartphone accelerometer data by mixing the

data of two publicly available smartphone accelerometer

1 The authors declared that due to technical issues some falls had to

be repeated in a few cases, so the number is higher than 24� 2� 10.
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data (Medrano et al. 2014; Anguita et al. 2013). For the

evaluation we used a tenfold cross-validation approach.

The three data collections are then composed of tenfolds,

each containing 90 % of training data and 10 % of test

data. More in details:

• Collection 1. ADL: 7035 training and 781 test data.

FALL: 453 training and 50 test data. Both ADL and

FALL data have been taken from the dataset1;

• Collection 2. ADL: 7035 training and 781 test data.

Half of ADL data have been randomly taken from the

dataset1 and half from the dataset2; FALL: 453

training data and 50 test data. All the FALL data have

been extracted from the dataset1;

• Collection 3: ADL: 9270 training data and 1029 test

data. All the ADL data have been taken from the

dataset2; 453 FALL training data and 50 FALL test

data. All the FALL data have been extracted from the

dataset1.

3.3 Feature vectors

As discussed before, we considered four different feature

vectors extracted from two windows with different size:

2.56 s corresponding to a vector 128 samples and 1 s

corresponding to a vector of 51 values. More in details we

considered:

3.3.1 Raw data

This is the simplest representation. Each data instance is

composed of the concatenation of the three accelerometer

data (x, y, z), one for each direction. We obtain a final

feature vector of size 384 for the case of 128 samples and

153 for the case of 51 samples.

3.3.2 Magnitude

This vector of features has been obtained from the three

accelerometer data (x, y, z) as follows:

M ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2 þ z2
p

:

We obtained a vector of size 128 and another of size 51.

3.3.3 Accelerometer features

These feature vectors have been obtained by concatenating

four different features for each direction: mean of the

acceleration values, standard deviation of the acceleration

values, energy of the acceleration, and correlation of the

acceleration. The dimension of the final feature vector is of

size 12. The energy of the acceleration is calculated as

follows:

Energy ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PN
i¼1 jaffti j

2

N

s

;

where N is the number of samples of the acceleration

patterns and affti are the fast Fourier transform components

of the input patterns. The correlation of the acceleration is

calculated between couple of directions: x versus y, x ver-

sus z, etc.

3.3.4 Local temporal patterns

This feature is the most complex representation. The feature

vector is composed of the concatenation of acceleration pat-

terns achieved by comparing the magnitude of each sample

(Ms) with the several boosted magnitude values of N neigh-

bour samples (Mi). The boosted magnitude values corre-

sponding to a given neighbour i are achieved by increasing the

original magnitude by an increasing decimal factor:

Mn
i ¼ nþMi;

with n ranging from 0 to Mmax. The value Mmax corre-

sponds to the nearest decimal value of maximum magni-

tude. For each sample we have Mmax þ 1 comparisons as

results of the following inequality:

Ms [Mn
i :

The result of each comparison is represented as a binary

vector map of size N with 1 indicating if the above

inequality is satisfied and 0 if not. All the comparison maps

are then summed in order to obtain a single vector map of

size N. The number of neighbours has been set to N ¼ 6.

The final feature vector is obtained by concatenating all the

maps achieved for each sample thus obtaining 6� 51 ¼
306 and 6� 128 ¼ 768.

3.4 Methods and their evaluation

We have considered the one-class k-Nearest Neighbour

(kNN) classifier and the one-class SVM classifier as

anomaly detection techniques. These classifiers have been

trained only with ADL instances and tested with both ADL

and FALL instances. Given a test instance, if the anomaly

score is higher than a given threshold, the new instance is

classified as an anomaly/fall, otherwise is classified as an

ADL. By varying the threshold, the receiver operating

characteristic curve (ROC) and the area under the ROC

curve (AUC) can be obtained. We calculated also a specific

value of sensitivity (SE ¼ True positives
Positives

) and specificity

(SP ¼ True negatives
Negatives

). These values have been obtained by

selecting the point that maximised their geometric mean
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

SE � SP
p

, in a ROC curve averaged over the cross-vali-

dation results.
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We compared the anomaly detectors with a two-classes

kNN and a two-classes radial basis SVM. These classifiers

have been trained and tested with both instances of ADL

and FALL. We converted the distances achieved by the

kNN into scores ranging from 0 to 1. By thresholding the

scores we drawn the ROC curve.

All the algorithms have been implemented in Matlab

and tested with a PC equipped with the Ubuntu 14.10

distribution. Regarding the two variants of kNN for each

fold of the 10-cross validation we have performed an inner

10-cross validation for choosing the best number of

neighbours k. We experimented 10 values of k ranging

from 1 to 10, and we used the Euclidean distance as dis-

tance measure. Regarding the SVM classifier, we used the

built-in Matlab package. For each fold of the 10-cross

validation we have performed an inner 10-cross validation

for choosing the best regularisation and kernel parameters.

The Matlab implementation of the SVM allows to achieve

scores as outputs along with decisions. By thresholding

these scores we obtain the corresponding ROC curve.

In order to make the results reproducible, the data col-

lections as well as the Matlab code used for the experi-

ments are available on the authors’ website.2

4 Results

In the Tables 2, 4, 6, and 8 we report the results achieved

on the three collections by all the classification schemas

and feature vectors in the case of accelerometer data

instances made of 128 samples . It is quite evident that the

two-class SVM performs better than the other classification

schemas especially over the first two collections. It is also

quite clear that raw data and energy feature vectors per-

form better than the others with the raw data being the

best. As can be noticed, the one-class and two-classes kNN

achieve close performance in most cases.

It is clear that the raw data (the simplest feature vector)

is one of the best feature vectors independently of collec-

tion and classification schema (see Tables 4, and 6). This

result is a quite new to scientific community since the most

used features are usually more complex, such as magnitude

and energy features.

The results achieved on the third collection by all the

feature vectors and classification schemas suggest that this

collection is not challenging. In fact, this collection has

been made by using the ADL from dataset2 and the FALL

from the dataset1. The results obtained on this collection

depends on the fact that the experimentation protocol of the

underlying datasets is quite different. In fact, in the case of

the dataset1 the ADL were obtained by recording at least

Table 2 Results obtained by both kNN and SVM schemas on the

three collections

C. Feat. Class. AUC SE SP
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

SE � SP
p

1 RAW 1-knn 0.955 0.950 0.899 0.924

2-knn 0.969 0.932 0.927 0.929

1-svm 0.939 0.936 0.867 0.901

2-svm 0.989 0.964 0.981 0.972

Magn. 1-knn 0.822 0.900 0.656 0.768

2-knn 0.876 0.834 0.761 0.794

1-svm 0.765 0.880 0.615 0.735

2-svm 0.977 0.924 0.954 0.939

Energ. 1-knn 0.811 0.870 0.695 0.777

2-knn 0.925 0.910 0.890 0.900

1-svm 0.843 0.856 0.768 0.811

2-svm 0.988 0.970 0.958 0.964

LTP 1-knn 0.817 0.850 0.668 0.754

2-knn 0.853 0.876 0.697 0.780

1-svm 0.793 0.846 0.637 0.734

2-svm 0.974 0.910 0.940 0.925

2 RAW 1-knn 0.977 0.960 0.933 0.947

2-knn 0.984 0.958 0.947 0.952

1-svm 0.971 0.942 0.928 0.935

2-svm 0.992 0.976 0.986 0.981

Magn. 1-knn 0.885 0.910 0.762 0.833

2-knn 0.928 0.898 0.814 0.854

1-svm 0.804 0.908 0.661 0.775

2-svm 0.984 0.944 0.957 0.950

Energ. 1-knn 0.891 0.870 0.803 0.836

2-knn 0.916 0.860 0.878 0.868

1-svm 0.918 0.910 0.851 0.880

2-svm 0.990 0.968 0.983 0.975

LTP 1-knn 0.885 0.910 0.754 0.828

2-knn 0.917 0.930 0.779 0.850

1-svm 0.842 0.898 0.684 0.784

2-svm 0.984 0.926 0.956 0.941

3 RAW 1-knn 0.998 0.990 0.984 0.987

2-knn 0.997 0.996 0.993 0.994

1-svm 0.998 0.986 0.987 0.986

2-svm 0.999 1.000 0.974 0.987

Magn. 1-knn 0.991 0.990 0.972 0.981

2-knn 0.998 0.996 0.992 0.994

1-svm 0.637 0.996 0.600 0.773

2-svm 1.000 1.000 0.997 0.999

Energ. 1-knn 0.898 0.890 0.767 0.826

2-knn 0.930 0.856 0.907 0.880

1-svm 0.996 0.998 0.974 0.986

2-svm 1.000 1.000 0.999 1.000

LTP 1-knn 0.988 0.970 0.964 0.967

2-knn 0.997 0.990 0.980 0.985

1-svm 0.980 0.944 0.914 0.929

2-svm 1.000 0.996 0.999 0.997

Here the accelerometer data contain 128 samples. Best result for each

collection is reported in bold2 http://www.sal.disco.unimib.it/research/ambient-assisted-living/.
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one week of daily life, while in the case of the dataset2,

each person was instructed to perform 6 ADL in a labo-

ratory environment. The difference between the ADL data

in the two datasets makes the classification problem too

easy.

In the Tables 3, 5, 7, and 9 we report the results

achieved on the three collections by all the classification

Table 3 Results obtained by both kNN and SVM schemas on the

three collections

C. Feat. Class. AUC SE SP
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

SE � SP
p

1 RAW 1-knn 0.980 0.980 0.940 0.960

2-knn 0.983 0.962 0.952 0.957

1-svm 0.954 0.946 0.903 0.924

2-svm 0.986 0.954 0.969 0.961

Magn. 1-knn 0.958 0.910 0.923 0.916

2-knn 0.961 0.910 0.929 0.919

1-svm 0.911 0.870 0.844 0.857

2-svm 0.967 0.904 0.948 0.926

Energ. 1-knn 0.811 0.870 0.695 0.777

2-knn 0.925 0.910 0.890 0.900

1-svm 0.843 0.856 0.768 0.811

2-svm 0.988 0.970 0.958 0.964

LTP 1-knn 0.936 0.860 0.889 0.875

2-knn 0.942 0.882 0.891 0.885

1-svm 0.890 0.826 0.820 0.823

2-svm 0.959 0.890 0.923 0.906

2 RAW 1-knn 0.988 0.960 0.978 0.969

2-knn 0.990 0.964 0.977 0.970

1-svm 0.979 0.948 0.954 0.951

2-svm 0.990 0.960 0.981 0.970

Magn. 1-knn 0.970 0.940 0.926 0.933

2-knn 0.976 0.942 0.938 0.940

1-svm 0.942 0.894 0.879 0.887

2-svm 0.984 0.952 0.955 0.953

Energ. 1-knn 0.891 0.870 0.803 0.836

2-knn 0.916 0.860 0.878 0.868

1-svm 0.918 0.910 0.851 0.880

2-svm 0.990 0.972 0.988 0.980

LTP 1-knn 0.958 0.900 0.902 0.901

2-knn 0.964 0.938 0.894 0.915

1-svm 0.930 0.900 0.832 0.865

2-svm 0.980 0.934 0.933 0.934

3 RAW 1-knn 0.998 1.000 0.974 0.987

2-knn 0.997 1.000 0.995 0.998

1-svm 0.999 0.986 0.997 0.992

2-svm 1.000 0.996 0.985 0.991

Magn. 1-knn 0.996 0.990 0.993 0.991

2-knn 0.998 0.998 0.991 0.994

1-svm 0.763 0.998 0.741 0.860

2-svm 0.999 0.998 0.991 0.995

Energ. 1-knn 0.898 0.890 0.767 0.826

2-knn 0.930 0.856 0.907 0.880

1-svm 0.996 0.998 0.974 0.986

2-svm 1.000 1.000 0.999 1.000

LTP 1-knn 0.996 0.960 0.991 0.975

2-knn 0.997 0.986 0.987 0.987

1-svm 0.997 0.986 0.978 0.982

2-svm 1.000 0.998 0.989 0.994

Here the accelerometer data contain 51 samples. Best result for each

collection is reported in bold

Table 5 Average results obtained by both kNN and SVM schemas

with respect to the three collections

Features Class. AUC SE SP
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

SE � SP
p

RAW 1-knn 0.989 0.980 0.964 0.972

2-knn 0.990 0.975 0.975 0.975

1-svm 0.977 0.960 0.952 0.956

2-svm 0.992 0.970 0.978 0.974

Magn. 1-knn 0.975 0.947 0.947 0.947

2-knn 0.978 0.950 0.953 0.951

1-svm 0.872 0.921 0.822 0.868

2-svm 0.983 0.951 0.965 0.958

Energ. 1-knn 0.867 0.877 0.755 0.813

2-knn 0.924 0.875 0.892 0.883

1-svm 0.919 0.921 0.864 0.892

2-svm 0.993 0.981 0.982 0.981

LTP 1-knn 0.964 0.907 0.927 0.917

2-knn 0.968 0.935 0.924 0.929

1-svm 0.939 0.904 0.877 0.890

2-svm 0.979 0.941 0.948 0.944

Here the accelerometer data contain 51 samples

Table 4 Average results obtained by both kNN and SVM schemas

with respect to the three collections

Features Class. AUC SE SP
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

SE � SP
p

RAW 1-knn 0.977 0.967 0.939 0.953

2-knn 0.984 0.962 0.955 0.959

1-svm 0.969 0.955 0.927 0.941

2-svm 0.993 0.980 0.980 0.980

Magn. 1-knn 0.900 0.933 0.797 0.861

2-knn 0.934 0.909 0.855 0.881

1-svm 0.736 0.928 0.625 0.761

2-svm 0.987 0.956 0.969 0.963

Energ. 1-knn 0.867 0.877 0.755 0.813

2-knn 0.924 0.875 0.892 0.883

1-svm 0.919 0.921 0.864 0.892

2-svm 0.993 0.979 0.980 0.980

LTP 1-knn 0.897 0.910 0.795 0.850

2-knn 0.922 0.932 0.819 0.872

1-svm 0.872 0.896 0.745 0.815

2-svm 0.986 0.944 0.965 0.954

Here the accelerometer data contain 128 samples
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schemas and feature vectors in the case of accelerometer

data made of 51 samples. Here, the one-class and two-

classes classifiers achieve close performance in every

cases. It should be noticed that the performance achieved in

the case of the 51 samples by all the kNN based solutions is

better than the case of 128 samples. Moreover, even in this

case, raw data demonstrated to work better than or com-

parable with more complex feature vectors.

The results achieved by the SVM classifier in the case of

128 samples make clear that the two-classes classifier per-

forms better than a novelty detector. This is not true in the

case of 51 samples where we demonstrated that using raw

data the gap between SVM and the novelty detector is very

small. This results overcome the results achieved by Me-

drano et al. (2014). They demonstrated that a two-classes

SVM is much better than a novelty detector when the

accelerometer data is represented as magnitude and is com-

posed of 51 samples. This result is more visible looking at the

Table 10. This table includes the best results achieved by a

two-classes and a one-class classifier. It is quite evident that

the novelty detector, based on the kNN classifier, achieves a

performance that is about 10 % less than the the two-classes

SVM classifier. The ROC curves that compare the best one-

class versus the best two-classes classifier performed on the

collection 1 and 2 are showed in Fig. 2. Also from these

figures is quite evident that the performance of the novelty

detector is very close to the one of the two-classes classifier.

5 Discussion and conclusion

In this work we evaluated the robustness of anomaly

detectors (one-class classifier) compared to that of tradi-

tional two-classes detection methods that, in turn, are tuned

Table 7 Average results obtained by both kNN and SVM schemas

with respect to the four data representation

Features Collect. AUC SE SP
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

SE � SP
p

RAW 1 0.976 0.960 0.941 0.951

2 0.987 0.958 0.973 0.965

3 0.998 0.995 0.988 0.992

Magn. 1 0.949 0.898 0.911 0.905

2 0.968 0.932 0.924 0.928

3 0.939 0.996 0.929 0.960

Energ. 1 0.892 0.901 0.828 0.863

2 0.929 0.903 0.880 0.891

3 0.956 0.936 0.912 0.923

LTP 1 0.932 0.865 0.881 0.872

2 0.958 0.918 0.890 0.904

3 0.998 0.982 0.986 0.984

Here the accelerometer data contain 51 samples

Table 9 Average results obtained by both all classifiers with respect

to the four data representation and the three collections

Class. AUC SE SP
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

SE � SP
p

1-knn 0.948 0.927 0.898 0.912

2-knn 0.965 0.934 0.936 0.934

1-svm 0.927 0.926 0.879 0.901

2-svm 0.987 0.961 0.968 0.964

Here the accelerometer data contain 51 samples

Table 10 Results obtained by the best feature vectors in the case of

both the two-classes and one-class classifiers

Coll. Features Class. AUC SE SP
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

SE � SP
p

1 RAW (128) 2-svm 0.989 0.964 0.981 0.972

RAW (51) 1-knn 0.980 0.980 0.940 0.960

2 RAW (128) 2-svm 0.992 0.976 0.986 0.981

RAW (51) 1-knn 0.988 0.960 0.978 0.969

3 Energ. (128) 2-svm 1.000 1.000 0.999 1.000

RAW (51) 1-svm 0.999 0.986 0.997 0.992

Table 6 Average results obtained by both kNN and SVM schemas

with respect to the four data representation

Features Collect. AUC SE SP
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

SE � SP
p

RAW 1 0.963 0.946 0.918 0.932

2 0.981 0.959 0.949 0.954

3 0.998 0.993 0.984 0.989

Magn. 1 0.860 0.884 0.746 0.809

2 0.900 0.915 0.799 0.853

3 0.906 0.996 0.890 0.937

Energ. 1 0.892 0.901 0.828 0.863

2 0.929 0.902 0.879 0.890

3 0.956 0.936 0.912 0.923

LTP 1 0.859 0.871 0.736 0.798

2 0.907 0.916 0.793 0.851

3 0.991 0.975 0.964 0.969

Here the accelerometer data contain 128 samples

Table 8 Average results obtained by both all classifiers with respect

to the four data representation and the three collections

Class. AUC SE SP
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

SE � SP
p

1-knn 0.910 0.922 0.822 0.869

2-knn 0.941 0.920 0.880 0.898

1-svm 0.874 0.925 0.790 0.852

2-svm 0.990 0.965 0.974 0.969

Here the accelerometer data contain 128 samples
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with fall instances. To this end, we experimented several

methods on three different collections of accelerometer

data, and four different feature vectors. The experiments

have demonstrated that:

• a very simple feature vector based on raw data is very

robust to detect falls in both one or two classes

schemas;

• a greater number of samples of acceleration

instances penalises kNN classification schemas. In

contrast, the SVM classifier does not seem to suffer

from changes in the number of samples. This makes

the one-class kNN classifier more feasible in case of

51 samples;

• in the case of 128 samples a novelty detector is reliable

only if it is based on raw data. In the case of 51 samples

a novelty detector is reliable if it is based on both raw

data and magnitude;

Overall, considering that in the case of raw data, the gap

between the SVM and one class kNN is very small, we can

conclude that a fall detection system based on a novelty

detector is feasible in a real scenario. This is especially true

considering the limited computation capacity and power

resources of the smartphone. In fact, the raw data does not

require further processing and the kNN schema is based on

a simple Euclidean distance.

6 Future directions

In order to further validate the robustness of our approach,

we should be able to experiment with additional datasets.

These datasets should contain ADL performed by different

people and recorded by different smartphones.

As the number of data sets freely available is extremely

reduced, we decided to develop an application that is able

to acquire data from smartphones’ sensors and to

automatically label them (falls or ADL). This enables us to

enrich the datasets of ADL and of simulated falls.
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