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mation in actual computations) is performed between
λ1 and λ2, as the system is assumed to be blind outside
this interval.

As Eq. (1) shows, however, the output of the acquisi-
tion system is not the actual reflectance data: deriving
these data is a key problem in the field of multispectral
imaging. To solve this problem, a characterization
method must be established and the training set (if any
is required) on which the method relies must be chosen.
If the system output for point x is denoted as

a(x) = [ ai(x) ]i, (2)

and M filters are used, then a(x) is an M-dimensional
vector. The corresponding reflectance R(x, λ) is a func-
tion of the wavelength λ, but since in practice it is not
easy (or even always possible) to give an analytical form
to R, a sampling of its value is customarily considered
instead. The light spectrum is accordingly sampled at a
discrete number of values of λ, and the reflectance is
expressed as

r(x) = [ R(x, λj) ]j, (3)

where j is an index that varies with the sample wave-
lengths. If N sample values of λ are considered, then
r(x) is an N-dimensional vector.

To establish a relationship between the system out-
put and the corresponding reflectance, the system char-
acterization function

    a x r x( ) ( )a (4)

which links the output a(x) at a point x in the scene to
the corresponding reflectance r(x), must be described

Introduction
A multispectral imaging system allows the reconstruc-
tion of the reflectance in the spectrum of visible light of
the objects in a scene.1,2 Such a system is built around
specialized hardware (the acquisition system) that can
vary its ‘sensitivity’ to light with respect to different
wavelengths: this is usually accomplished by including
in the system a set of traditional optical filters or a tun-
able filter with variable transmittance, and taking sev-
eral shots of the scene with a different filter enabled for
each shot. The behavior of a generic multispectral ac-
quisition system can be modeled by expressing its out-
put ai(x) as a function of the relevant parameters of the
acquisition process3; formally, this can be written as

      

a E R S di ix x x( ) = ( ) ( ) ( )∫ , ,λ λ λ λ
λ

λ

1

2

(1)

where i is an index that varies with the filter being used,
x is a two-dimensional coordinate vector identifying a
point in the scene, λ is the wavelength, E is the energy
that reaches point x in the scene, R is the reflectance,
and Si is the ‘sensitivity’ of the system when filter i is
enabled. The integration (which is replaced by a sum-
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or estimated in some way; this is usually done by means
of an empirical model based on a chosen training set
and characterization method, e.g., linear models4 or poly-
nomial regression5. The quality of the estimation de-
pends on the characterization method and training set
selected; it improves if a ‘good’ training set is available
while a ‘bad’ training set may negatively affect the re-
sulting estimation. Therefore, a certain characteriza-
tion method may be rejected because it appears to yield
poor results, when these are really due to the training
set. There are also cases in which the context dictates
the use of a specific characterization method; in this
event the quality of the approximation is influenced by
the training set alone.

Despite all this, the literature to date on multispec-
tral acquisition seems to place little emphasis on the
problem of choosing a ‘good’ training set. Hardeberg6

employs an algebraic method to select a training set of
low numerosity; most other authors either employ as
their training set the set of reflectances to be recon-
structed,3,5 or simply avoid the issue. One likely cause
for this approach is that many authors work on simula-
tions7 rather than on real acquisitions. In real acquisi-
tions large training sets are unwieldy, and changing
training sets often for different applications is ineffi-
cient, so the importance of having a few small training
sets of broad applicability is more likely to be stressed.

We present here three different approaches in select-
ing a ‘good’ training set from an initial array of avail-
able colors (which we call the ‘target’). By ‘good’ we mean
that the elements in the chosen training set will be as
few as possible and its applicability as broad as pos-
sible within the limits suggested by the operational con-
text. The first approach, which we call the Hue Analysis
Method, is based on colorimetric considerations; the sec-
ond and third approaches, which we call the Camera
Output Analysis Method and the Linear Distance Maxi-
mization Method respectively, are mainly based on al-
gebraic and geometrical facts. We have employed these
methods to select different training sets from an initial
common target, and tested the corresponding system
characterization models on the data obtained in a real
acquisition.

Methods for the Selection of Training Sets
The Hue Analysis Method

Ideally, we may expect the ‘representativeness’ of a
training set to improve as the number of ‘different’ col-
ors included in it increases. Since in this context colors
are represented by their reflectances, the feature that
most clearly sets them apart from one another is the
shape of the reflectance curve. Although in colorimetric
terms a reflectance curve subsumes all the characteris-
tics of a color, the property that most directly reflects
the shape of the curve is hue.

As the name suggests, with the Hue Analysis Method
the selection of the training set is based on hue. Assum-
ing that the reflectances of the colors in the target are
known, and a suitable illuminant is chosen, the corre-
sponding L*Cab*hab coordinates are computed8, and the
L* coordinate is normalized (or simply ignored) so that
the colors are projected onto an Cab*hab plane. This plane
is then divided into n sectors of equal angular width, n
being the number of colors to be selected. For each sec-
tor, the color inside the sector and nearest (in the sense
of angular distance) to the central half-line, i.e., the half-
line that cuts the sector in equal halves, is included in
the training set, for a total of n colors (see Fig. 1). In

this way the chosen colors are as widely spaced as pos-
sible and cover the whole plane, i.e., the whole range of
hues, avoiding the bias and/or local overfitting that could
affect the resulting model were the colors chosen with
no regard to their spatial disposition.

The Hue Analysis Method may pose two geometrical
issues, which arise, respectively, when no target colors
lie within a sector (see Fig. 2), or when a color is the
nearest to both of two neighboring sectors, in which case
the color lies on the boundary between the two sectors;
while the second case is rare, the first may present more
frequently, especially as the number of elements desired
in the training set grows larger. Sometimes these ob-
stacles can be overcome by simply rotating the sector
boundaries (in any direction), so that they become placed
where the sector half-lines were originally placed. This
shift preserves the number of sectors, and does not vio-
late the basic ideas of the method, but is not always
sufficient; for instance, it does not work if two adjacent
sectors are both empty. Another possible workaround is
that of lowering the desired numerosity of the training
set until all the resulting sectors include at least one
target color; however, the numerosity of the selected
training set may prove too small for the given context.
Anyway, if neither of these two workarounds leads to
acceptable results, the Hue Analysis Method cannot be
applied. It should also be noted, though, that in view of
selecting a training set with broad applicability (if not
a ‘universal’ training set), the initial target should it-
self include a good choice of hues and range over the
whole Cab*hab plane; then, if either of the two issues de-
scribed arises, the possibility of replacing the initial
target should be considered.

The Camera Output Analysis Method (COAM)
If the characterization function of the acquisition sys-

tem can be assumed to be linear, then it can be approxi-
mated by an empirical linear model; this model will be a
linear function from the M-dimensional vector space of
system output vectors to the N-dimensional vector space
of (sampled) reflectances. The generic form of the system
characterization function given in Eq. (4) then becomes

r(x) = Ma(x), (5)

Figure 1.  An example of how training set colors are chosen in
the Cab*hab plane. The central half-lines of all the sectors are
drawn, and the chosen colors are circled.
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where M is the matrix associated with the linear model
employed to approximate the function.

In this context, for a training set to be representative
enough to use to reconstruct the reflectance of any color,
then it must span the whole characterization function
domain. This means that it must include a subset which
is a basis for the vector space of the system output vec-
tors. This requirement can be met by simply including
in the training set M colors whose corresponding sys-
tem output vectors are linearly independent. However,
although theoretically sufficient, this approach may not
give satisfactory results. As our experimental results
show, the characterization models built on ‘randomly
chosen’ training sets of linearly independent colors may
be rather imprecise. In our study, an analysis of the spa-
tial distribution of the system output vectors correspond-
ing to the colors in the target showed that, despite the
great variety in their colorimetric characteristics, the
vectors tended to cluster together, due probably to the
contribution of the illuminant used for the acquisition.
Therefore, the likely cause of the bad results of randomly
chosen training sets is the unavoidable error in mea-
surement which affects the system output vectors. Al-
though the magnitude of this error may be small, if the
colors are close to each other, their distances and rela-
tive positions may be very sensitive to even small dif-
ferences. Such differences may cause severe warping in
the geometry of the system output space, so that the
decomposition of an arbitrary color on the basis of the
training set colors is conspicuously incorrect, and this
may cause unsatisfactory results when reconstructing
the corresponding reflectance.

With the Camera Output Analysis Method we attempt
to solve these problems by implementing a strategy to
space the colors chosen for the training set well apart
from one another. Principal component analysis9 is ap-
plied to all available colors, so that the M principal eigen-
vectors ei, i = 1, …, M, are identified. Then, for each
eigenvector in order of relevance, the color not already
chosen ‘nearest’ to that eigenvector is included in the
training set, for a total of M vectors. The distance d used
to measure ‘nearness’ is the cosine of the angle between
the system output vector a of a color and the eigenvec-
tor concerned (see Fig. 3).

    
d a,e

a,  e
a ei

i

i
( ) = . (6)

This strategy tries to maximize the orthogonality of
the colors chosen for the training set, so that the im-
pact of measurement errors on the geometry of the space
is kept to a minimum. However, if a very tight cluster-
ing of the available colors is observed in the system out-
put space, the relative linear distance of the colors
chosen for the training set may prove to be more impor-
tant than their orthogonality.

To provide for this case, we designed a second version
of the Camera Output Analysis Method to maximize the
relative linear distance of training set colors while still
taking into account their anisotropic spatial disposition
(as described by the eigenvectors). In this variation all
available colors are projected on the basis of the eigen-
vectors to retrieve their coordinates in the eigenvectors
system; for a color with output vector a, the correspond-
ing coordinate ci on eigenvector ei will be

ci = a ⋅ ei . (7)

Then, for each eigenvector in order of relevance, the color
not already chosen with the greatest absolute coordinate
on that eigenvector is included in the training set, for a
total of M vectors (see Fig. 4); this means that the color
a0 chosen for eigenvector ei, must satisfy the condition

⏐ a0 ⋅ ei ⏐ ≥⏐ a ⋅ ei ⏐ (8)

for every color a not already chosen.
There may be cases, however, in which even this ap-

proach cannot guarantee that the selected colors will
be sufficiently spaced. Particularly, if one considers two
eigenvectors whose associated singular values are small,
the colors selected in correspondence to those eigenvec-
tors may still be close to each other. This happens be-
cause the variability over the set of the target colors of
the coordinate associated with an eigenvector decreases
as the associated singular value decreases: if two colors
lie within the same ‘quadrant’ with respect to the corre-
sponding eigenvectors, they are likely to be very near to
each other.

The third version of the Camera Output Analysis
Method provides a simple although partial workaround

Figure 2. No colors lie within the sectors corresponding to the
indicated half-lines: the Hue Analysis Method cannot be applied
unless the desired training set numerosity can be lowered.

Figure 3. A fictional example of three eigenvectors and nine
target colors. The colors nearest to each eigenvector in the sense
of angular distance are marked.
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to this problem: for each eigenvector, both the color with
the greatest coordinate and the color with the smallest
coordinate are selected and included in the training set,
for a total of 2M colors. As Fig. 5 shows, this approach
usually guarantees that for each pair of eigenvectors
there will be a corresponding pair of training set colors
that are more distant from each other than those colors
that would be selected using the second version of the
method. As a partial drawback, the number of colors
included in the training set doubles.

The Linear Distance Maximization Method (LDMM)
As our experimental results will show, the second

strategy of the COAM performed better than the first
one in our trials. We therefore decided to go further
ahead in that direction and investigate the use of the
linear distance between system output vectors as the
only criterion to choose the training set, with no regard

to the principal components. To do so, we devised a third
approach, which we call the Linear Distance Maximiza-
tion Method, in which the colors for the training set are
chosen iteratively based on their distance from those
already chosen. As the first color t1 of the training set,
which cannot be chosen by comparison with previously
chosen colors, we select the color whose associated sys-
tem output vector has maximum norm among all the
target colors, i.e., the brightest color in the target for
the chosen acquisition conditions. Then, we select the
second color t2 as that color not already chosen that has
maximum distance from the first color. The distance d
used is the standard Euclidean distance in RM (M is the
dimension of the system output vector space). To select
the other colors, we proceed iteratively: at step k, for
each color a not already chosen we compute the mini-
mum distance δ(a) from it to the colors already included
in the training set:

Figure 4. (a) Two colors which are nearest to different eigen-
vectors in the sense of angular distance may still be close to
each other. (b) Colors which have maximum absolute coordi-
nate on those eigenvectors may be more spaced.

Figure 5. (a) Two chosen colors corresponding to different
eigenvectors may still be close using the second version of the
Camera Output Analysis Method. (b) Pairs of colors chosen with
the third version will usually be more spaced.
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δ a a t( ) = ( )

= −

min d ,
,...,

l
l k1 1

. (9)

Then, we select as the kth training set color tk the color
a0 that has maximum δ; formally,

      t a a ak = ( ) ≥ ( )0 0|δ δ (10)

for every color a not already chosen.
We also devised a second version of the LDMM in

which we employed a different distance, the maximum
absolute difference of components; for two colors a1 and
a2, this distance is computed as follows:

      
d , max

,...,
a a1 2

1
1 2( ) = −

=i M
i ia a . (11)

We employed this distance because we wanted to test
an approach in which one large difference in a compo-
nent would prove more important than several small
ones (these would ‘add together’ if the Euclidean dis-
tance were used). In doing so, we attempted to ‘weigh’
hue more than luminance.

Other Methods
To allow a comparison with our methods, we also con-

sidered two other different approaches: a method intro-
duced by Hardeberg,6 and a biased random selection. The
method by Hardeberg selects the colors to be included in
the training set based on their reflectances using an it-
erative process similar to the one we employed in our
LDMM method. The color whose reflectance vector has
maximum norm among all the target colors is chosen as
the first color of the training set. This is the ‘most reflec-
tive’ color available, but it is not necessarily the bright-
est one for a given environmental setup. All subsequent
training set colors are then chosen iteratively: if the col-
ors already selected are indicated as r1, …, rk-1, then at
step k the color r not already chosen that maximizes the
ratio of the smallest to the largest singular value of the
matrix [r1 … rk-1 r] becomes the kth color in the training
set. Compared to our LDMM approach, Hardeberg’s
method then shows two main differences: first, instead
of system output vectors it considers reflectances; sec-
ond, it uses the ratio of the smallest to the largest singu-
lar value and not distance as its selection criterion.

The other selection method we employed is a random
method biased to avoid including several similar colors
in the training set, as this could lead to local overfitting.
Each available color was assigned a probability of be-
ing selected based on its similarity to other colors. Simi-
larity was assessed by visual inspection of the target,
using hue and then lightness as similarity criteria. Simi-
lar colors were grouped together, and the colors within
each group were assigned decreasing probabilities start-
ing from a value common to all groups and sufficiently
high to allow positive probabilities for all colors in the
target. After that, random selection was performed us-
ing the assigned probabilities.

Experiments
We have used our three proposed methods to select dif-
ferent training sets from the colors included in the
Macbeth ColorChecker DC target (MDC),10 which con-
tains 177 different color patches (see Fig. 6). Each of
the selected training sets was employed to approximate
the characterization function of our multispectral ac-
quisition system, and the resulting characterization

models were then used to reconstruct the reflectances
of all the colors in the MDC target from the output data
obtained by a real acquisition (see Fig. 7). To allow a
comparison with our methods, we also applied the same
procedure with some training sets that were selected
using the other two approaches we considered above:
these are, respectively, the method introduced by
Hardeberg, and biased random selection.

For completeness, we added a further trial performed
using the entire MDC target as training set. The results
obtained in this case could be seen as a sort of ‘bench-
mark’, especially in view of assessing whether reduced
training sets can decrease the impact of any data noise.
However, good results in this trial could simply indi-
cate that the target is indeed ‘representative’ of the
whole color spectrum, as we had assumed, so that con-
sidering all colors does not lead to any noticeable local
overfitting. Also, the computations involved in this case
are much more costly, raising time needed by roughly
two orders of magnitude, from tens of seconds to a few
hours on an average computer; therefore, using the
whole MDC target as training set in actual acquisitions
would prove rather unwieldy.

To ensure that all the trials were conducted under
the same operating conditions, we performed one acqui-
sition of the whole MDC target and used the results with
all the selected training sets. Our multispectral acqui-
sition system consisted of a Photometrics CoolSnap digi-
tal camera with a resolution of 1392 by 1040 pixels and
a dynamic range of 12 bits (from Roper Scientific), a
high quality 28 mm f/4 Rodagon lens (from Rodenstock),
a VIS2 VariSpec Tunable Filter11,12 with a nominal band-
width of 40 nm at 500 nm (from Cambridge Research
and Instrumentation), and a cut off optical filter for in-
frared and ultraviolet radiations (from Andover Corpo-
ration). We used 31 different configurations of the
Tunable Filter for band selection; these configurations
were chosen so that the peak in the filter transmittance
varied between 400 nm and 700 nm with steps of 10
nm. Since previous experiments had shown that our
system response function was linear, we adopted a lin-
ear model to approximate the system characterization
function; consequently, each selected training set was
used to compute a corresponding linear model, employ-
ing singular value decomposition13 for system inversion.
We considered 15 singular values (and the associated
basis vectors) when working with reflectances and 23
values when working with system output vectors; these
numbers were chosen after an exhaustive search because

Figure 6. The Macbeth ColorChecker DC target (grayscale).
Supplemental Material—Color version of Fig. 6 can be found on
the IS&T website (www.imaging.org) for a period of no less than
two years from the date of publication.
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they yielded the best results. Anyway, the three meth-
ods we proposed can be used with different acquisition
systems as well; in particular, their applicability is in-
dependent of the number of filters employed.

To evaluate the quality of the approximations, the re-
constructed reflectances were then compared with mea-
surements of the same reflectances obtained using a
Minolta CM-2002 spectrophotometer; these measure-
ments were taken between 400 nm and 700 nm, at in-
tervals of 10 nm. As a measure of the precision of the
reconstruction, we considered the maximum absolute
difference computed on all the components of the re-
flectance vector: formally, if r = [rj]j = 1, …, M is the mea-
sured reflectance and r′= [r′j]j = 1, …, M is the reconstructed
reflectance, then our distance d is defined as

      
d , max

,...,
r r ′( ) = − ′

=j M
j jr r

1 (12)

We chose this distance instead of the customarily em-
ployed RMS for two reasons: we were more interested in
the maximum error than in the mean error; and if our
distance were small then the corresponding RMS was also
small, while the converse is not necessarily true.

In general, we selected training sets with 16, 31, or
62 colors included. The value 31 was chosen because it
was the dimension of both the system output vector

space and the (measured) reflectances vector space; the
values 62 and 16 (respectively, the double and the
rounded half of 31) were added to investigate if any
stable and consistent dependency of the quality of the
results from the numerosity of the training set could be
guessed or established, as well as to allow a comparison
with the third version of the COAM method. For every
training set, the errors obtained comparing the recon-
structed reflectances to the corresponding measures
were computed according to Eq. 12. In each case, the
mean and maximum errors observed across all the col-
ors in the test set are reported.

In the case of the Hue Analysis Method (HAM), the
XYZ coordinates of the target colors were computed,
using the D65 illuminant and the standard 2° CIE ob-
server, from the corresponding measured reflectances,
and the L*Cab*hab coordinates were then obtained by
means of standard colorimetric formulae.8 In all cases,
the center of the first sector in the Cab*hab plane was set
at hab = 0. The results for the HAM method are shown in
Table I.

In the case of the Camera Output Analysis Method
(COAM), we limited the numerosity of the chosen train-
ing sets to the values of 31 for the first and second ver-
sions and 62 for the third version; this is consistent with
the nature of this method, as it chooses one sample color
(two in the case of the third version) for each eigenvec-
tor in the space of system output vectors, and, in our
experiments, the dimension of this space is 31. On the
other hand, since the Linear Distance Maximization
Method (LDMM) is not bound by the same constraints,
we employed both its versions to select training sets of
16, 31, and 62 colors. Table II shows the results for all
three versions of the COAM, while Table III reports the
results obtained with the two versions of the LDMM.

Figure 7. The complete procedure for selecting and evaluat-
ing training sets.

TABLE I. Mean and Maximum Errors for the Hue Analysis
Method on the MDC Target

Hue Analysis Method Mean Error Maximum Error

16 colors 0.0103 0.1101
31 colors 0.0074 0.0688
62 colors 0.0056 0.0668

TABLE II. Mean and Maximum Errors for the Three Versions of
the Camera Output Analysis Method on the MDC Target

Camera Output Analysis Method Mean Error Maximum Error

31 colors – nearest 0.0099 0.1077
31 colors – absolute largest coordinates 0.0062 0.0550
62 colors – largest / smallest coordinates 0.0052 0.0395

TABLE III. Mean and Maximum Errors for the Two Versions of
the Linear Distance Maximization Method on the MDC Target

Linear Distance Maximization Method Mean Error Maximum Error

16 colors – Euclidean distance 0.0088 0.1000
16 colors – maximum absolute difference

of coordinates 0.0087 0.1199
31 colors – Euclidean distance 0.0061 0.0705
31 colors – maximum absolute difference

of coordinates 0.0057 0.0687
62 colors – Euclidean distance 0.0049 0.0457
62 colors – maximum absolute difference

of coordinates 0.0046 0.0378
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As stated above, to allow a comparison with our meth-
ods, we report here the results obtained with training
sets selected using the method of Hardeberg and using
a biased random criterion. The results from these trials
are shown in Table IV and Table V respectively. For the
random selection method, we report the average and best
results obtained over ten different training sets of
numerosity 31. We also report in Table VI the results
obtained using the whole test set as training set.

Last, Table VII summarizes the best results we
achieved across all our trials: performances were com-
pared with one another according to whether a method
works on measured reflectances or on system output vec-
tors, and distinguishing between mean and maximum
errors for each of the three sizes of the training sets.
The results obtained using the whole MDC target as
training set were not considered here: in fact, since the
whole target contains much more colors than the other
chosen training sets, a direct comparison is not feasible.
However, it should be noted that the LDMM method
achieves almost the same results when using the maxi-
mum absolute difference of coordinates with only 62
colors in the training set.

As a further reference, the composition of all the train-
ing sets that were selected throughout our trials is in-
cluded in an Appendix available as Supplemental
Material on the IS&T website (http://www.imaging.org/
pubs/jist/index.cfm) and with the on-line edition of this
Journal.

Discussion
Several remarks can be made based on our results.
First, when training set selection was based on mea-
sured reflectances, Hardeberg’s method generally per-
formed better than our Hue Analysis Method. Of all
the methods tried, it is also the one that achieved more
consistent results as to the maximum error, which is
not very high with 16 training set colors but neither
decreases greatly as the numerosity grows larger; this
may indicate that the method achieves a ‘good’ variety
in the first selected colors, but adding more does not
improve the representativeness of the training set so
much. On the other hand, our HAM method showed a
marked decrease in the mean error, while the maxi-
mum error did not improve much in passing from 31 to
62 colors.

The methods that base their selections on the system
output data generally performed better than both

Hardeberg’s and the HAM method. In particular, the
second version of the LDMM achieved the best results
in all cases with respect to the mean error, and also
showed the best maximum error when using 62 colors;
also, the first version of the method performed better
than the COAM with respect to the maximum error us-
ing 16 colors (though Hardeberg’s method did much bet-
ter in this case). While the second version of the COAM
generally achieved good results, the performance of the
first version did not entirely meet our expectations.
However, an analysis of the spatial disposition of the
target colors in system output space revealed that the
colors were rather tightly clustered, as we noted above,
in such a situation the first version of the COAM is ex-
pected to perform more poorly compared to the second
version, and the experimental results are consistent
with this expectation. Also, this may explain the good
performances of the LDMM method.

A few considerations concerning the numerosity of the
selected training sets can also be made. First, as the
numerosity grew, all methods showed a marked decrease
in the mean error; however, this was expected, since the
training set was in all cases part of the test set. In gen-
eral, no method showed any degradation in the maxi-
mum error when using 62 colors, which is double the
dimension of the characterization function domain; this
suggests that in no case did a large training set lead to
local overfitting. Only the LDMM and the COAM,
though, achieved a marked decrease in the maximum
error when passing from 31 to 62 colors; this probably
happened because they both work on system output
data, and are therefore able to use the ‘excess’ training
set colors to better correct the unavoidable measurement
error in the data. Assessing whether all these excess
colors are equally useful or only some of them would be
sufficient is still an open research issue.

Based on our trials, it could be stated that the meth-
ods working on system output data should generally be
preferred. The characterization models obtained with
such methods depend on the acquisition conditions, but
may be used to reconstruct the reflectances of any sur-
face acquired under the same conditions, making them
reusable. However, methods working on reflectances are
independent from the operating conditions of real ac-
quisitions, and can therefore be used to build training

TABLE V. Mean and Maximum Errors for 10 Randomly Chosen
Training Sets on the MDC Target

Randomly chosen training sets Mean Error Maximum Error

31 colors – average values 0.0092 0.1373
31 colors – best values 0.0075 0.0781

TABLE VI. Mean and Maximum Errors Obtained Using the
Entire MDC Target as Both Test Set and Training Set

Whole MDC target as training set Mean Error Maximum Error

177 colors 0.0047 0.0356

TABLE VII. Best Performances

Methods working on measured reflectances Methods working on system output data

Numerosity Mean Error Maximum Error Mean Error Maximum Error
16 HAM Hardeberg LDMM max. abs. diff. LDMM Eucl. Dist.
31 Hardeberg Hardeberg LDMM max. abs. diff. COAM 2nd version
62 Hardeberg Hardeberg LDMM max. abs. diff. LDMM max. abs. diff.

TABLE IV. Mean and Maximum Errors for the Method Proposed
by Hardeberg6 on the MDC Target

Hardeberg Mean Error Maximum Error

16 colors 0.0106 0.0684

31 colors 0.0071 0.0624

62 colors 0.0055 0.0599
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sets with a broader applicability. The only caution, which
applies to the HAM method only, is that since the spa-
tial disposition of the colors in the L*Cab*hab space de-
pends on the illuminant chosen for the computation of
the L*Cab*hab coordinates, this illuminant should be con-
sistent with the illuminant used in the acquisitions to
which the resulting characterization model will be ap-
plied. Anyway, as long as cross-illuminant applicability
is not a concern, this should reasonably lead to training
sets that are better suited to the specific situations con-
sidered compared to the more ‘generic’ training sets se-
lected with Hardeberg’s method, although our
experimental results do not support this expectation.

On the other hand, methods working on reflectances
obviously require that reflectances be known or be es-
timated in some way; this means that either a good
measurement instrument (like a spectrophotometer)
must be available, or reflectances must be recon-
structed from the system output data. The second sce-
nario is  not feasible,  s ince it  requires that a
characterization model has already been established;
this means either that a training set has already been
selected, or that none is required, and in both cases
there is no need to select a new training set. One could
also reconstruct reflectances using a ‘temporary’ char-
acterization model, but this would likely lead to noisy
results. The need for a measurement instrument can
instead become a limitation, especially in an industrial
environment, where the associated investment (in
terms of money, training, and time) could be seen as
unnecessary. This could either force the manufacturer
to sell pre-characterized acquisition systems, poten-
tially limiting their flexibility, or force the user to have
the system characterized repeatedly for different situ-
ations or configurations, increasing the operating cost.
Also, in both cases, the performance advantages of the
methods working on the system output data would not
be exploited.

A last note concerns the system characterization.
Since we used a linear characterization model and em-
ployed standard numerical analysis techniques, it could
be argued that the applicability of the proposed meth-
ods is restricted to this scenario. However, only our
COAM method makes an assumption about the linear-
ity of the system characterization function, while the
other methods are based on different premises. This is
true for the LDMM method too, since even if it was
developed as an ‘evolution’ of the COAM method, it is
not tied to any specific geometric feature of the char-
acterization function. Also, any assumptions about the
characterization model do not necessarily imply as-
sumptions about the modeling technique; if different
modeling techniques, such as neural networks, were
employed, the theoretical validity of the proposed meth-
ods would not be affected. However, as other specific
issues may arise when a different modeling technique
is adopted, further tests with some of these techniques
would help assess the general quality of the proposed
methods; this will be one of our research priorities in
the near future. It would also be interesting to investi-
gate whether these methods would perform well with
non-linear systems.

In the end, if measuring reflectances is not an issue,
and a training set with very broad applicability (poten-
tially, even a ‘universal’ training set) is wanted, we
would suggest trying Hardeberg’s method, especially if
the numerosity of the training set is to be very small.
However, we generally prefer the second version of our
Linear Distance Maximization Method because of its su-
perior performances with mid-sized training sets.

Conclusions
We have proposed three methods, which we have called
respectively Hue Analysis Method, Camera Output
Analysis Method, and Linear Distance Maximization
Method, for selecting a good training set that can be
employed in the characterization of a multispectral ac-
quisition system. The selected training sets have rela-
tively low numerosity and broad applicability, and are
particularly suitable to be employed in real acquisitions.
All three methods have been tested on data obtained
from a real acquisition, and the results of the corre-
sponding approximations show a substantial improve-
ment over those obtained using randomly chosen
training sets. Our methods have also performed compa-
rably to the method of Hardeberg,6 with the Linear Dis-
tance Maximization Method emerging as the best choice
among all the methods tried for application in a gen-
eral context. People who are interested in using the
source code that implements the methods we have in-
troduced are encouraged to contact us.14    
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