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Abstract

Recently, new high-level features have been proposed to describe the seman-
tic content of images. These features, that we call supervised, are obtained
by exploiting the information provided by an additional set of labeled images.
Supervised features were successfully used in the context of image classification
and retrieval, where they showed excellent results. In this paper, we will demon-
strate that they can be effectively used also for unsupervised image categoriza-
tion, that is, for grouping semantically similar images. We have experimented
different state-of-the-art clustering algorithms on various standard data sets
commonly used for supervised image classification evaluations. We have com-
pared the results obtained by using four supervised features (namely, classemes,
prosemantic features, object bank, and a feature obtained from a Canonical
Correlation Analysis) against those obtained by using low-level features. The
results show that supervised features exhibit a remarkable expressiveness which
allows to effectively group images into the categories defined by the data sets’
authors.

Keywords: Unsupervised image categorization, supervised features, primitive
features, image clustering

1. Introduction

Unsupervised categorization, often done through the use of clustering algo-
rithms, is one of the most powerful techniques available to the designer of image
management systems, as it allows categorization with no other information than
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that contained in the data themselves. Grouping images into semantically ho-
mogeneous classes is often a sine qua non for efficiently processing, structuring,
querying, and browsing large collections of images. For instance, representative
images can be extracted from each class to stand for the collection contents [1];
grouping similar images can also be useful for the design of effective user in-
terfaces for browsing and visualization of image collections; image categories
may be used to speed up database queries by pre-filtering the images to be
searched [2], and so on. Alas, unsupervised categorization is also a very difficult
problem. Without the information provided by class labels it is very difficult to
obtain a reliable classification in semantically meaningful classes, and the per-
formance of unsupervised classification is often nowhere near that of supervised
methods. On the other hand, in applications one often faces the problem of cat-
egorizing a large, unstructured set of images not only without labeled training
sets but, often, without a priori knowledge of the classes that are present in the
collection.

Several authors have begun exploring features that, in addition to the image
data, use semantic information in the guise of a set of labeled images belonging
to a collection of pre-defined classes. These classes are not, in general, the same
that we are interested in identifying in an unsupervised way, and the related
labeled images come from a data set different from that which we are interested
in classifying. In this paper we will consider specifically the work of Torresani
et al. [3], Ciocca et al. [4], Li et al. [5] and Gordo et al. [6] . We shall refer to
the features used in these papers as supervised, in a sense that will be clarified
in the next section.

The purpose of this paper is to evaluate the performance of supervised fea-
tures for unsupervised image categorization. First of all we verified if these fea-
tures bring a significant improvement with respect to low-level features (which
we shall call primitive). To this end we selected four data sets of different
nature and four state-of-the-art clustering algorithms, and we compared the
performance obtained by using supervised features with those obtained by us-
ing primitive features. We also verified how much the clustering performance
depends on the dimensionality of the feature vectors. Finally, we determined
whether the combination of a simple clustering algorithm and supervised fea-
tures could outperform other strategies, specifically designed for unsupervised
image categorization. With these experiments we try to identify strengths and
weaknesses of the different supervised features in dealing with different type of
images.

In the last years, a huge amount of work and resources have been devoted to
the evaluation of algorithms and systems for the supervised classification of im-
ages. This effort led to the collection of standard data sets and to the definition
of experimental protocols culminating with the organization of public contests
and challenges. The same cannot be told for the problem of unsupervised cate-
gorization. In this context, even though the focus of this paper is the evaluation
of supervised features, we believe that it could also serve as a useful source of
information about the performance of low-level state-of-the-art features.

The paper is organized as follows: Section 2 provides the definition of primi-
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tive and supervised features; presents a brief review of state-of-the-art high-level
descriptors; and details the features included in the evaluation. Section 3 de-
scribes the four clustering algorithms considered. The experiments, including
the performance measure, the data sets, and the results are reported in Section 4
and discussed in Section 5. Finally, Section 6 concludes the paper.

1.1. Related work

In the literature there are several works dealing with the problem of unsu-
pervised image categorization that use either low-level or high-level features.

Among the works exploiting low level features we can cite Tuytelaars et al.
[7]. In their works, a comparison of different clustering algorithms and different
bag-of-words representations of scale invariant features are presented and tested
by identifying ten categories extracted from the Caltech-256 data set, and the
MSCR2 data set.

SIFT-like region descriptors, within a probabilistic latent semantic analysis,
framework are used to discover objects categories in unlabelled images in [8].
Five object categories from the Caltech-101 (faces, motorbikes, airplanes, cars
rear, and background) are used for experimentation.

Differently, Sivic et al. [9] try to automatically discover a semantically mean-
ing hierarchical structure for images based on the visual appearance of objects.
A visual vocabulary of quantized SIFT descriptors are used as image representa-
tion. Learning of the objects hierarchy is achieved using a generative hierarchical
latent Dirichlet allocation. The hierarchy is used to recognize nine object classes
(faces, cows, grass, trees, buildings, cars, airplanes, bicycles and sky).

The problem of scene category discovering is explicitly tackled in [10]. Dif-
ferent representations (Gist, SIFT, PACT and color) are used to describe the
images content and an information projection strategy is used to identify in-
formative and discriminative features. The scene categorization is treated as a
graph partition problem and experiments are performed on the LHI eight scene
categories and MIT eight scene categories data sets. A more recent work of the
same authors [11] introduces the concept of weak training sets to be used for
categorization learning. Different partitioning of the data set are learned using
a max-margin classifier and these partitioning are combined into an ensemble
proximity matrix which is fed to a spectral clustering algorithm.

In order to cope with the possible large variability within each image category
some authors incorporate into the clustering process a local analysis of relevant
parts in the images common to images belonging to the same category. Lee and
Grauman [12] use a novel semi-local features to describe the images in terms of
neighborhood appearance and geometry. Clustering is performed by an initial
grouping based on feature correspondences and then it is iteratively refined
based on the evolving intra-cluster pattern of local matches. Faktor et al. [13],
introduced a similar approach named ‘Clustering-by-Composition’. Categories
are discovered by grouping images that share common statistically significant
regions. These regions are those which have a low chance to occurring at random
and are described in terms of HOG and Local Self-Similarity features.
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Other recent studies have investigated unsupervised image categorization
from a different perspective by exploring new clustering techniques and low-
level descriptors. Käster et al. [14] tested k-means, Hierarchical Agglomerative
Clustering, Partition Around Medoids and CLARA clustering algorithms on
a subset of 1440 color images of 20 semantically disjoint object classes of the
Columbia Object Image Library image collection. Images were described in
terms of color moments, color distribution and structure. To evaluate the per-
formance of the clustering algorithms with respect to semantically meaningful
clusters the results were compared with a reference grouping by using the Rand-
Index.

A spectral clustering algorithm named Locality Preserving Clustering has
been presented by Zheng et al. [15]. The algorithm is based on a modified
locality preserving projection algorithm and k-means clustering. The image
descriptor is a 112 dimensional feature vector created by a combination of color
histogram and color texture moments.

Grauman and Darrell [16] proposed a method where sets of local image
features (SIFT descriptors compacted into ten-dimensional features via PCA)
are compared in terms of partial match correspondences between component
features, forming a graph between the examples that is partitioned via spectral
clustering and normalized cut criterion.

Dueck and Frey [17] use affinity propagation to capture the underlying data
structure. A non metric similarity function based on SIFT features is used
to group similar images belonging to a subset of 20 of the 101 classes in the
Caltech101 data set.

The lack of semantic information provided by the class labels could be mit-
igated by using suitable high-level features. In this paper we will investigate
whether or not those features, learned from labeled training sets, make it pos-
sible to achieve effective unsupervised image categorization.

Image labels can be in the form of textual keywords. For example, Loeff
et al. [18] present a method exploiting a latent space induced by pre-annotated
words associated to images. This intermediate feature space is created by using a
max-margin factorization model that finds a low dimensional subspace with high
discriminative power for correlated image annotations. A spectral clustering
approach is finally applied to the representations in the latent space.

2. Supervised features

Several approaches have been investigated to automatically incorporate se-
mantics into image representations [19]. Recently, features that use the semantic
information provided by additional labeled images have been proved to be ef-
fective in a variety of image classification and retrieval tasks [20, 3, 5, 21]. We
argue that these features, which we call supervised, could perform well also in
unsupervised image categorization.
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2.1. Definition

Consider a reference database of images D = {x1, . . . , xn} and a reference
partition ofD into classes (according to some semantically meaningful criterion),
D, with D = {D1, . . . , Dq},

⋃

iDi = D, and for all i 6= j, Di ∩ Dj = ∅. The
subsets Di may or may not have associated labels.

A function ϕ for image x (that may or may not not belong to D) is primitive

if it can be expressed as a function ϕ = ϕ(x,D) while, a function ψ is supervised
if it can be expressed as a function ψ = ψ(x,D,D) (where the dependence on
D is non-trivial).

According to our definition, all feature extracted solely from the image data
(D = ∅) are primitive, as are the features that take into account the statistical
properties of the database (D = {D}, e.g. those based on principal component
analysis [22]). Supervised features exploit the semantic information provided
by a suitable categorization of the images of the reference database.

Our definition establish a taxonomy of features that seems to be analogous
to the standard (but more ill-defined) high-level vs. low-level one. We should
like to emphasize that this is not the case. In fact, even though all low-level
features are primitive, among high-level features there are some that we consider
as primitive (such as those obtained by unsupervised learning [23]) and some
which are neither primitive nor supervised (e.g. those based on textual captions
and annotations).

In practice, all the supervised features that we consider here represent data as
distances from a reduced number of decision surfaces that are used to classify
them with respect to a certain number of categories. The idea is illustrated
schematically in Figure 1 for a one-dimensional supervised feature. Suppose
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Figure 1: A one-dimensional supervised feature.

the images are described, at low-level, in a two-dimensional feature space and
that they are separable in two semantically significant categories. We train a
classifier to separate the two categories, and the classifier gives us a separation
surface like that in Figure 1(a). A one-dimensional supervised representation
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Figure 2: Unsupervised classification using supervised features.

of the set of images is then obtained by representing each image as its distance
(with sign) from the decision surface as in figure in Figure 1(b). The distance
having sign implies that images a and e do not have the same representation,
while images a and b do. Adding a second classifier, and using the distance from
both decision surfaces we obtain a two-dimensional supervised representation,
and so on.

Note that this representation is not related to the statistics of the input data
or to their distribution in the input space. It is a purely semantic representation
and, rather than on statistical hypotheses, its validity rests on semantic ones.
In statistical methods, one makes the assumption that there are dependencies
among the different dimensions of the data representation. These dependencies
are, of course, statistical rather than functional: knowing that on the ith axis
a datum d has representation (value) vi will not determine the value vj on
the jth axis, but will skew the probability distribution P (vj |d); that is, in
general, P (vj |d) 6= P (vj |d, vi). (In practice, of course, we need something more:
we require that P (vj |d, vi) have a smaller variance than P (vj |d).) Supervised
features make a similar hypothesis in the semantic realm regarding categories:
that an image d belongs to a category ci (with a certain probability) will not
determine whether the same image belongs to a category cj , but it will modify
the probability that it be so.

In operative terms, this entails that the output of a limited number of clas-
sifiers can be embedded into a feature space that can be used as a base for
unsupervised classification by a clustering algorithm. The general schema of
operations is that of Figure 2. An image x is first represented as a collection
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of primitive features F1(x), . . . ,FS(x), that is, as a point in a primitive feature

space R
S . During the deployment of the system, a labeled training set of n

images, divided into q categories, is used to train a collection of q weak classi-
fiers, φ1, . . . , φq, whose output spans the q-dimensional supervised feature space
W ⊆ R

q with, in general, q ≪ S.
After system deployment, a generic image is first represented as a point in

R
S using the low-level features extractors. The point is then used as an input to

the pre-trained classifiers whose output (a point in W) is the supervised feature

representation of the image. This is a general-purpose feature vector that can
be used for a variety of purposes, from scene categorization [5] to image retrieval
[3, 21].

In this paper, we are evaluating these features on an unsupervised classifica-
tion problem. So, on the deployed system (that is, with the classifiers φ1, . . . , φq
trained and considered as fixed) we consider a second data set of images (in-
dependent on that used to train φ1, . . . , φq). Each image of this second set is
represented by its supervised feature vector, and these features are used as input
to a clustering algorithm.

The data set is originally divided up into p, semantically meaningful, cat-
egories. This information is not available to the system (since the images are
classified in an unsupervised manner), but it is used as a ground truth in order
to measure the quality of the unsupervised classification.

Note that, by contrast,unsupervised classification based on primitive features
uses the output of the feature extractors F1, . . . ,Fs directly as input to the
clustering algorithm.

In the case of supervised features, both supervised and unsupervised learning
play a rôle: one does first a supervised classification of a number of “base” classes
in order to build the feature representation, then one uses these features for the
unsupervised creation of new classes. This “mixed” schema mirrors quite well
the situation that we find in application, and allows an optimal use of the data
available.

It is today relatively easy to find good labeled databases that can be used to
train certain classifiers in a supervised manner on the classes that they contain.
On the other hand, once a system has been deployed “in the field” one encoun-
ters images belonging to new categories, categories never seen nor predicted
before. Once a system has been deployed, therefore, unsupervised categoriza-
tion is paramount, while during the system design one has access to labeled
databases. The idea of supervised features is to take advantage of the infor-
mation available at design-time to improve the performance of execution-time
unsupervised categorization.

In this paper we will try to measure whether this idea can work in practice.

2.2. Approaches

A variety of high-level features has been proposed in the literature, and
several of them fall into our definition of supervised features. For instance,
images can be represented by sets of attributes (such as “has wheel”, “is furry”,
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etc.) [24, 25], assigned to images by suitably trained detectors. The combination
of attributes that characterizes a class of images can be obtained by supervised
learning, or they can be manually specified in a “zero-shot” learning framework
where novel categories can be defined without training samples. Attributes have
been used in a variety of scenarios such as image and video classification and
retrieval [26, 27, 28, 29].

Supervised descriptions of images can be also obtained by identifying parts
of them. Vogel and Schiele presented an image representation formed by lo-
cal semantic descriptions [30]. They classify local image regions into semantic
concept classes such as water, rocks, or foliage. Images are represented as the
frequency of occurrence of these local concepts in them. In the context of image
retrieval, Vogel and Schiele defined a learning procedure to obtain a perceptu-
ally plausible distance measure that led a high correlation between the human
and the automatically obtained ranking. A conceptually similar descriptor as
been proposed by Li et al. [5]. Their descriptor (called “object bank”) is based
on the response of a high number of object detectors run at multiple locations
and scales.

Rasiwasia and Vasconcelos proposed a variation of the latent model ap-
proaches where the intermediate space is formed by “semantic themes” which
are explicitly defined [31]. Each theme induces a probability density on the low-
level feature space, and the images are represented by the vector of posterior
theme probabilities. They shown that their low dimensional representation cor-
relates well with human scene understanding, and outperforms the unsupervised
latent space approaches.

Ciocca et al. presented an image descriptor, that they called “prosemantic
features”, based on the output of a number of image classifiers [4, 21]. These
features were designed to see whether a relatively small set of concepts could
work as a base of the concept space, so that further concepts, not explicitly
designed into the system, could be derived from them (a significant property for
unsupervised categorization). Prosemantic features are built by concatenating
the output of 56 different soft classifiers trained to identify 14 different classes
on the basis of four different low-level features.

More recently, Torresani et al. presented a descriptor that, while different
in inspiration, is technically very similar to the prosemantic features [3]. The
components of their descriptor (called “classemes”) is formed by the output
of classifiers trained to identify 2659 visual concepts. Wang et al. proposed
another similar framework where images are described in terms of their affinity
with respect to 103 Filckr groups [20]. They evaluated the effectiveness of such
a representation in a variety of tasks, including unsupervised categorization.

Some of the descriptors mentioned above need to be tailored for the specific
task in which they are employed. For instance, suitable attributes, concepts
or classes must be defined and the corresponding detectors must be trained.
In supervised learning it is common to make these choices with a model selec-
tion procedure that identifies the best configuration for the discrimination of
a specific set of classes by using, for instance, cross-validation or independent
validation sets. However, in unsupervised categorization the classes must be
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discovered from the data, and we cannot make any assumption about them. To
prevent the introduction of any bias in the evaluation, we experimented with the
supervised features as they have been defined by their original authors without
any further customization. In the experiments we considered those descriptors
which have been defined to be fairly general and that have been verified on a
reasonable range of image categories. Moreover, the feature extraction algo-
rithms cannot be implemented properly without the additional training data
they rely on. Therefore, we decided to use only those descriptors for which
the source code and data were available at the time of the experiments. The
following sections describe in greater detail the descriptors that we used.

2.2.1. Classemes

Torresani et al. introduced an images descriptor consisting of the output of a
large number of weakly trained object category classifiers [3]. Their intuition is
that a novel category will be expressed in terms of the outputs of base classifiers
(which they call “classemes”), describing either similar objects, or objects seen
in conjunction with the target category.

A set of C category labels is drawn from an appropriate term list. For each
category c ∈ {1, . . . , C}, a set of training images is gathered by issuing a query
on the category label to an image search engine. A one-versus-all classifier φc
is trained for each category. The classifier output is real-valued, and is such
that φc(x) > φc(y) implies that x is more similar to class c than y is. Given
an image x, then, the feature vector used to represent x is the classeme vector
ψ(x) = (φ1(x), . . . , φC(x)).

To train the classemes Torresani et al. considered 2659 categories taken from
the LSCOM ontology [32]. Each classifier has been trained with the LP-β multi-
kernel algorithm [33]. They used 13 non-linear kernels based on a set of low-level
features (Color Gist [34], Pyramid of Histograms of Oriented Gradients [35],
Pyramid self-similarity [36], and bag of SIFT descriptors).

Classemes has been presented as a descriptor for image retrieval. Torresani
et al. have shown that classification accuracy on object category recognition is
comparable with the state of the art, but with a computational cost orders of
magnitude lower.

2.2.2. Prosemantic features

Prosemantic features are based on the classification of images into a very
small set of 14 categories: animals, city, close-up, desert, flowers, forest, indoor,
mountain, night, people, rural, sea, street, and sunset. Some classes describe
the image at a scene level (city, close-up, desert, forest, indoor, mountain, night,
rural, sea, street, sunset), while other describe the main subject of the picture
(animals, flowers, people).

For each class, several SVM classifiers are trained by using different low-
level features (RGB histogram, first and second YUV moments on a 9 × 9
subdivision, edge direction histograms (EDH) computed on a 8× 8 subdivision,
and bag of SIFT descriptors). Given an image, each classifier φc,p provides a
membership value which indicates how much that image is compatible with the
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class c from the point of view of the visual property p. Given a new image x
the prosemantic feature vector ψ is obtained by concatenating the membership
values: ψ(x) = (φ1,RGB(x), φ1,Y UV (x), φ1,EDH(x), φ1,SIFT (x), . . . , φ14,RGB(x),
φ14,Y UV (x), φ14,EDH(x), φ14,SIFT (x)).

Each classifier is a non-linear SVMs with Gaussian kernel, and has been in-
dependently trained on images downloaded from various image search engines
with different parameters. The lack of calibration between the different compo-
nents of the prosemantic features has been addressed, in the original formulation
of the algorithm [21], by relevance feedback. In this work, we normalized the
classifiers’ output by a linear transformation

φ′c,p(x) = ac,pφc,p(x) + bc,p, (1)

where the parameters ac,p and bc,p are determined by a logistic regression which
maps the score of the classifier to an estimate of the posterior probability

p(c|x) ≃ (1 + exp(−φ′c,p(x)))
−1. (2)

2.2.3. Object bank

Object Bank is an image representation constructed from the responses of
many object detectors, which can be viewed as a “generalized object convo-
lution” [5]. Two state-of-the-art detectors are used: the latent SVM object
detectors [37] for most of the blobby objects such as tables, cars, humans, etc,
and a texture classifier [38] for more texture-based objects such as sky, road,
sand, etc. Object detectors are run across an image at different scales. Each
scale and each detector yield an initial response map of the image. The authors
used 177 object detectors at 12 detection scales. Each response map is then ag-
gregated according to a spatial pyramid of three levels (1+4+16 = 21 blocks).
The final descriptor has therefore 177× 12× 21 = 44, 604 components.

The authors evaluated the object bank descriptor in the context of scene cat-
egorization. By using linear classifiers, they obtained a significant improvement
against low-level representations on a variety of data sets.

2.2.4. CCA-based features

Canonical Correlation Analysis (CCA) is a statistical tool that can be used to
discover linear relationships between a pair of multivariate random variables [39].
Briefly, CCA searches for a pair of linear projections mapping the two original
variables into a single space where their correlation is maximized.

Consider n items, each one described by two vectors xi and yi of dimension-
ality mx and my (i ∈ {1, . . . , n}) . CCA is obtained from the corresponding
mean-centered matrices X ∈ R

n×mx and Y ∈ R
n×my . On the basis of the co-

variance matrices ΣXX = XTX, Σyy = Y TY , ΣXY = XTY , and ΣY X = Y TX,
CCA looks for the projection vectors u ∈ R

mx and v ∈ R
my maximizing the

correlation of the projected data:

max
u,v

uTΣXY v
√

uTΣXXu
√

vTΣY Y v
. (3)
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The solution to this optimization problem is given, for u by the principal eigen-
vector of the matrix Σ−1

XXΣXY Σ
−1
Y Y ΣY X , and for v by the principal eigenvector

of Σ−1
Y Y ΣY XΣ−1

XXΣXY . The procedure can be extended to find a k dimensional
common space: to do so it is sufficient to take the k leading eigenvectors of the
two matrices and to use them to form the projection matrices U ∈ R

k×mx and
V ∈ R

k×my .
CCA has been already used by Gordo et al. [6] to define supervised features.

They considered a set of more than one million images labeled with one of 1000
categories, and extracted from them 4096-dimensional feature vectors to form
the matrix X. The matrix Y has been defined by setting yij equal to 1 or 0 on
the basis of whether or not the i-th image belong to the j-th category. After
the solution of (3), the supervised features can be computed for new, unlabeled
images by simply computing the low-level features and by applying the linear
transformation defined by U .

In this work we used the same low-level features on which prosemantic fea-
tures are defined (Bag of SIFT, RGB histogram, YUV moments and edge di-
rection histogram, for a total of 2606 components). To learn the projection U ,
we used the labeled images from a subset of the SUN data set (described in
Section 4.3) that is composed of more than 100,000 images labeled with 397
categories. In the experiments we have considered a variable number k of CCA
components in the range 5–250.

2.2.5. Primitive features

We compared supervised descriptors with several state of the art primitive
features. We considered three descriptors defined by the MPEG-7 standard
(SCD, CLD and EHD), the Color and Edge Directivity Descriptor (CEDD),
the Gist features, bag of features, and the spatial pyramid representation.

The MPEG-7 Scalable Color Descriptor (SCD) is a color histogram encoded
with a Haar transform [40]. It uses the HSV color space uniformly quantized to
255 bins. To arrive at a more compact representation, the histogram bin values
are non uniformly quantized. In this work we have used a 64 coefficients SCD.

The Color Layout Descriptor (CLD) represents the spatial distribution of
colors in an image [40]. The RGB image is subsampled to 8 × 8 pixels and
converted to YCbCr color space. A Discrete Cosine Transform (DCT) is applied
and the CLD color descriptor is formed by reading in zigzag order six coefficients
from the DCT matrix of the Y component and three components from each DCT
matrix of the two chrominance components. The CLD feature is thus composed
of 12 values.

The Edge Histogram Descriptor (EHD) describes edges distribution in an
image [40]. Specifically it represents the distribution of five types of edges in
a local region defined by subdividing the overall image into 4 × 4 non overlap-
ping sub-images. Using five directional filters a five-bin directional histogram is
computed from all the sub-images. The 16×5 = 80 values are then non linearly
quantized and coded using three bits/bin.

The Color and Edge Directivity Descriptor (CEDD) incorporates color and
texture information in a single histogram [41]. Color information is acquired
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by applying a set of fuzzy rules to obtain in output a 24-bin quantized his-
togram where each bin corresponds to a predefined color. Texture information
is obtained by classifying edged into six classes by using an approach similar to
the one used in the EHD feature. Combining and quantizing the the color and
texture histograms, a composite descriptor of 6× 24 = 144 values is obtained.

Gist features are texture features computed from a wavelet image decompo-
sition [42]. Each image location is represented by the output of filters tuned to
different orientations and scales. The resulting representation is then downsam-
pled to 4 × 4 pixels. Here, we used eight orientations and four scales thus, the
dimensionality of the feature vector is 8× 4× 16 = 512 values.

Bag of visual words descriptors have become widely used for image classi-
fication and retrieval [43, 44, 45]. The basic idea is to select a collection of
representative patches of the image, compute a visual descriptor for each patch,
and use the resulting distribution of descriptors to characterize the whole image.
In this work we considered bag of visual words based on SIFT [46] descriptors.
The descriptors extracted from an image are quantized into a vocabulary of
1096 “visual words” (we used the same settings adopted for the definition of
prosemantic features, as described in [21]). The final feature vector is a nor-
malized histogram of the occurrences of the visual words in the image (1096
components).

The Fisher encoding extends the bag of words approach by considering the
average first and second order differences between the image descriptors and
the centers of a Gaussian Mixture Model learned from a set of local descriptors
(e.g. SIFT) extracted from a set of training images [47]. Using a model with k
Gaussians and d-dimensional local descriptors, the dimensionality of the Fisher
vectors is 2dk. In this work we used 64 Gaussians and SIFT descriptors reduced
by PCA to 64 dimensions for a total of 8192 components1. Finally, take the
square roots of the components and L2-normalized the resulting vectors, as
suggested by Perronnin et al. [47].

The spatial pyramid representation extends bag of visual words descriptors
to incorporate spatial information [48]. Local descriptors are extracted and
quantized to form multiple histograms. Histograms are organized in a pyramid:
the first histogram counts the descriptors on the whole image; the following four
correspond to a 2× 2 subdivision of the image; and the last 16 correspond to a
4×4 subdivision (here we considered a pyramid of three levels). Each histogram
is normalized according to its level to emphasize the matching at finer levels:
the histograms in the first two levels are normalized so that their sum is 1/4,
while the third level is normalized to 1/2. The dimensionality of the feature
vector we used is 1096× (1 + 4 + 16) = 23, 016.

Table 1 shows the dimensionality of the features that form the object of our
study. As can be seen, many of these features result in general in very high
dimensional spaces composed of the juxtaposition of sub-spaces that are often

1We used the pre-trained version available at http://lear.inrialpes.fr/src/inria_

fisher/
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Table 1: Dimensionality of the features analyzed in our study and average time required to
extract them from one image (times have been measured on a machine equipped with a 3.30
GHz Intel Core i5-2500K processor and with 16 GB of memory).

Type Name Dim. Time (ms)

Supervised Classemes 2659 1447
Prosemantic 56 699
Object Bank 44,604 5586
CCA 5–250 361–362

Primitive Fisher Vectors 8192 141
Gist 512 348
Bag of SIFT 1096 343
Sp. Pyramid 23,016 371
CEDD 144 13
SCD 64 8
CLD 12 5
EHD 80 10

incoherent, in the sense their integration into a single space with a unified metric
can be problematic. Even if the various components are comparable and one
can define a unified Minkowski distance function, the high-dimensionality of the
space limit the usefulness of this metric. It is a well known fact, for example,
that in a very high dimensional space all pairs of points are virtually at the
same distance: given an element x, and its closest neighbor y, then with proba-
bility 1− ǫN , almost all the elements of an arbitrary set of images are contained
within a sphere with center x and radius d(x, y) + ǫ(N), where ǫ(N) = o(1/N)
and N is the dimensionality of the space. In content-based image retrieval this
phenomenon is known as the curse of dimensionality [49]. In the experiments
we investigated this issue in the context of unsupervised categorization (Sec-
tion 4.2). We verified, in practice, how much the categorization performance
is hindered by high-dimensional features, and whether or not it is possible to
mitigate this problem by using Principal Component Analysis to reduce the
dimensionality of the feature spaces.

Table 1 also reports the average time taken to extract each feature from
a single image with the implementations used in our experiments. The times
have been measured on a machine with a 3.30 GHz Intel Core i5-2500K processor
and 16 GB of memory. Clearly, the computation of supervised features require
more time than primitive feature extraction (particularly in the case of MPEG-7
features).
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3. Unsupervised categorization

The role of good image features is to make it easier to numerically charac-
terize the image content so that machine learning algorithms can be effectively
applied. Recent work in image retrieval and classification demonstrated how
supervised features are able to effectively describe the image in a way that cor-
relates well with the user’s interpretation. As we will show later, this capability
allows general purpose clustering algorithms to identify groups of semantically
related images. We considered four clustering algorithms, which are represen-
tative of different clustering strategies: center-based, affinity propagation, ag-
glomerative and spectral.

The k-means algorithm is probably the most widely used clustering method [50].
The algorithm iteratively repeats two steps: in the assignment step each data
point is assigned to the cluster with the closest centroid

C
(t)
i =

{

xj : ‖xj − µ
(t)
i ‖ ≤ ‖xj − µ

(t)
h ‖, ∀h ∈ {1, . . . , k}

}

, (4)

where C
(t)
i contains the data points of the i-th cluster at the iteration t, and µ

(t)
i

is the corresponding centroid. In the update step the centroids are recomputed
as the means of the data points in the corresponding clusters:

µ
(t+1)
i =

1

|C
(t)
i |

∑

xj∈C
(t)
i

xj . (5)

The algorithm terminates when the assignments no longer change. To initial-
ize the algorithm we used the Forgy method which randomly chooses k data
points as the initial centroids. To reduce the instability introduced by the ran-
dom initialization, in each experiment we run k-means 100 times with different
initializations and we finally selected the clustering result that minimizes the
average squared distance of the data points from their respective centroids.

Affinity propagation [51] clustering takes as input a collection of real-valued
similarities between data points, where the similarity s(i, h) indicates how well
the data point with index i is suited to be the exemplar for data point with
index h. The s(h, h) values are referred as “preferences” and data points with
larger values of s(h, h) are more likely to be chosen as exemplars for the whole
data set. By exchanging numerical messages between data points the exemplars
(clusters) for the whole data set are discovered. Two messages are exchanged
between data points: the “responsibility” message r(i, h) and the “availability”
message a(i, h):

r(i, h) ← s(i, h)−max
h′ 6=h

{a(i, h′) + s(i, h′)} , (6)

a(h, h) ←
∑

i′ 6=h

max {0, r(i′, h)}, (7)

a(i, h) ← min{0, r(h, h) +
∑

i′ 6=i

i′ 6=h

max {0, r(i′, h)}}. (8)

14



The first message indicates how strongly each data point favors the candidate
exemplar over other candidate exemplars. The second message indicates to
what degree each candidate exemplar is available as a cluster center for the
data point. Affinity propagation simultaneously considers all data points as
potential prototypes and passes soft information around until a subset of data
points “win” and become the exemplars. The message-passing procedure is
terminated after a fixed number of iterations or after changes in the messages
fall below a threshold. For our experiments, in order to partition the data sets
into the required number of clusters we used the source code downloaded from
Frey’s website2. The similarity between two feature vectors is computed by
using the negation of the Euclidean distance and the algorithm is stopped after
2000 iterations.

Agglomerative hierarchical clustering creates a hierarchy of clusters by group-
ing similar data points. Clustering starts with a set of singleton clusters, each
containing a single point. The two most similar clusters over the entire data set
are merged to form a new cluster that covers both. This process is repeated un-
til only one cluster remains. In experimenting different agglomerative criteria,
we found that the Ward’s linkage [52] produces better results than other linkage
strategies. The Ward’s linkage exploits the increase in the total within-cluster
sum of squares as a result of joining cluster i and cluster j. The within-cluster
sum of squares is defined as the sum of the squares of the distances between all
data points in the cluster and the centroid of the cluster. The clusters distance
is thus defined as:

d(i, j) = ninj
‖µi − µj‖

2

ni + nj
, (9)

where ni (nj) and µi (µj) are the size and the centroid of the cluster.
The spectral clustering approach is based on viewing the data points as nodes

of a connected graph. Clusters are found by partitioning this graph, on the basis
of its spectral decomposition [53]. More in detail, we used the variant originally
proposed for image segmentation by Shi and Malik [54]. Given a symmetric,
non-negative similarity matrix W (where Wij is the similarity between xi and
xj) and given the number k of clusters, the algorithm proceeds as follows:

• the diagonal matrix D is defined as Dii =
∑

j Wij ;

• the Laplacian matrix is computed as L = D −W ;

• the eigenvectors v1, . . . ,vk, corresponding to the k smallest eigenvalues,
are computed by solving the generalized eigenproblem Lv = λDv;

• each data point xi is transformed into a vector yi ∈ R
k by taking the i-th

components of the k eigenvectors;

• the transformed points are partitioned into k clusters using the k-means
algorithm.

2http://www.psi.toronto.edu/index.php?q=affinity%20propagation
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To build the similarity matrix W we used a Gaussian similarity measure and a
fully connected graph:

Wij = exp
(

−γ‖xi − xj‖
2
)

. (10)

For each test in the experiments, the parameter γ has been empirically tuned.

4. Experimental results

To evaluate the effectiveness of supervised features we performed three dif-
ferent types of comparison. In the first, we compared them to several primitive
features in the state of the art by using the clustering algorithms described in
the previous section. In the second, we assessed the scalability of unsupervised
classification by comparing the performance of the features on a large data set.
The last comparison is between the combination of supervised features with the
k-means algorithm, and other methods specifically designed for unsupervised
image categorization and that define their own feature extraction and cluster-
ing strategies. The experiments have been conducted on data sets commonly
used for supervised image classification. The images of these data sets have
been divided by their authors in different semantic categories. This allows us to
objectively measure the quality of an unsupervised categorization strategy by
comparing the clusters obtained with the original categorization.

The performance metric that we considered is the classification rate R (also
used in [16, 17, 12, 13, 10]), computed as follows: each cluster found by the algo-
rithm is associated with the ground truth category that accounts for the largest
number of images in the cluster (i.e. the dominant category of the cluster); the
images labeled with the same category as their own cluster are considered as
correctly classified:

R =

∑

j maxiNij
∑

i,j Nij

, (11)

where Nij is the number of images of category i which have been placed in
cluster j. Typically, the larger the number of categories found, the higher the
classification rate. To balance this bias we forced the clustering algorithms to
identify the number of clusters equal to the number of categories of the data
sets.

Other works adopted the conditional entropy as a performance measure [7].
The main advantage of the conditional entropy is that it depends on the dis-
tribution among all the categories in each cluster while the classification rate
depends only on the dominant categories. In our experiments there is a sub-
stantial agreement between the classification rate and the conditional entropy.
For the sake of brevity we decided to report only the classification rate, since its
interpretation is more intuitive (for instance, it allows a very rough comparison
between supervised and unsupervised categorization). We report in Appendix
B the conditional entropies obtained in some of the experiments.

This performance measure works under the assumption that there is a sin-
gle correct way to divide the images, and that the inaccuracy of a clustering
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Figure 3: Samples of the ten classes of the Simplicity data set.

can be summarized by its divergence with respect to such a correct subdivi-
sion. In practice, given a collection of images, there may be many ways to
divide it into semantically meaningful categories. Taking this into account, we
evaluated features and algorithms on several data sets characterized by differ-
ent type of contents and divided according to different criteria: one data set
(Simplicity [55]) is composed of classes of visually coherent images; the second
is a common benchmark for the problem of supervised scene recognition (MIT
eight-scenes [42]); the third is divided by the type of event depicted (eight events
classes [56]); a more fine-grained categorization is provided by a subset of the
SUN data set [57], which contains more than 100,000 images divided into 397
categories of scenes; we included in the evaluation three different subsets of the
Caltech data set which is mostly composed of close-ups of objects taken from
an uniform point of view. The images of this data set are divided according to
the object they portray [58, 59]. Finally, to verify if supervised features can be
used outside their natural domains, we evaluated them on two additional data
sets: one composed by textures, the other by aerial images; the results of this
last experiment are reported in Appendix A.

4.1. Features comparison

The first experiment has been conducted on the Simplicity data set [55]. It
is a subset of the COREL data set, formed by ten image categories each con-
taining 100 images (see Fig. 3). It can be considered an “easy” data set, since
the ten categories are clearly distinct, with little or no ambiguity. On the one
hand, this restricts the significance of the experimentation, but on the other
hand, it makes the results more reliable (since there is only a single, reasonable
way of dividing the data in ten meaningful clusters). The results obtained are
summarized in Table 2. Depending on the clustering algorithms considered, the
best performance is obtained either by classemes or by prosemantic features.
In almost all cases, the supervised features outperform the primitive features,
although the CEDD features perform in general better than Object Bank and
are relatively close to the performance of the loser between classemes and pros-
emantic. Considering, for instance, the k-means algorithm, the ten clusters
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Table 2: Classification rates on the Simplicity data set (%). For each algorithm, the best
result is reported in bold.

Clustering algorithm

Features k-means Spectral Ward Affinity Prop.

Classemes 65.0 69.1 65.1 66.8

Prosemantic 73.7 77.9 64.9 64.0
Object bank 57.8 56.4 57.0 51.8
CCA-56 62.3 68.8 46.3 52.4

Fisher Vectors 55.1 57.1 58.2 42.9
Gist 33.7 35.0 33.5 29.8
Bag of SIFT 49.0 45.5 48.3 44.6
Spatial Pyramid 47.4 52.3 41.8 45.0
CEDD 62.2 61.0 64.2 60.1
SCD 42.3 42.4 40.5 42.2
CLD 54.1 59.1 53.4 50.8
EHD 50.4 51.5 46.8 47.2

Table 3: Confusion matrix for the Simplicity classes in the clusters found by k-means applied
to the prosemantic features. For each cluster, the dominant category is reported in bold.

Cluster

Class #1 #2 #3 #4 #5 #6 #7 #8 #9 #10

Africa people 67 1 - 14 - 14 2 - - 2
Buses 1 95 - - - - - 4 - -
Dinosaurs - - 100 - - - - - - -
Elephants - - 1 66 - 1 7 - 2 23
Flowers 1 - - - 96 2 1 - - -
Food 28 - 4 - 3 64 - - 1 -
Horses 3 - - 1 - - 96 - - -
Monuments 17 13 - 7 1 - - 56 2 4
Mountains - - - 1 - - 1 4 81 13
Sea 6 1 1 2 - 2 - 15 11 62

found on the prosemantic features represent a good approximation of the ten
categories of the Simplicity data set (see Table 3). In particular, simple cate-
gories (buses, dinosaurs, flowers, and horses) have been identified with very few
errors. Several images of the Africa people and food categories present clear
similarities in terms of composition and color distribution and are misclassified.
The clusters found by using classemes (Table 4) are, in comparison, more con-
fused: horses are not separated from elephants, and images of mountains and
sea are distributed among multiple clusters. The clustering obtained with object
bank features roughly corresponds to the ten ground truth classes (see Table 5).
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Table 4: Confusion matrix for the Simplicity classes in the clusters found by k-means applied
to classemes. For each cluster, the dominant category is reported in bold.

Cluster

Class #1 #2 #3 #4 #5 #6 #7 #8 #9 #10

Africa people 61 - - 14 8 10 - 5 1 1
Buses - 92 - - - - - 6 2 -
Dinosaurs - - 98 - 2 - - - - -
Elephants 14 - - - 1 42 7 3 33 -
Flowers 5 - - 91 4 - - - - -
Food 15 - - 6 65 4 - - 10 -
Horses 4 - - - - 44 43 4 5 -
Monuments 4 2 1 - 3 5 - 64 20 1
Mountains 2 - 1 1 3 31 - 1 47 14
Sea 1 - - 1 5 4 - 3 41 45

Table 5: Confusion matrix for the Simplicity classes in the clusters found by k-means applied
to object bank features. For each cluster, the dominant category is reported in bold.

Cluster

Class #1 #2 #3 #4 #5 #6 #7 #8 #9 #10

Africa people 32 1 - 9 - 41 8 2 6 1
Buses - 97 - 1 - - - 2 - -
Dinosaurs - - 99 - - - - - - 1
Elephants 1 - - 42 - 1 18 5 14 19
Flowers 6 - - - 58 36 - - - -
Food 10 - 1 4 2 56 - - 25 2
Horses 2 - - 5 - - 66 8 18 1
Monuments 12 8 2 13 - 4 2 39 13 7
Mountains 4 - - 37 - 1 3 2 31 22
Sea 1 - - 20 - 2 2 3 14 58

However, there are clusters (e.g. #1, #4, # 9) containing a mix of images from
several classes. The confusion matrix corresponding to CCA features (Table 6)
highlights the limitations of this approach: the linear projection obtained from
the SUN data set tend to produce outliers on other data sets. These outliers
are often grouped by the clustering algorithms in very small clusters. Note that
for CCA-based features we need to chose the number of components. In all the
experiments reported here, we selected the number obtaining the highest classi-
fication rate (56 in this case). See Section 4.2 for an analysis of the performance
obtained with a varying number of components.

For the sake of completeness, we also report here the 84.8% accuracy ob-
tained by the latent space approach proposed by Loeff et al. [18]. It should be
noted that the data set used is similar in composition and size to the Simplicity
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Table 6: Confusion matrix for the Simplicity classes in the clusters found by k-means applied
to CCA features (56 components). For each cluster, the dominant category is reported in
bold.

Cluster

Class #1 #2 #3 #4 #5 #6 #7 #8 #9 #10

Africa people - - 20 - - - - 78 2 -
Buses 88 - - - 6 - - - - 6
Dinosaurs - 96 4 - - - - - - -
Elephants - - 94 - - - - 1 4 1
Flowers - 1 2 47 31 9 1 4 5 -
Food 2 - 7 3 - - - 85 - 3
Horses - - 4 - - - - 1 95 -
Monuments - 2 30 1 - - - 14 - 53
Mountains - 1 13 1 - - - 8 - 77

Sea - - 20 - - - - 3 - 77

Coast Mountain
Forest Open country

Highway Street
Inside city Tall building

Figure 4: Samples of the eight classes of the scene recognition data set.

one but the image categories are not the same. Specifically, the categories used
are sunsets, race cars, flying air planes, African animals, swimming, Egyptian
ruins, birds and nests, trains, mountains and snow, and beaches for a total of
1000 images equally distributed in the different groups.

For the second experiment, we considered the scene recognition data set
collected by Oliva and Torralba [42] to evaluate features and methods for scene
classification (Fig. 4). This data set contains eight outdoor scene categories:
coast, mountain, forest, open country, street, inside city, tall buildings and
highways, for a total of 2688 images (260–410 images per class). With respect
to the Simplicity data set, there is less inter-class variability, and therefore
the classes are expected to be harder to separate. Table 7 summarizes the
results obtained by the four clustering algorithms. The best results have been
obtained by applying spectral clustering to classemes. Classemes identify all
the eight ground truth categories (even in the case of k-means, as shown in
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Table 7: Classification rates on the scene recognition data set (%). For each algorithm, the
best result is reported in bold.

Clustering algorithm

Features k-means Spectral Ward Affinity Prop.

Classemes 76.4 80.2 62.2 64.8
Prosemantic 78.3 76.2 73.9 73.6

Object bank 70.0 63.3 67.8 63.3
CCA-56 69.5 66.4 58.1 65.1

Fisher Vectors 41.7 36.9 44.4 37.3
Gist 57.1 61.4 52.7 49.9
Bag of SIFT 39.1 38.2 39.3 37.4
Spatial Pyramid 43.0 46.9 44.1 44.7
CEDD 38.3 40.3 36.1 35.8
SCD 27.1 29.2 26.8 26.8
CLD 32.1 31.6 32.2 33.4
EHD 59.5 61.1 57.0 53.9

Table 8). Prosemantic features also obtained good results, with all the four
clustering algorithms. Interestingly, with prosemantic features two classes (i.e.
“street” and “inside city”) have been invariably merged into a single cluster
(see Table 9). On the other hand, the “coast” class has been split into two
clusters. By examining the two clusters we found out that the smallest is mainly
composed of sunset images. Worse results have been obtained by using the
object bank features for which “coast”, “highway”, and “open country” images
are difficult to separate. With CCA-based features all the eight classes have
been identified. However, their overall performance is similar to those of object
bank features.

Among primitive features, the best results have been obtained by the MPEG-
7 EHD descriptor, and by the Gist features which have been designed in particu-
lar for supervised classification on this data set (83.7% accuracy when processed
by a support vector machine [42]).

Dai et al. considered this data set for the evaluation of their unsupervised
classification method [10]. They obtained a classification rate of 63.5%, a value
which is better than the performance we obtained with primitive features.

The third data set considered contains images of eight different classes of
events [56]. This data set has been collected in order to evaluate event clas-
sification methods. It is composed of 1579 images (137–250 images per class)
showing people performing various sport activities (rock climbing, rowing, bad-
minton, bocce, croquet, polo, sailing, and snowboarding). Of the three data
sets, this is undoubtedly the most challenging, as events can’t be classified only
at a scene level, but object detection and pose recognition are often required.
For instance, the difference between “bocce” and “croquet” images often rests
merely on the presence of a mallet, as it can be seen in Fig. 5. Table 10 reports
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Table 8: Confusion matrix for the classes of the scene recognition data set in the clusters found
by k-means applied to the classemes. For each cluster, the dominant category is reported in
bold.

Cluster

Class #1 #2 #3 #4 #5 #6 #7 #8

Coast 201 2 92 - 1 62 - 2
Forest - 312 - - 14 2 - -
Highway 21 - 202 9 5 15 8 -
Inside city 1 - - 249 - - 51 7
Mountain 4 17 6 - 274 71 2 -
Open country 11 19 57 - 46 276 - 1
Street - - 1 30 - - 259 2
Tall building - 4 - 26 1 - 45 280

Table 9: Confusion matrix for the classes of the scene recognition data set in the clusters found
by k-means applied to the prosemantic features. For each cluster, the dominant category is
reported in bold.

Cluster

Class #1 #2 #3 #4 #5 #6 #7 #8

Coast 226 111 2 9 - 6 6 -
Forest - - 289 - - 28 7 4
Highway 21 5 - 198 10 7 8 11
Inside city - - 1 11 248 - - 48
Mountain 29 5 2 2 - 323 12 1
Open country 85 7 29 3 - 65 221 -
Street - - - 39 221 1 - 31
Tall building 3 5 - 11 42 10 - 285

Badminton Rock climbing
Bocce Rowing

Croquet Sailing
Polo Snowboarding

Figure 5: Samples of the eight classes of the event recognition data set.

the results obtained on this data set. As expected the performances are lower
than those obtained in the previous experiments. Again, the use of supervised
features led to the best results (CCA, classemes and prosemantic features, in
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Table 10: Classification rates on the event data set (%). For each algorithm, the best result
is reported in bold.

Clustering algorithm

Features k-means Spectral Ward Affinity Prop.

Classemes 62.0 61.5 64.2 58.8

Prosemantic 64.9 64.2 63.0 50.1
Object bank 43.1 43.4 45.1 40.5
CCA-56 65.2 65.3 51.2 48.3

Fisher Vectors 39.5 40.5 37.1 35.2
Gist 46.2 45.3 47.7 42.4
Bag of SIFT 36.6 37.4 32.4 33.9
Spatial Pyramid 36.7 34.1 34.0 29.6
CEDD 40.4 40.0 40.5 38.2
SCD 27.9 27.3 28.0 28.0
CLD 32.1 33.4 30.5 35.9
EHD 49.6 48.3 43.5 43.3

particular obtained about 65% of accuracy).
The difficulty of the data set is also witnessed by the relatively low classi-

fication rates obtained in the literature. For instance, the best two methods
reported by Li and Fei-Fei [56] on this data set obtained about 73% and 60% of
classification accuracy.

As expected, the categories croquet and bocce are often misclassified. In
general there is a high degree of confusion between the bocce, croquet, and polo
categories.

Concerning the clustering algorithms, they usually obtained similar results,
with the exception of k-means and normalized cut when applied to classemes
or prosemantic features. For the other features it is not possible to derive a
clear conclusion: the best algorithm varies on the feature/data set combination.
Globally, the worst algorithm is Affinity Propagation. This may depends on
the fact that the original algorithm is not supposed to output a user-specified
number of clusters. To make an uniform comparison, we have used the heuristic
procedure, suggested by the authors of the algorithm, which forces the creation
of the desired number of clusters. Table 11 reports the mean classification rates
on the three data sets.

4.2. Dimensionality reduction

A possible explanation of the good results obtained with supervised features
is that they perform a form of dimensionality reduction by defining a transfor-
mation from the original high-dimensional feature space to a more manageable,
low-dimensional semantic space. In particular, prosemantic features reduce the
original 2606-dimensional space to just 56 components. To verify how much
the dimensionality of the feature space influences the clustering accuracy, we
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Table 11: Mean classification rates on the three data sets (%). For each algorithm, the best
result is reported in bold.

Clustering algorithm

Features k-means Spectral Ward Affinity Prop.

Classemes 67.8 70.3 63.8 63.5

Prosemantic 72.3 72.8 67.3 62.6
Object bank 57.0 54.4 56.6 51.9
CCA-56 65.7 66.8 51.9 55.3

Fisher Vectors 45.4 44.8 46.6 37.3
Gist 45.7 47.2 44.5 40.7
Bag of SIFT 41.6 40.4 40.0 38.6
Spatial Pyramid 42.4 44.4 40.0 39.8
CEDD 47.0 47.1 46.9 44.7
SCD 32.4 33.0 31.8 32.2
CLD 39.4 41.4 38.7 40.0
EHD 53.2 53.6 49.1 48.1

repeated the experiments on the three data sets by applying a Principal Com-
ponent Analysis (PCA) as a preprocessing step before k-means clustering.

More in detail, in this experiment we considered three supervised features
(classemes, prosemantic and object bank) and the largest primitive features as
reported in Table 1 (Fisher Vectors, Gist, Bag of SIFT, and Spatial Pyramid).
We gradually reduced the number of components retained by PCA from the
original dimensionality of the feature vector, down to five. For CCA-based
features, instead, we simply considered different number of components without
the final PCA. The classification rates obtained are reported in Figures 6, 7,
and 8.

The plots show that, in general, the application of PCA does not affect the
classification rates. In all the cases, the performance obtained with the origi-
nal features is very close to the performance obtained on their ten-dimensional
versions. Further reducing the components to five causes in some cases a drop
in the classification rate. The only exception to this behavior is represented by
classemes on the Simplicity data set: in that case the plot shows some degree of
instability of the performance with respect to the dimensionality of the feature
space.

In this experiment we also considered the combination of low-level features
used to build the prosemantic features (in the figures this descriptor is reported
under the name of ‘preclassification’ features, see Section 2.2.2 for more details).
The figures clearly show how prosemantic features represent a better transfor-
mation of the low-level feature space with respect to the unsupervised, linear
transformation defined by the PCA.

For CCA features we observe that the best number of components is 56 for
all the three data set.
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Figure 6: Classification rates obtained on the Simplicity data set by the k-means algorithm
after dimensionality reduction, as a function of the number of principal components retained.
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Figure 7: Classification rates obtained on the scene recognition data set by the k-means
algorithm after dimensionality reduction, as a function of the number of principal components
retained.

4.3. Large scale evaluation

The previous experiments shown that supervised features clearly outperform
the primitive ones on data sets with 8–10 categories. To verify if this is still true
for large number of categories, we performed an experiment on the SUN (Scene
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Figure 8: Classification rates obtained on the event recognition data set by the k-means
algorithm after dimensionality reduction, as a function of the number of principal components
retained.

Understanding) data set [57]. The data set was collected by selecting from the
available terms of WordNet [60] those describing concrete scenes, places, and
environments. After the removal of synonyms the final set of terms numbered
899 categories. For each term, images were retrieved from the Web by using
different search engines obtaining a total of 130,519 images. As suggested by
Xiao et al., we considered only those categories containing at least 100 images.
The final image data set is thus composed of 108,754 images belonging to 397
categories.

For this experiment we considered three supervised features (classemes, pros-
emantic and object bank) and five primitive features (Fisher Vectors, Gist, Bag
of SIFT, Spatial Pyramid, and the ‘preclassification’ features used to build the
prosemantic ones). Only the k-means algorithm has been considered. CCA-
based features have been excluded from this experiment because they have been
derived from the labeled images of this data set. Therefore, the use of these
features could not be considered as unsupervised.

In addition to the performance obtained by each feature on all the 108,754
images, we also verified how much the classification rate varies as a function of
the number of categories. To do so, we randomly selected a set of categories
and repeated the experiment by considering only the images belonging to those
categories. The numbers of categories considered were 12, 25, 50, 100 and 200.
For each of these numbers, we repeated the experiment ten times with a different
random selection (the same selections of categories have been used for all the
features). The averages over the ten runs of the classification rates are reported
in Figure 9.
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Figure 9: Average classification rates obtained on subsets of the SUN-397 data set by the
k-means algorithm as a function of the number of categories. With the exception of the data
points at 397 categories, the classification rates are the average over ten runs.

The plot shows how supervised features consistently obtain higher classi-
fication rates than the primitive ones. When clustering is performed over 12
categories, prosemantic features obtain the best results. When more categories
are considered, the best feature is classemes. As expected, for all the features
the classification rate decreases with the number of classes. However, this de-
crease is less evident for the object bank features that, for the largest number
of categories, approaches the performance of the best features. Gist were the
best among primitive features.

Since we repeated the clustering multiple times, we can also compute the
standard deviations of the classification rates. These are reported in Figure 10.
They decreases from about 7% for 12 categories, to less than 1% for 200 cate-
gories.

When all the data set is used, the performance of the supervised features
is quite similar (about 13.0%, 11.7% and 10.6% for classemes, prosemantic and
object bank, respectively). However, the three features induce very different
clusterings. This fact can be seen in Figure 11 which reports the distribution
of the size of the clusters. With classemes both small and large clusters are
found: the largest cluster contains 684 images and there are nine clusters con-
taining a single image. The clusters found with prosemantic features tend to
have a more uniform size: the smallest contain eight images and the largest
contain 526 images. The use of object bank produces several small clusters (26
with a single image, 47 containing less than seven images). Not considering
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Figure 10: Standard deviation of the classification rates obtained on subsets of the SUN-397
data set by the k-means algorithm as a function of the number of categories.

these small clusters, the distribution of the remaining ones resemble that ob-
tained with prosemantic features. The largest cluster contains 551 images. The
standard deviations of the distributions are 155.1, 83.2 and 132.0 for classemes,
prosemantic and object bank features. The scatter plots in Figure 12 report
the size and the purity of the clusters found with the three features. Purity is
defined as the fraction of images belonging to the dominant class in the clus-
ter. The purest clusters tend to small and large clusters are, in general, quite
impure.

4.4. Comparison with other strategies

As a final experiment we compared the performance of supervised features
against the results reported by Grauman and Darrell [16], Dueck and Frey [17],
Lee and Grauman [12], and Faktor and Irani [13]. These methods use quite
different clustering paradigms.

Grauman and Darrell used local SIFT descriptors compacted into ten dimen-
sional features via PCA to cluster images with the normalized cut algorithm.
They experimented on random subsets of 400 images of the Caltech-4 data
set [58] (1,155 images of cars, 800 images of airplanes, 435 images of frontal
faces, and 798 images of motorcycles, see Figure 13). Dueck and Frey used
affinity propagation to cluster images on the basis of a non metric similarity
between SIFT features. They experimented on two subsets of the Caltech-101
data set [59], formed by taking a maximum of 100 images from a selection of
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Figure 11: Distribution of the cluster size corresponding to the clusterings obtained on all the
images from the SUN-397 data set by the k-means algorithm on (a) classemes, (b) prosemantic,
and (c) object bank features.
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Face Car
Motorcycle Airplane

Figure 13: Samples of the four classes of the Caltech-4 data set.

Dollar bill* Wrench
Snoopy* Yin & Yang

Gardfield* Camera
Stop sign* Binocular

Windsor chair* Pagoda
Motorbike* Leopard

Face* Water Lily
Ferry Staple
Rhino Side car

Hedgehog Brain

Figure 14: Samples of the Caltech-7 and Caltech-20 data sets. The categories in the Caltech-7
data set are marked with an asterisk.

seven and twenty object categories (we call these subsets Caltech-7 and Caltech-
20). More in detail, the Caltech-7 data set includes the classes dollar bill, faces,
Garfield, motorbikes, Snoopy, stop sign, and Windsor chair; the Caltech-20 data
set includes the Caltech-7 classes, plus: binocular, brain, camera, car side, ferry,
hedgehog, leopards, pagoda, rhino, stapler, water lily, wrench, and yin yang (see
Figure 14). Finally, Lee and Grauman, and Faktor and Irani, exploited local,
low level features (HOG and Local Self Similarity in the first, and SIFT-based
in the latter) and perform clustering by identifying and matching local regions
of the images. Images are linked via an affinity matrix coding the similarities
between the images. Tests are performed on subsets of the Caltech-101 data
set.

We evaluated the use of supervised features on the Caltech-4, Caltech-7
and Caltech-20 data sets following the procedure described by the authors. On
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Table 12: Classification rates on the object data sets (%). For each data set, the best result
is reported in bold.

Method Caltech-4 Caltech-7 Caltech-20

k-means + Classemes 98.3 76.0 72.8
k-means + Prosemantic 89.8 64.9 52.1
k-means + Object bank 96.3 82.5 63.5
k-means + CCA-56 80.1 54.4 46.1
k-means + CCA-100 93.5 50.8 43.8

Grauman and Darrell [16] 85.0 - -
Dueck and Frey [17] - 58.9 36.8
Lee and Grauman [12] 91.1 - 65.6
Faktor and Irani [13] - 89.9 78.9

the basis of the results obtained in the previous experiments, we used only
the k-means algorithm. The number of clusters is four for the Caltech-4 data
set. For the Caltech-7 and Caltech-20, Dueck and Frey report the results for a
variable number of clusters between ten and 60. Here we consider ten clusters
for Caltech-7, and twenty clusters for Caltech-20. Table 12 reports the results
obtained.

Among the supervised features, the best results with the k-means cluster-
ing have been obtained by classemes and object bank features. With respect
to other, more complex clustering techniques, the best results have been ob-
tained by the approach of Faktor and Irani. This method, and like the Lee and
Grauman one, uses low level features to determine local regions in the images
that are common across images of the same category and group them accord-
ingly. These approaches are quite different and more complex with respect to
the ones considered in this paper. They are designed to infer the presence of
relevant/foreground elements in the images and to use this information for the
clustering. Thus, it is not surprising that the results on the Caltech data set
of [13], which uses local information, are higher than the other methods that de-
scribe the image in a global way. It should be interesting to investigate if similar
performances can be obtained on data sets of more complex scenes. Neverthe-
less, the combination of k-means with supervised features obtained the best
performance on Caltech-4, and the second best on Caltech-7 and Caltech-20.

5. Summary and discussion

The most evident result of these experiments is that supervised features (in
the sense in which we have defined them for the purpose of this paper) outper-
form primitive for unsupervised classification. In no experiment was the best
result obtained by a primitive feature and in many cases the performance of
supervised features is comparable to that of supervised methods. This seems
to suggest that the information provided during the supervised training of the
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feature extractor is transferred to hitherto unseen categories. That is, super-
vised learning on a limited number of categories is enough to obtain very good
performance on the unsupervised learning of new categories.

In the first three experiments, and across the four clustering algorithms,
classemes and prosemantic features perform almost the same, with prosemantic
performing slightly better (prosemantic “wins” 7 times, classemes 5). This is
prima facie surprising, considering the great difference in the number of the
base classes for the two cases (2659 for classemes, 14 for prosemantic), and it
indicates that supervised features are extremely robust, and that they allow an
accurate representation of images with small feature vectors (56 components, in
the case of prosemantic).

A large scale experiment on the more than 100,000 images from the SUN data
set demonstrated the scalability of the approach based on supervised features.
In fact, the use of supervised features consistently allowed to obtain better
results than those achieved with primitive features independently on the size of
the unsupervised classification problem.

In the last experiment, both classemes and Object Bank features performed
very well. In fact they obtained better results than the other methods from
the state of the art, with the exception of the method by Faktor and Irani [13].
Prosemantic features have been designed to characterize whole images, while the
Caltech data set has been collected for object classification tasks, and will there-
fore favor an approach based on local descriptors, objects classifiers (classemes),
or object detectors (object bank features).

One interesting point is raised by the comparison of Object Bank and pros-
emantic features. Object Bank features are made of the output of object clas-
sifiers, while prosemantic features are composed, essentially, of scene-level de-
scriptors. Quite unsurprisingly, Object Bank performs better than prosemantic
on the Caltech database, which contains several rather artificial images depict-
ing isolated objects on a uniform background, while prosemantic outperforms
Object Bank on the scene recognition data set (classemes, containing both ob-
jects and scene classes, performs well in both cases). However, in data set less
easily characterized, such as Simplicity or the event data set, prosemantic fea-
tures constantly outperform Object Bank. One might envision here the embryo
of a design directive for supervised features: a judicious mix of object and scene
classes will probably give the best performance (but, quite probably, at the cost
of a feature space of rather high dimensionality, as object recognition generalizes
poorly from one object to another). If, however, one has to bias the base classes
it appears that it is better to bias towards scene features rather than towards
object features. The results of the application of a simple dimensionality reduc-
tion technique (PCA) demonstrate that the descriptive power of the features
do not depends too much on the dimensionality of their spaces. Therefore, at
least for unsupervised categorization, it is advisable to select a small number
of classes when defining the supervised features. These are, of course, only
early qualitative observations, as the experiments were designed simply with
performance comparison in mind, and not in order to derive design directives.

Among primitive features, it is worth noticing that modern features (Fisher
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Vectors, bag of SIFT, spatial pyramid) don’t work significantly better than the
standard MPEG-7 features, which have the additional advantage of creating
much more compact representations.

6. Conclusion

In this paper we addressed the problem of unsupervised image categoriza-
tion by using supervised features. The features we considered are derived from
multiple image classifiers or object detectors trained to identify a set of seman-
tic categories. Their capability of capturing the semantic content of the images
make it possible to use standard clustering algorithm to automatically partition
image collections into meaningful categories. This is demonstrated by our ex-
periments where these features allowed to identify the ground truth categories
in several data sets of variable difficulty.

On the basis of the results obtained we can conclude that supervised features
are able to dynamically characterize new, unseen, categories which are quite
different from those used to build them. So far, supervised features have been
heuristically defined. In our future work we will take advantage of the insights
provided by the results obtained here in order to address some open issues. In
particular, we will investigate how to identify the categories that should be used
for a specific task; how much the performance depends on the similarity between
these and the target categories; and how many categories are required to obtain
good results.

Appendix A. Additional data sets

In this appendix we report the classification rates obtained on two additional
data sets. These data sets have been chosen to verify the limitation of supervised
features. Since these features have been defined on labeled images depicting
objects and/or scenes, it is possible that their descriptive power is severely
reduced for other kinds of images. In particular we considered a data set of
textures and one of aerial images.

Appendix A.1. KTH-TIPS2

This data set consists of 4752 images collected by capturing 44 samples
of 11 different categories (see Figure A.15). Each sample has been captured
108 times at different scales and under different illumination conditions [61].
Table A.13 reports the classification rates obtained on this data set. It is not
surprising that on this data set the gap between the performance of supervised
and primitive features is quite small. Still, supervised features obtained the best
results.
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Figure A.15: Samples of the 11 classes of the KTH-TIPS2 data set.

Table A.13: Classification rates on the KTH-TIPS2 data set (%). For each algorithm, the
best result is reported in bold.

Clustering algorithm

Features k-means Spectral Ward Affinity Prop.

Classemes 52.7 58.6 49.3 48.2
Prosemantic 53.9 55.7 56.4 54.6

Object bank 46.4 44.0 42.7 39.3
CCA-56 49.4 59.8 44.7 43.5

Fisher Vectors 51.2 48.0 51.2 40.7
Gist 50.0 53.3 50.3 49.6
Bag of SIFT 22.1 51.8 21.1 25.7
Sp. Pyramid 33.1 36.6 30.7 31.5
CEDD 46.4 47.7 48.7 48.0
SCD 32.3 45.6 30.6 9.1
CLD 42.8 33.8 40.8 40.4
EHD 41.5 34.1 40.9 36.4
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Figure A.16: Samples of the 21 classes of the Landuse data set.

Appendix A.2. UC Merced Land Use Dataset

This is a 21 class land use image data set [62]. There are 100 images for
each of the following classes: agricultural, airplane, baseball diamond, beach,
buildings, chaparral, dense residential, forest, freeway, golf course, harbor, in-
tersection, medium residential, mobile homepark, overpass, parking lot, river,
runway, sparse residential, storage tanks, tennis court (see Figure A.16). Ta-
ble A.14 reports the classification rates obtained on this data set. On this data
set the best performance have been obtained by using the Fisher Vectors. The
other primitive features obtained classification rates slightly below those of the
supervised ones.

35



Table A.14: Classification rates on the Landuse data set (%). For each algorithm, the best
result is reported in bold.

Clustering algorithm

Features k-means Spectral Ward Affinity Prop.

Classemes 36.8 36.7 38.8 35.0
Prosemantic 40.0 41.7 41.3 38.4
Object bank 37.1 34.4 38.2 31.2
CCA-56 40.0 40.7 34.6 32.3

Fisher Vectors 54.1 51.6 52.2 42.0

Gist 35.1 34.5 36.4 29.4
Bag of SIFT 26.5 39.1 26.0 24.8
Sp. Pyramid 21.62 25.90 19.57 21.6
CEDD 31.9 32.4 32.8 32.6
SCD 20.5 24.3 21.2 20.3
CLD 27.5 26.1 27.1 26.1
EHD 31.1 31.9 30.9 28.0

Appendix B. Conditional entropies

The conditional entropy is an alternative to the classification rate for the
evaluation of unsupervised categorization [7]. For a joint distribution P over
X × Y it is defined as:

H(Y |X) =
∑

x∈X

∑

y∈Y

P (x, y) log2
1

P (y|x)
. (B.1)

Let Nij be the number of images of category i that have been placed in the
cluster j, then the conditional entropy can be estimated as follows:

H =
1

∑

i

∑

j Nij

∑

i

∑

j

Nij log2

∑

kNkj

Nij

. (B.2)

The conditional entropy is measured in bits. Tables B.15, B.16, and B.17
reports the conditional entropies obtained on the Simplicity, scene recognition,
and event data sets.
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[14] T. Käster, V. Wendt, G. Sagerer, Comparing clustering methods for
database categorization in image retrieval, in: Pattern Recognition, Vol.
2781 of LNCS, 2003, pp. 228–235.

[15] X. Zheng, D. Cai, X. He, W.-Y. Ma, X. Lin, Locality preserving clustering
for image database, in: Proc. ACM Int’l Conf. Multimedia, 2004, pp. 885–
891.

[16] K. Grauman, T. Darrell, Unsupervised learning of categories from sets of
partially matching image features, in: Proc. IEEE Conf. Computer Vision
and Pattern Recognition, Vol. 1, 2006, pp. 19–25.

[17] D. Dueck, B. Frey, Non-metric affinity propagation for unsupervised image
categorization, in: Proc. IEEE Int’l Conf. Computer Vision, 2007, pp. 1–8.

[18] N. Loeff, A. Farhadi, Scene discovery by matrix factorization, in: Proc.
European Conf. on Computer Vision, 2008, pp. 451–464.

[19] Y. Liu, D. Zhang, G. Lu, W.-Y. Ma, A survey of content-based image
retrieval with high-level semantics, Pattern Recognition 40 (1) (2007) 262–
282.

[20] G. Wang, D. Hoiem, D. Forsyth, Learning image similarity from flickr
groups using stochastic intersection kernel machines, in: Proc. IEEE Int’l
Conf. Computer Vision, 2009, pp. 428–435.

[21] G. Ciocca, C. Cusano, S. Santini, R. Schettini, Halfway through the se-
mantic gap: prosemantic features for image retrieval, Information Sciences
181 (22) (2011) 4943–4958.

[22] S. Deerwester, S. Dumais, G. Furnas, T. Landauer, R. Harshman, Indexing
by latent semantic analysis, J. Am. society for information science 41 (6)
(1990) 391–407.

[23] M. Ranzato, F. Huang, Y. Boureau, Y. LeCun, Unsupervised learning of
invariant feature hierarchies with applications to object recognition, in:
Proc. IEEE Conf. Computer Vision and Pattern Recognition, 2007, pp.
1–8.

[24] C. Lampert, H. Nickisch, S. Harmeling, Learning to detect unseen object
classes by between-class attribute transfer, in: Proc. IEEE Conf. Computer
Vision and Pattern Recognition, 2009, pp. 951–958.

39



[25] A. Farhadi, I. Endres, D. Hoiem, D. Forsyth, Describing objects by their at-
tributes, in: Proc. IEEE Conf. Computer Vision and Pattern Recognition,
2009, pp. 1778–1785.

[26] H. Zhang, Z.-J. Zha, J. Yan, S.and Bian, T.-S. Chua, Attribute feedback,
in: Proc. ACM Int’l Conf. Multimedia, 2012, pp. 79–88.

[27] F. Yu, R. Ji, M.-H. Tsai, G. Ye, S.-F. Chang, Weak attributes for large-
scale image retrieval, in: Proc. IEEE Conf. Computer Vision and Pattern
Recognition, 2012, pp. 2949–2956.

[28] H. Zhang, Z.-J. Zha, Y. Yang, S. Yan, Y. Gao, T.-S. Chua, Attribute-
augmented semantic hierarchy: towards bridging semantic gap and inten-
tion gap in image retrieval, in: Proc. ACM Int’l Conf. Multimedia, 2013,
pp. 33–42.

[29] Z. M., Y. Y., Z. X., S. Y., N. Sebe, A. Hauptmann, Complex event detection
via multi-source video attributes, in: Proc. IEEE Conf. Computer Vision
and Pattern Recognition, 2013, pp. 2627–2633.

[30] J. Vogel, B. Schiele, Semantic modeling of natural scenes for content-based
image retrieval, Int’l J. Computer Vision 72 (2) (2007) 133–157.

[31] N. Rasiwasia, N. Vasconcelos, Scene classification with low-dimensional
semantic spaces and weak supervision, in: Proc. IEEE Conf. Computer
Vision and Pattern Recognition, 2008, pp. 1–6.

[32] M. Naphade, J. Smith, J. Tesic, S. Chang, W. Hsu, L. Kennedy, A. Haupt-
mann, J. Curtis, Large-scale concept ontology for multimedia, IEEE Mul-
timedia 13 (3) (2006) 86–91.

[33] P. Gehler, S. Nowozin, On feature combination for multiclass object clas-
sification, in: IEEE Int’l Conf. Computer Vision, 2009, pp. 221–228.

[34] A. Oliva, A. Torralba, Building the gist of a scene: The role of global image
features in recognition, Progress in brain research 155 (2006) 23–36.

[35] N. Dalal, B. Triggs, Histograms of oriented gradients for human detection,
in: Proc. IEEE Conf. Computer Vision and Pattern Recognition, Vol. 1,
2005, pp. 886–893.

[36] A. Bosch, A. Zisserman, X. Munoz, Image classification using rois and
multiple kernel learning, Int’l J. Computer Vision 2008 (2008) 1–25.

[37] P. Felzenszwalb, R. Girshick, D. McAllester, D. Ramanan, Object detec-
tion with discriminatively trained part-based models, IEEE Trans. Pattern
Analysis and Machine Intelligence 32 (9) (2010) 1627–1645.

[38] D. Hoiem, A. Efros, M. Hebert, Automatic photo pop-up, ACM Trans. on
Graphics 24 (3) (2005) 577–584.

40



[39] H. Hotelling, Relations between two sets of variates, Biometrika 28 (3/4)
(1936) 321–377.

[40] T. Sikora, The MPEG-7 visual standard for content description-an
overview, IEEE Trans. Circuits and Systems for Video Technology 11 (6)
(2001) 696–702.

[41] S. Chatzichristofis, Y. Boutalis, CEDD: Color and edge directivity descrip-
tor: A compact descriptor for image indexing and retrieval, in: Computer
Vision Systems, Vol. 5008 of LNCS, 2008, pp. 312–322.

[42] A. Oliva, A. Torralba, Modeling the shape of the scene: A holistic repre-
sentation of the spatial envelope, Int’l J. Computer Vision 42 (3) (2001)
145–175.

[43] J. Zhang, M. Marszalek, S. Lazebnik, C. Schmid, Local features and kernels
for classification of texture and object categories: A comprehensive study,
Int’l J. Computer Vision 73 (2) (2007) 213–238.

[44] C. Wallraven, B. Caputo, A. Graf, Recognition with local features: the
kernel recipe, in: Proc. IEEE Int’l Conf. Computer Vision, Vol. 1, 2003,
pp. 257–264.

[45] D. Nister, H. Stewenius, Scalable recognition with a vocabulary tree, in:
Proc. IEEE Conf. Computer Vision and Pattern Recognition, Vol. 2, 2006,
pp. 2161–2168.

[46] D. Lowe, Distinctive image features from scale-invariant keypoints, Int’l J.
Computer Vision 60 (2) (2004) 91–110.

[47] F. Perronnin, J. Sánchez, T. Mensink, Improving the fisher kernel for large-
scale image classification, in: Proc. European Conf. on Computer Vision,
2010, pp. 143–156.

[48] S. Lazebnik, C. Schmid, J. Ponce, Beyond bags of features: Spatial pyramid
matching for recognizing natural scene categories, in: Proc. IEEE Conf.
Computer Vision and Pattern Recognition, Vol. 2, 2006, pp. 2169–2178.

[49] V. Pestov, On the geometry of similarity search: dimensionality curse and
concentration of measure, Information Processing Letters 73 (1-2) (2000)
47–51.

[50] G. Hamerly, C. Elkan, Alternatives to the k-means algorithm that find
better clusterings, in: Proc. Int’l Conf. on Information and Knowledge
Management, 2002, pp. 600–607.

[51] B. Frey, D. Dueck, Clustering by passing messages between data points,
Science 315 (5814) (2007) 972–976.

[52] J. J. Ward, Hierarchical grouping to optimize an objective function, J. the
Am. Statistical Assoc. 58 (301) (1963) 236–244.

41



[53] U. Von Luxburg, A tutorial on spectral clustering, Statistics and Comput-
ing 17 (4) (2007) 395–416.

[54] J. Shi, J. Malik, Normalized cuts and image segmentation, IEEE Trans.
Pattern Analysis and Machine Intelligence 22 (8) (2000) 888–905.

[55] J. Wang, J. Li, G. Wiederhold, Simplicity: Semantics-sensitive integrated
matching for picture libraries, IEEE Trans. Pattern Analysis and Machine
Intelligence 23 (9) (2001) 947–963.

[56] L. Li, L. Fei-Fei, What, where and who? classifying events by scene and
object recognition, in: Proc. IEEE Int’l Conf. Computer Vision, 2007, pp.
1–8.

[57] J. Xiao, J. Hays, K. Ehinger, A. Oliva, A. Torralba, Sun database: Large-
scale scene recognition from abbey to zoo, in: Proc. IEEE Conf. Computer
Vision and Pattern Recognition, 2010, pp. 3485–3492.

[58] R. Fergus, P. Perona, A. Zisserman, Object class recognition by unsu-
pervised scale-invariant learning, Proc. IEEE Conf. Computer Vision and
Pattern Recognition 2 (2003) 264.

[59] L. Fei-Fei, R. Fergus, P. Perona, Learning generative visual models from few
training examples: An incremental bayesian approach tested on 101 object
categories, Computer Vision and Image Understanding 106 (1) (2007) 59–
70.

[60] C. Fellbaum, Wordnet: An Electronic Lexical Database, Bradford Books,
1998.

[61] B. Caputo, E. Hayman, P. Mallikarjuna, Class-specific material categori-
sation, in: Proc. IEEE Int’l Conf. on Computer Vision, Vol. 2, 2005, pp.
1597–1604.

[62] Y. Yang, S. Newsam, Bag-of-visual-words and spatial extensions for land-
use classification, in: Proc. Int’l Conf. Advances in Geographic Information
Systems, 2010, pp. 270–279.

42


