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Abstract

The e1ective classi!cation of image contents allows us to adopt strategies that can meet the increasing demand for
quality, speed and ease of use in imaging applications. We report here on our experience in the use of CART classi!ers
for the classi!cation of images indexed by low-level perceptual features such as color, texture, and shape. The problem
addressed is the complex matter of distinguishing among photographs, graphics, texts, and compound documents. To
cope with the great variety of compound documents we have designed a hierarchical classi!cation strategy which !rst
classi!es images as compound or non-compound by verifying the homogeneity of the sub-images in terms of low-level
features. Non-compound images are then classi!ed as photographs, graphics, or texts. The results are reported and
discussed. ? 2002 Pattern Recognition Society. Published by Elsevier Science Ltd. All rights reserved.

Keywords: CART methodology; Compound documents; Graphics; Image classi!cation; Low-level features; Photographs; Texts

1. Introduction

Internet and the web have become the key enablers
of the revolution in the management of the digital imag-
ing work<ow, in both the domestic and the working en-
vironment. This emerging work<ow structure depends
upon the e1ective realization of three fundamental steps:
image acquisition (the digital way in); image reuse (dig-
ital recirculation) and cross-device image rendering (the
digital way out). We believe that content-based image
classi!cation to be mandatory for the accurate descrip-
tion and use of digitized images. The e1ective classi!ca-
tion of image (or sub-image) contents allows us to adopt
the most appropriate strategies for image enhancement,
color processing, compression, and rendering to meet the
increasing demand for image quality, speed, and ease of
use. This is particularly the case of cross-media color

∗Corresponding author. Tel.: +39-02-706-43288; fax:
+39-02-706-43292.
E-mail address: schettini@itim.mi.cnr.it (R. Schettini).

reproduction. Recognizing the class to which a processed
image is likely to belong would allow the Color Manage-
ment System to process the image according to speci!c
strategies for text, graphics and photo’s images, to auto-
matically perform color adjustments, or to obtain a more
pleasant (or preferred) color reproduction without requir-
ing user interaction. Digital document classi!cation also
allows optimization of image data size, providing the
best compression and data representation (text data, for
instance, are best represented with high-resolution, low
bit-depth, lossless-compressed images, while pictorial in-
formation requires lower-resolution, high bit-depth, and
can tolerate compression with some visual loss). This
avoids quality trade-o1s, and provides better interoper-
ability, by adding relevant side information to the images
to be acquired, broadcasted, or rendered.
In this paper we address the problem of image classi!-

cation using low-level features, such as color, edge distri-
bution, and image composition. The hierarchical strategy
we propose has been designed to address the high-level
problem of distinguishing among photographs, graphics,
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texts, and compound documents. It is based on the use
of tree classi!ers built with the CART methodology [1].
Due to the great variability of the images to be classi-

!ed, we !rst built and validated a “classi!er engine” for
the classi!cation of photographs, graphics, and texts, and
then used that to derive a compound vs. non-compound
classi!er. The “classi!er engine” was obtained by gen-
erating multiple tree classi!ers and by combining these
through a majority vote.
The low-level features we used to describe the im-

ages were derived from a general purpose image indexing
library, and, in designing such a library we have consid-
ered perceptual similarity (the feature distance between
two images are large only if the images are not “simi-
lar”), eJciency (the features can be rapidly computed)
and economy (their dimensions must be small in order
not to a1ect classi!cation eJciency).
There have been very few e1orts to automate the clas-

si!cation of digital color documents to date. Athitsos and
Swain [2], and Gever et al. [3] have proposed automated
systems for distinguishing photographs from graphics on
the World Wide Web. Schettini et al. [4,5] have de!ned
a method for distinguishing photographs from graphics
and texts purely on the basis of a rather high number
(389) of low-level features.
Szummer and Picard [6] have designed algorithms

for indoor=outdoor image classi!cation. They have sys-
tematically studied color histograms computed in the
Otha color space, multiresolution autoregressive model
parameters, and coeJcients of shift invariant discrete
cosine transform computed on the whole image and on
sub-blocks. They have reported a correct classi!cation
rate of 90.3% using color histograms and multiresolution
autoregressive model parameters on a database of over
1300 consumer image provided by Kodak.
Vailaya et al. [7] have considered the hierarchical clas-

si!cation of vacation images using binary Baysian clas-
si!ers: at the highest level images are classi!ed as indoor
or outdoor; outdoor images are further classi!ed as city
or landscape, and !nally, landscape images are classi!ed
as sunset, forest, or mountain scenes.
The present paper is organized as follows. The fea-

tures used to index the images are outlined in Section 2.
Section 3 gives a synthetic description of the CART
methodology. The hierarchical classi!cation strategy we
propose is described in Section 4, while Section 5 re-
ports the results of our experiments on a database of over
35,000 images collected from various sources, such as
images downloaded from the web, or acquired by scan-
ner, and bitmap versions of electronic pages. Section 6
presents our conclusions.

2. CART classi�ers

Generally speaking, CART classi!ers are trees con-
structed by recursively partitioning the predictor space,

each split being based on conditions related to the pre-
dictor values. The process is binary: the predictor space
and each subset of it are split exactly in two (see Fig. 1).
In tree terminology the subsets are called nodes: the pre-
dictor space is the root node, terminal subsets are termi-
nal nodes, and so on. The construction process is based
on training sets of cases for which class j∈{1; : : : ; J}
is known. In our problem the predictors are the features
indexing the images, and the training sets are composed
of images for which the semantic class is known. Once
a tree has been constructed, a class is assigned to each
of the terminal nodes, and it is this that makes the tree
a classi!er: when a new case is processed by the tree,
its predicted class is the one associated with the terminal
node into which the case !nally moves on the basis of
its predictor values.
The class assigned to each terminal node t is the one

that minimizes the estimated misclassi!cation cost within
the node, which is given by

r(t)=min
i

∑

j

c(i | j)p(j | t); (1)

where c(i | j) is the cost of misclassifying a class j case
as a class i case, and p(j | t) is the estimated probability
of the class j in node t.
The performance of a tree is evaluated in terms of its

overall misclassi!cation probability, or misclassi!cation
cost, which, if T denotes the tree, is estimated by

R(T )=
∑

t terminal node

r(t)p(t); (2)

where p(t) is the estimated probability of a case being
assigned to node t.
The critical problems of the splitting process are

essentially two: how to identify candidate splits, and
how to de!ne the goodness of the splits. Candidate splits
are generated by a set of admissible questions regarding
the values of the predictors. These questions di1er ac-
cording to the nature of the predictors themselves. In the
case of a category predictor, for example, all splits that
assign the values of the predictor to two di1erent groups
are considered candidates. At each step of the process,
all the predictors are searched one by one, and the best
split, in the sense de!ned below, is found for each pre-
dictor. The best splits are then compared, and the best
of these selected.
The idea central to the goodness of splits is that of

selecting the splits so that the data in the descendant
nodes are purer than the data in the original ones. To
do so, di1erent functions of impurity of the nodes, i(t),
are introduced, and the decrease in value of the chosen
function produced by a split is taken as a measure of the
goodness of the split itself. For a node t and its descendant
nodes tl and tr , this is

Pi(s; t)= i(t)− pli(tl)− pri(tr); (3)
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Fig. 1. An example of tree classi!er and node details.

Fig. 2. Our “classi!er engine”.

where pl and pr are the proportions of the cases of t
falling in tl and tr , respectively, according to split s.
The most commonly used function of node impurity

is the Gini diversity index

i(t)=
∑

i �=j
p(i | t)p(j | t)=1−

∑

j

p2(j | t); (4)

which can be interpreted in terms of variances of
Bernoulli variables. If, for each class j, we consider
the random variable Yj , which is 1 (success) if a case
of t belongs to class j and 0 (failure) otherwise, it can
be modeled as a Bernoulli variable with probability of
success p(j | t), and in this case the quantity

1−
∑

j

p2(j | t) (5)

is the sum of the estimated variances of such
variables.
The goodness of a split can also be evaluated by the

reduction in deviance [8] produced by the split. For a
node t, the deviance is de!ned as

D(t)=− 2
∑

j

ntj logp(j | t); (6)

where ntj is the frequency of class j cases in node t. The
underlying idea is that the ntj cases of the training set
belonging to a node t constitute a random sample from
the multinomial distribution speci!ed by p(j | t). D(t) is
proportional to the entropy function of the variable class
within the node. Generally speaking, the deviance is a
function quantifying the discrepancy between a !t and
the data [9].
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Fig. 3. Skin regions detection.

Since the process goes on until some stopping rule is
satis!ed, the trees can be very big and over!t the data.
One of the major innovations of the CART methodology
is the possibility of pruning process based on the idea of
!nding a trade-o1 between the complexity and the ac-
curacy of the trees. For a tree T , the pruning process
generates a sequence {Tl}l∈{1; :::; L} of subtrees decreas-
ing in size, each of which is the best, in its size range,
according to a cost-complexity measure de!ned as

R�(T )=R(T ) + �|T |; (7)

where |T | is the number of terminal nodes, and � (¿ 0)
is the unit cost of complexity per terminal node. The sub-
trees are evaluated in terms of their overall misclassi!-
cation probability, or misclassi!cation cost, on the basis
of test sets, or by means of cross-validation, and the best
subtree is then selected. Choosing the tree to use for clas-
si!cation in this way reduces the strong dependence of
the classi!cation itself on the training data, and provides
a more parsimonious classi!er.
Recent work [10] has shown that the accuracy of

CART classi!ers can be improved by perturbing and
combining methods. This means generating multiple
versions of a classi!er by perturbing the training set,
or the construction method, and then combining these
multiple versions to produce a single classi!er. The
most natural way to combine a di1erent classi!ers is by
majority vote. We have called a classi!er obtained by
perturbing and combining a “classi!er engine”; Fig. 2
shows the one we have used.

3. Image description using pictorial features

The following features were used to index the images:
Color distribution, described in terms of the moments

of inertia (i.e. the mean, variance, skewness and kurtosis)
of the distribution of hue, saturation and value [11].
Color information: The feature entries are: (i) the per-

centage of “colored” pixels of the image, that is the pixels
having a saturation value higher a given threshold, and
(ii) the number of distinct colors present in the image.

Edge distribution, the statistical information on image
edges extracted by Canny’s algorithm: (i) the percent-
ages of low, medium, and high contrast edge pixels in
the image; (ii) the parametric thresholds on the gradi-
ent strength corresponding to medium and high contrast
edges; (iii) the number of connected regions identi!ed
by closed high contrast contours; (iv) the percentage of
medium contrast edge pixels connected to high contrast
edges [12].
Wavelets: Multiresolution wavelet analysis provides

representations of the image data in which both spatial
and frequency information are present. It has recently
been used in content-based retrieval for similarity re-
trieval and target search, e.g. Ref. [13]. In multiresolu-
tion wavelet analysis we have four bands for each level
of resolution: a low-pass !ltered version of the processed
image, and three bands of details. Each band corresponds
to a coeJcient matrix one-fourth the size of the processed
image. In our procedure the features are extracted from
the luminance image using a three-step Daubechies mul-
tiresolution wavelet expansion producing 10 sub-bands
[14]. Two energy features, the mean and variance, are
then computed for each subband. These features pro-
vide a concise description of the image’s texture and
shape.
Texture: estimate of texture features are based on the

neighborhood graytone di1erence matrix (NGTDM), i.e.
coarseness, contrast, busyness, complexity, and strength
[15,16].
Image composition: The HSV color space was parti-

tioned into 11 color zones corresponding to basic color
names. This partitioning was de!ned and validated
empirically by di1erent groups of examiners. The spa-
tial composition of the color regions identi!ed by the
process of quantization was described in terms of [17]:

(i) fragmentation (the number of color regions);
(ii) distribution of the color regions with respect to the

center of the image;
(iii) distribution of the color regions with respect to the

x-axis, and with respect to the y-axis.

Skin’s pixels, the percentage of skin pixels. We used a
statistical skin color detector (see Fig. 3) based on the r; g
chromaticities of the pixel; a training set of 30,000 color
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Fig. 4. Document classi!cation strategy.

skin data was used to model the probability distribution
of the skin color [18] (see the appendix).
The widely di1ering natures of the indices limit the

risk of having di1erent images correspond to very close
points in the feature space. However, while all the fea-
tures must be computed for the images in the training
sets, only the features actually used by the classi!er need
to be computed for the images in the test sets and for
new images to be processed. In our experimentation the
features used in the classi!ers we obtained are less than
one-third of the original ones.

4. Document classi�cation strategy

The problem addressed was that of classifying a color
document as photo, graphic, text, or compound [19]. The
photo class included photographs of indoor and outdoor
scenes, landscapes, people, and objects. The graphic
class included banners, logos, tables, maps, sketches and
photo-realistic graphics. The text class included digitized
handwritten texts, as well as colored and black and white
texts both scanned and computer generated, in various

fonts. Compound images were those containing data
(homogeneous regions) of various types, namely text,
photographs, and graphics. Examples of compound
documents are structured articles such as journals,
newspapers, newsletters, and documents with an uncon-
strained layout, such as advertisements and the covers of
CDs, books and journals, together with non-traditional
documents, such as web pages and video frames. We
de!ne the non-compound class as the union of photo,
text and graphic classes.
The more straightforward way to address a classi!ca-

tion problem with four classes would have been to use
a four-class classi!er. However, the great variety and
complexity of compound images would have required
the de!nition of a huge training set without guaranteeing
its completeness. Consequently, we discarded this ap-
proach and de!ned the classi!cation strategy described
below and shown in Fig. 4. We !rst built and validated a
“classi!er engine” for the classi!cation of photographs,
graphics, and texts. We then used it to derive a com-
pound vs. non-compound classi!er: the images were
subdivided into a given number of disjoint sub-images,
and these were classi!ed as photo, graphics, or text by
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Fig. 5. The user interface of our system.

the “classi!er engine”. A measure of con!dence for the
classi!cation of each sub-images was provided by the
percentage of trees, combined in the “classi!er engine”,
that contributed to the result. The whole image was
classi!ed as compound if, with a “good” level of con!-
dence, its sub-images were classi!ed in at least two of
the three di1erent classes. Non-compound images were
then globally classi!ed as photograph, graphic or text.
Images of dimensions (in pixels) smaller than a min-

imum threshold were excluded from the compound
vs. non-compound classi!cation, and classi!ed directly
globally as photograph, graphic, or text. This constraint
was set because no strategy for compound document
processing or analysis, such as region segmentation, or
zone classi!cation, could be useful or feasible in the
case of images smaller than the chosen threshold.
Fig. 5 shows the user interface of the system which

we implemented to perform the classi!cation strategy.

5. Experimental results

The image database used in our experiments consisted
of over 36,000 images collected from various sources:
images downloaded from the web, or acquired by scan-
ner, and bitmap versions of electronic pages. It contained
some 30,000 photos, 4000 graphics, 1500 texts, and 1000
compound images. All this material varied in size (rang-
ing from 120× 120 pixels to 3500× 3500 pixels), reso-
lution, and tonal depth.

Table 1
Average classi!cation accuracy obtained on the training sets

Predicted class

True class Photo Graphic Text

Photo 0.97 0.03 0
Graphic 0.02 0.93 0.05
Text 0 0.02 0.98

Table 2
Average classi!cation accuracy obtained on the test sets

Predicted class

True class Photo Graphic Text

Photo 0.95 0.04 0.01
Graphic 0.03 0.88 0.09
Text 0 0.08 0.92

To address the three-class classi!cation problem
(photo, graphic, and text), we built several trees using
independent training sets of some 4600 images (about
2500 photos, 1500 graphics and 600 texts) randomlyex-
tracted from the available database with no replacement.
All the image typologies present in the three classes were
identically represented in each training set, and the three
classes were assumed to have equal misclassi!cation
costs. The trees were all pruned by a cross-validation
process. For each single tree, the test set was formed by
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Table 3
Average classi!cation accuracy obtained on the training sets
by using the “classi!er engines”

Predicted class

True class Photo Graphic Text

Photo 0.99 0.1 0
Graphic 0.03 0.94 0.03
Text 0 0.1 0.99

Table 4
Average classi!cation accuracy obtained on the test sets by
using the “classi!er engines”

Predicted class

True class Photo Graphic Text

Photo 0.97 0.03 0
Graphic 0.03 0.93 0.03
Text 0 0.04 0.96

all the images not belonging to the training set used to
build it, and included some 31,000 images (about 28,000
photos, 2500 graphics and 800 texts).
We generated several “classi!er engines”, combining,

by majority vote, these single trees in groups of 15. For
each “classi!er engine” the training set was composed of
all the images belonging to the training set of at least one
of the trees combined in the classi!er engine, employing
in all some 26,000 images (22,000 photos, 2700 graph-
ics, and 1200 texts). The test set was composed of all the
images not belonging to any training set of the trees com-
bined in the “classi!er engine”, and totalled some 9600
images (8000 photos, 1300 graphics, and 300 texts).

Table 5
The average classi!cation accuracy obtained on particular image typologiesa

Subclasses Single classi!er CE

Training Test Whole DB Whole DB

N ph gr tx N ph gr tx N ph gr tx ph gr tx

ph building 482 98 2 0 4840 96 3 1 5322 96 3 1 99 1 0
ph people 474 92 6 2 1973 89 9 3 2447 89 8 2 96 4 0
ph animal 529 99 1 0 4211 98 2 0 4640 98 1 0 100 0 0
ph landscape 491 98 1 0 10568 98 2 0 10779 98 2 0 99 1 0
ph object 383 92 8 1 1778 85 13 2 2161 87 12 1 93 6 1
ph mixed 0 === === === 3463 96 3 0 3463 96 3 0 98 2 0
gr easy clip art 171 2 96 2 2199 1 96 3 2370 1 96 3 0 99 1
gr smooth clip art 167 10 86 4 314 11 87 2 481 11 87 3 5 94 1
gr table 294 4 87 10 166 3 79 18 460 3 84 13 0 95 5
gr map 115 3 85 12 470 2 80 18 585 2 81 17 2 89 10
tx black and white 266 1 1 98 532 0 2 98 798 1 1 98 0 0 100
tx colored background 312 7 3 90 271 8 15 76 583 8 9 83 0 6 94
tx colored text 87 5 8 87 0 === === === 87 5 8 87 0 2 98

aCE: classi!er engine; N : the number of images considered; and ph, gr and tx: photo, graphics and text, respectively.

Tables 1 and 2 show the average classi!cation accu-
racy of the three-class tree classi!ers on the training and
test sets, respectively.
Tables 3 and 4 show the average classi!cation accu-

racy of the “classi!er engines” obtained on the training
and test sets, respectively.
As can be seen, the accuracy of the classi!cation ob-

tained by the single trees on the training sets is already
very good; the “classi!er engine” brings only a slight ad-
ditional improvement. But the application of the “clas-
si!er engine” produces a considerable improvement in
classi!cation accuracy on the test sets, for graphics (5%)
and texts (4%) in particular.
Table 5 shows the classi!cation accuracy obtained for

particular image typologies of the three classes consid-
ered. The typologies are: building, people, animal, land-
scape, object and mixed for the photo class, easy clip
art, smooth clip art, table and map for the graphic class
and, black and white, colored background and colored
text for the text class.
If we look in detail at the classi!cation results for the

di1erent image typologies, we see that the greatest im-
provements are achieved on those images most inaccu-
rately classi!ed by single trees. On the whole database,
the accuracy for photographs of people and objects in-
creases from 89% to 96% and from 87% to 93%, respec-
tively; for smooth clip art, graphic tables and maps, from
87% to 94%, from 84% to 95%, and from 81% to 89%,
respectively. For text images with a colored background
or colored text the accuracy increases from 83% to 94%
and from 87% to 98%, respectively.
The performance, evaluated in terms of overall clas-

si!cation accuracy, of the di1erent “classi!er engines”
are very similar, in our application, that is related to
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Fig. 6. Examples of photos misclassi!ed as graphics by the “classi!er engine”.

cross-media color image reproduction, we have chosen
the “classi!er engine” having the best performance on
photos. Examples of misclassi!ed photos, graphics and
texts are shown in Figs. 6, 7 and 8. The photographs
misclassi!ed as graphics are mostly of small dimensions
and low resolution, or object portraits with a uniform
background. Graphics misclassi!ed as photos are graphic
illustrations with a photo realistic intent, or smooth clip
art, while the graphics misclassi!ed as texts are maps or
tables with overlaid text. Texts misclassi!ed as graph-
ics present a few colored words in large fonts, or busy
backgrounds.
For the detection of compound images, we experi-

mented only on documents with a horizontal and ver-
tical size exceeding the experimentally set threshold of
500 pixels. All the images in our database that satis-
!ed this condition (about 1000 compound images, 1000
photographs, 500 graphics and 500 of text), were subdi-
vided into disjoint sub-images of variable size, by a 4×4
equally spaced grid. The threshold for the acceptance of
sub-image classi!cation was set at 90%.
Compound and non-compound documents were cor-

rectly classi!ed with an accuracy of 90% and 83%,
respectively. Among the non-compound documents,
10% of the photographs were misclassi!ed as com-
pound, while the misclassi!cation !gure for graphics
and text was 20%. We also observed that about 40% of
the graphic and text images misclassi!ed as compound,
were misclassi!ed by the three-class classi!cation as
well. Examples of misclassi!ed compound images are
given in Fig. 9 (see Table 6).
The two biggest problems in document subdivision

performed for compound document detection are: !rst,
that a sub-image of a compound may also be a compound
image itself, rendering its classi!cation in photo, graphic,
and text classes a badly posed problem; and, second, that

(a) (b)

(d)(c) 

Fig. 7. Examples of graphics misclassi!ed as photos (a, b) and
texts (c, d) by the “classi!er engine”.

a non-compound sub-image may be misclassi!ed, while
the whole image is not. Both these problems can be han-
dled by prior analysis of the document to roughly detect
the position of any homogeneous regions constituting it,
and utilize these as sub-images. Varied subdivisions into
sub-images could also be used, and the results of the cor-
responding classi!cations compared. We plan to experi-
ment these re!nements of the strategy in the near future.

6. Conclusions

Digital imaging work<ows have become increasingly
complicated in the last few years. Many factors have
driven the increased complexity of this arena: many
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Fig. 8. Examples of texts misclassi!ed as graphics by the “classi!er engine”.

Fig. 9. Examples of misclassi!ed compound images.

Table 6
Average classi!cation accuracy of compound vs. non-
compound classi!cation, evaluated on image classes

Predicted class

True class Non-compound Compound

Photo 0.9 0.1
Graphic 0.8 0.2
Text 0.8 0.2
Compound 0.1 0.9

di1erent kinds of imaging devices are now available
(Inkjet and Laser Printers, Scanners, Digital Copiers,
Digital Still Cameras, Internet Faxes, Monitors, and
Multifunctional products), and for each type of device
there are many di1erent subcategories (taking printers,
for example, we have high and low-end, networked and
standalone, PC-centric and peer-to-peer products, etc.).
Di1erent driver-peripherals couples may also partition
features di1erently, and functionalities and complex
design vectors, such as speed, resolution, or the
user-interface, must also be taken into account. Con-

sequently, next generation designs in this !eld must
address several issues, such as versatility (devices must
have more and more features, and be easier to use), data
size (increased resolution means more data to manage,
calling for better compression and data representation
schemes), quality, processing speed and ease of inser-
tion of devices in complex home and oJce networks
(interoperability, plug-and-play, cross-device optimiza-
tion). We believe that content-based image classi!cation
will play an important role here: being able to properly
classify text, graphics, photo and compound images will
allow the unsupervised optimization of image data size
and rendering intent using speci!c processing strate-
gies. In this context tree classi!ers built with the CART
methodology present several advantages: (i) they can
handle the co-existence of di1erent relationships between
the features in di1erent regions of the feature space in a
very natural way; (ii) they give a clear characterization
of the conditions that determine when an image belongs
to one class rather than to another, thereby detecting the
most discriminant features for the problem addressed
and unmasking redundancy; (iii) they do not require
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assumptions about the probability distribution of the
features; (iv) they not only provide a classi!cation rule,
but also allow the assignment of a degree of con!dence
in the classi!cation; and (v) they may be very easily
combined to derive an even more accurate classi!er, as
we have done.
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Appendix. Skin-tone detector

In Ref. [18] a statistical model of the skin-tone color
class S has been proposed. It is based on the chromatic-
ities (r; g) of the pixel, computed by

r=
R

R+G + B
; g=

G
R+G + B

:

Let xij be the vector of the chromaticities r; g of the pixel
at side (i; j).
We have modeled the conditional probability function

of xij, belonging to the skin class S, by a bivariate normal
distribution

p(xij | S)=
exp(− 1

2 (xij −  
S
)T!−1

S (xij −  
S
))

2"|!S |1=2 :

We obtained an estimate of the above probability by
estimating the mean  

S
and the covariance matrix !S

from a training set of 30,000 skin-tone examples.
Given the above hypothesis the quadratic form

U (xij; S ; !S)= (xij −  
S
)T!−1

S (xij −  
S
)

has a $22 probability distribution.
Therefore, given a con!dence value of �∈ [0; 1], it is

possible to select the elliptic region

U�(x; S ; !S)¡&�;

which includes, with probability �, the skin-tone colors.
The feature entry is de!ned as the percentage of pixels

with chromaticies that belong to the ellipse U0:75, i.e.

fSkin tone =(N ×M)−1
M∑

i=1

N∑

j=1

I(xi; j∈U0:75; S ):
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