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Abstract Information about the spectral reflectance of a
color surface is useful in many applications. Assuming
that reflectance functions can be adequately approxi-
mated by a linear combination of a small number of
basis functions, we address here the recovery of a surface
reflectance function, given the tristimulus values under
one or more illuminants. Basis functions presenting
different characteristics and cardinalities are investi-
gated, and genetic algorithms are employed to optimize
the estimation. Our analysis of a variety of standard
datasets provides information about the ability of each
set of basis functions we used to model generic reflec-
tance spectra.

Keywords Genetic algorithms - Linear models -
Reflectance function - Tristimulus values

1 Introduction

Information about the spectral reflectance of a color
surface is useful in many applications. It can, for
example, be helpful in simulating the change in
appearance of a colored object under changing illumi-
nants in CAD applications; or provide the input of
computer programs for the matching color formulation
of paints, inks, plastics, and textiles; or serve as input for
many general computer graphics applications that
require a wavelength-based approach to specify colors.
Unfortunately, the surface reflectance is not often
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specified; most of the time, surface color information is
given as RGB or XYZ tristimulus values.

In the physical world, spectra are functions defined
over some continuous range of wavelengths. The
representation most commonly employed is the uniform
sampling of the visible spectrum, usually in the
400-700 nm range. Even when it provides for portability
and, if a large number of samples are used, for accuracy
as well, sampling is an impractical representation. In
many applications, it may present the drawback of poor
compactness when, to ensure accuracy, many samples
are required. A number of researchers, e.g. [1-3], have
investigated the modeling of reflectance spectra using
dimensionality reduction techniques. These techniques
exploit linear model representation, which expresses a
reflectance spectrum through a weighted sum of a set of
basis functions. These functions can be computed from a
set of available spectra by applying principal component
analysis (PCA) or independent component analysis,
which offer accuracy and compactness, but may restrict
the representation to a specific domain. Of considerable
interest are representations where the set is composed of
generic mathematical functions, providing for portabi-
lity and avoiding the data acquisition and preprocessing
required to compute data-dependent basis functions.

We address here the problem of estimating plausible
reflectance spectra from tristimulus values for a variety
of representations of reflectance functions through linear
models. The main assumptions of our work are that the
illuminant spectrum is known, that reflectance spectra
are smooth functions of wavelength in the range of
reflectance values between 0 and 100, and that no phe-
nomena of fluorescence occur. Linear models represent
reflectance functions with a good to high degree of
accuracy, depending on the number of basis functions
considered. There are many studies on the dimension-
ality of linear models based on PCA for real reflectance
spectra approximation. In general, for natural surfaces,
a dimension of six to nine bases is considered sufficient
[1, 3, 4], while, for skin reflectance, three basis functions
are enough [5]. Most of the methods available for the



estimation of reflectance from tristimulus values assume
it is possible to represent the spectral reflectance func-
tions with a three-dimensional linear model, e.g. [6-9],
do not allow the simultaneous exploitation of tristimulus
values referred to different illuminants, and employ a
fixed pre-defined set of basis functions to model reflec-
tance spectra. In this paper we investigate whether better
reflectance estimates can be achieved relaxing these
assumptions.

The approximation of reflectance functions may, in
general, gain in accuracy from the use of high-dimen-
sional linear models: the linear combination of the
model’s basis functions can better match the given
reflectance spectrum. In estimating a surface reflectance
function from tristimulus values, the linear model taken
to represent the unknown reflectance function must not
only provide the high level of flexibility required for
spectral matching, but also encode some knowledge or
constraints regarding the characteristics of the function
to estimate. Colorimetric tristimulus values encode
information about the surface physics of reflectance at
each wavelength as a triplet of values, which includes
observer and illuminant characteristics. As an infinite
number of different reflectance functions can produce
the same triplet, the problem of reflectance synthesis
may have infinite solutions. In order to compensate
partially for the insufficient information provided by
colorimetric data, linear models with basis components
computed on suitable datasets are used. Unfortunately,
using three PCA basis functions to estimate a reflectance
spectrum from tristimulus values may still not offer a
good solution. While the reflectance spectrum obtained
may be perfectly metameric with respect to the unknown
spectrum under the given illuminant and with the given
observer, it may exhibit poor colorimetric matching with
a different illuminant or observer, indicating that the
underlying spectral match required has not been
obtained. Since the spectral matching cannot be addressed
directly, a method that allows the synthesis of a surface
reflectance spectrum by taking into account colorimetric
information referred to different illumination or obser-
vation conditions can increase the similarity between the
estimated and the unknown reflectance spectrum. We
have applied genetic algorithms (GA) to formulate the
problem of reflectance estimation for the simultaneous
optimization of several constraints. We based our
approach on GA as they are a general method to solve
optimization problems, allowing the formulation of the
recovery problem in a simple way, similar for all the
different formulations investigated. GA have perfor-
mances comparable with other techniques [10], and are
appropriate for complex non-linear models where the
location of the global minimum is a difficult task [11].
Genetic algorithms have been applied here to design a
single computational framework to surface reflectance
function recovery, where any kind of basis components
in variable number can be adopted.

In Sect. 2 we provide a formal formulation of the
problem addressed. Section 3 describes the basis

functions considered here, while Sect. 4 is a brief
overview of the GA proposed. The performance of the
algorithm and of the basis functions is examined in
Sect. 5, where standard datasets are used for bench-
marking.

2 Problem formulation

A color stimulus is related to the CIE XYZ tristimulus
values by the following equations:

X = K/ ) di
Y = K/ ) d7 )
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where R(Z) is the reflectance spectrum, 1(/) is the illu-
minant’s spectral power distribution, x(1), (1) and
z(A) are the color matching functions that define the CIE
1931 standard colorimetric observer. If the reflectance
function is represented in the range of [0,1], and a
luminance of 100 is attributed to the light source in the
scene, then the normalization factor K is:
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Equation 1 indicates that an infinite number of dif-
ferent reflectance functions may generate the same tri-
stimulus values. The reflectance function may be
expressed through a linear model as a weighted sum of a
set of basis functions:

=) wibi(4) (3)
j=1

where N is the number of bases in the linear model,
b(4) is the base function of index j, and w; is the
corresponding weight. We have considered /,,;, =400 nm,
Amax= 700 nm and 44 =10 nm here. Approximating the
three integrals in Eqgs. 1 as summations over a limited
range of wavelengths, and applying Eq. 3, the tristimulus
values equations become
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If we indicate with B the matrix having as columns
the basis vectors, and with w the weights column vector,
then, Eq. 3 can be written in matrix notation as:

R = Bw. (5)

Denoting with S the column vector of tristimulus
values [X Y Z]", if §is the matrix having as columns the
observer sensitivities, and diag(I) is a matrix having the
illuminant’s spectral power distribution in the diagonal
and zero elsewhere, then

S = K s diag(I)RAA (6)

and, substituting Eq. 5 in Eq. 6:

S =K s' diag(I)BwAA. (7)

We must now find the weights in Eq. 7, given the
tristimulus values and assuming that no fluorescence
occurs. Once the weights have been estimated, the
reflectance spectrum can be computed using Eq. 5. The
estimated reflectance function must be feasible, that is in
the range of [0, 100], and minimize the color difference
between the input color, specified by a given XY Z triplet
together with the corresponding illuminant spectral
power distribution, and the tristimulus values computed
using Eq. 7. We considered different types of basis sets,
all of which require the estimation of a variable number
of parameters.

3 The basis sets considered

The different sets of basis functions experimented in-
cluded those obtained by PCA performed on the data-
sets studied and on Vrhel’s public domain database of
natural color reflectances [13], Fourier basis functions,
and Gaussian basis functions. Basis sets obtained by
PCA are particularly interesting, as they have already
been used to model reflectance functions in many
applications. PCA is a data-driven analysis, and in most
of the cases the basis components are derived by the
considered dataset. But in many applications one cannot
assume the knowledge of a suitable dataset including the
color under investigation. It is therefore a frequently
adopted solution that of considering generic dataset
among the many of measured reflectance spectra avail-
able in literature or that of adopting generic functions as
basis components. In literature, datasets commonly used
are the Munsell Atlas and the Vrhel dataset, which have
been considered in our investigation. Methods based on
generic basis functions used Fourier and Gaussian
functions. A major question in the problem formulation
is the number of bases to consider. Studies on PCA have
indicated that six components are sufficient for natural
surfaces. Considering Fourier functions, in an early
study by Wandell [17], where the surface reflectances of a
set of 462 Munsell chips have been modeled with a

three-dimensional linear system composed of Fourier
basis functions, a rather good fit between measured
spectra and linear model representations was observed.
Regarding Gaussian functions, a number of three to five
functions was used to model skin reflectance. It has to be
underlined, however, that most of the studies on the
dimensionality of linear models evaluate a degree of fit
between the reflectance function and its representation
in the wavelength domain. But the problem of repre-
senting a given spectrum is different from the problem of
recovery a spectrum given the outputs of some photo-
receptors or filters. According to Maloney, in fact, sur-
face spectral reflectances fall within a linear model
composed by five to seven parameters (basis reflectance
vectors), but when the effect of human photoreceptors
sensitivities is included, linear model with as few as three
to four parameters provide excellent fit to the data sets
[3]. Our approach here was to design linear models
considering basis functions in accordance with previous
studies, exploiting the possibility offered by GA to
consider a variable number of basis components.

3.1 Principal components analysis

Principal component analysis allows the computation of
basis functions for linear model representation. A PCA
basis set corresponds to directions having maximum
variance in the data space; the idea is to account for the
direction in which the measured data has the most var-
iance. The use of PCA implies the assumption that the
distribution of the data has a Gaussian form.

Given R, a matrix where the columns are reflectance
vectors, we consider X, a translation of R centered
around mean value of the reflectances. If N is the
number of wavelength samples, the PCA identifies a
set of N vectors b; corresponding to the direction, in
N-dimensional space, in which the reflectance vectors
exhibit maximum variance. These vectors define an
orthogonal basis of a sub-space of dimension N. R

The basis set vectors are computed as the first N
eigenvectors, corresponding to the first N largest eigen-
values, of },XXT, where P is the number of reflectance
vectors.

The number of components needed to accurately
represent a set of reflectance spectra depends on the
characteristics of the data set. The reflectance spectra of
most objects found in nature are smooth functions of
wavelength; the same is true of spectra produced using
photography, printing, or paints. These spectra can,
therefore, be accurately represented by a limited number
of basis functions [14]. Various studies have estimated
that three to seven principal components will provide a
satisfactory reconstruction of the reflectance spectra in
most cases, while increasing the number does not guar-
antee a better performance [15].

We have set the number of basis functions at six, in
accordance with Maloney [3], who has demonstrated



that a linear model with as few as six basis functions
provides essentially perfect fits for almost all natural
surface spectral reflectance functions.

Consequently the reflectance function here is repre-
sented by the following equation:

6
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where b(/) is the basis function of index j, and 4, is the

corresponding weight.

3.2 Fourier basis set

In the Fourier transform, a generic signal can be rep-
resented with a series of trigonometric functions. For a
reflectance spectrum defined in the visible range of
L = Jmax — Amin, the Fourier expansion has the general
form:

R(4) = %0 + Z {an cos [271 n(/lL— imin)}
n=1

by sin |21 ] } )

As reported in [16], a set of three frequency-limited
functions of wavelength can be used as a basis set for
modeling spectra. The use of the first three Fourier
functions has been proposed by Wandell [17] and
applied, among others, by Schettini [18]. Fourier coeffi-
cients have also been employed by Sun et al. [19]
to represent the smooth part of generic reflectance
functions in their composite spectral model.

We have focused here on surface reflectances that can
be regarded as smooth functions of wavelength; conse-
quently we consider only basis functions having the
property of smoothness. On an experimental basis we
selected only the constant term, functions having
frequency parameter n=1, and two more functions
having a period twice the spectrum range. We refer to
this set here below as the “Fixed Fourier” (FF) case.
The reflectance function is therefore represented by the
following equation:
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where L = Amax — Amin and By, By, B», B3, B, are the
weights of the linear model.

In a second analysis, we treated the basis function
frequency as a tunable parameter, and also added a
phase term. We have called this model the “Variable
Fourier” (VF). The reflectance function is represented
with the following equation:

2 J— jvmin
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In this case, the unknowns in the reflectance spectrum
representation are the weights Cy, C;, and C4 the fre-
quency terms C, and Cs, and the phase terms C3 and Cg.

3.3 Gaussian basis set

Angelopoulou et al. [22] have used an approximation of
reflectance spectra with Gaussian functions to model
skin reflectances. A Gaussian basis set has also been
used by Dupont [23]. We considered a basis set com-
posed of 15 Gaussian functions obtained with the fol-
lowing equation:

2
g;(7) = exp l—4 In(2) %} i=1,...,15 (12

where /; ranges from 400 to 700 with a step of 20. The
reflectance function is represented by the equation

15

where D; are the 15 weights of the linear model to be
estimated.

We refer to this basis as the “Fixed Gaussian™ case
(FG). We have also investigated a “Variable Gauss-
ian”’(VG) approach, in which the reflectance function is
modeled using a constant term and three Gaussian
functions:

(((2 = Amin) /L) — E2)’*
E3

R(i) =FEy+ E; exp l
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where the unknowns are the weights E,, E,, E4, and E7,
the mean terms E,, E5, and Eg, and the terms E3, Es, and
Eq correlated with the standard deviation.

4 The genetic algorithm

Genetic algorithms (GA) are a general method for
solving optimization problems, inspired by the mecha-
nisms of evolution in biological systems (see e.g.
[20, 21] for an introduction to GA and their applica-
tions). In the basic GA, every candidate solution is



represented by a sequence of binary, integer, real, or
even more complex values, called an individual. A
number of individuals are randomly generated as an
initial population. The GA then iterates a procedure
that produces a new population from the current one,
until a given “STOP” criterion is satisfied. At each
iteration, the value of a suitable “fitness” function 1is
computed for every individual in the current popula-
tion; the goal of the GA is to generate an individual
with the best value of fitness. Given the problem
described in Sect. 2, and assuming that only a triplet of
tristimulus values is available, fitness is the squared
sum of the perceptual differences between the CIELab
values computed on the input color and those com-
puted on the estimated reflectance spectrum, plus a
term of range violation, with no perceptual meaning, to
account for the bounds the solution must respect in
order to match physical reflectance properties:

2
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where 61(R(4)) =D {max(R(i)) - 100} iff max(R(4))
>100, else 6;(R(4))=0 and 6,(R(1)) = —Dzrn)in(R(i))
iff m)in(R(i))<0, else 0,(R(4))=0. In the equation, L* is

the lightness expressed in CIELab color space, subscript
input indicates the input color coordinates, while sub-
script Il indicates the illuminant considered to compute
CIELab coordinates from reflectance.

Parameters D; and D, must be positive, and define
the weight in the optimization function of the range
violation error with respect to the colorimetric percep-
tual error. In our experiment we set D;=D, =1.
Therefore, range violation contributes to fitness to the
same extent as the visual mismatch. These two quantities
are inhomogeneous: range violation cannot be treated as
a visual mismatch, because the filtering effect of observer
sensitivities may preserve as acceptable a reflectance
spectrum presenting out-of-range values in correspon-
dence of a wavelength of poor observer sensitivity. No
term of smoothness has been considered in the fitness
function: the smoothness of the reflectance spectrum is
not an issue, due to the characteristics of the linear
model basis employed

GA, which can span the whole solution domain
without halting at a local minimum, are considered more
effective in estimating parameters than the less robust
gradient descendent methods with random initialization.
In our implementation, however, the robustness of the
GA is reduced by the fact that the fitness function is not
directly related to spectral matching. As said, many
different spectra can generate the same XYZ triplet, and

the GA does not have zenough information to select the
best metameric reflectance function, that is the R(1) that
not only has the smallest CIELAB error with respect to
the input XYZ values, but also the smallest spectral
error with respect to the actual R(4). None of the
methods available for spectral estimation can escape this
limitation. But if we assume that the tristimulus values
referred to different illuminants are also known, a more
effective fitness function can be designed:

K
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2 2
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where K is the number of illuminants considered, and
the other symbols are those used in Eq. 15.

To implement the GA, in our application we have
used the public domain C+ + library Galib [12], the
GADeme class library, and fitness minimization in
particular.

5 Experiments and results

Different data sets of reflectance functions have been
used for benchmarking: the Macbeth ColorChecker
Chart (a set of 24 paper patches used to calibrate
imaging systems) and the whole Munsell Atlas [24].
These datasets have been used as benchmarks in several
similar studies. Most programs for color recipe formu-
lation require reflectance functions as input. Conse-
quently, we have also tested the capability of our
method in recovering the reflectance functions of a set of
120 Dupont paint chips [25] and of a set of 1,000 silk
color samples spanning the range of feasible colors on
that textile substrate, provided by a textile industry from
its own collection. The silk dataset reflectance data can
be also found in [26].

The following experiments were performed. For each
dataset, given R(1) we computed the tristimulus values
for three illuminants: D65 (a daylight spectral power
distribution), A (a tungsten light), and F2 (a cool white
fluorescence spectral power distribution). Then, for each
type of basis set, we estimated the weights of Eq. 7 by
means of a GA using the fitness function described in
[16]. We conducted three experiments for each basis set
and for each dataset: one considering only the D65
illuminant, a second considering the D65 and the A
illuminants, and a third considering all three illuminants
(D65, A and F2).

Genetic algorithms are randomly initialized; there-
fore, for each color, we made three runs of the method
using different initializations, and selected the best
solution in terms of the fitness value. In the GA, alleles
are real numbers, and ranges must be defined for their



value. As described in the following paragraphs, these
ranges have been arbitrarily selected, considering the
characteristics of the basis set involved. However, if the
GA gave as the best solution an individual with at least
one allele at its domain border, a new run with the same
initialization, but a larger domain, was performed. The
GA employed had 20 parallel populations of 10 indi-
viduals; the stopping criteria was convergence; and
mutation and crossover probabilities were set at 0.03
and 0.8, respectively, for all basis sets, except for the
PCA and FG basis set, where the probabilities were 0.02
and 0.99. The results for the different basis sets are
described in Sect. 3.

The PCA approach is in general applied when an
appropriate dataset is available. As this is not always the
case, we studied basis sets obtained by PCA performed
on the studied datasets, and a basis set obtained from
Vrhel’s public domain database of natural color reflec-
tances as well. We applied the latter to all the datasets
used in our experiments in order to identify a standard
set of PCA basis functions for the linear model repre-
sentation of a generic reflectance spectrum.

5.1 PCA basis set

We computed four basis sets by applying PCA to the
datasets used for benchmarking. We then estimated the
reflectance spectra for each dataset, using the corres-
ponding basis set.

In the GA, each individual was an array of 6 real
numbers representing the weights of the six-dimension
linear model; the bounds for each weight were assigned
by computing the minimum and the maximum value
assumed by the weight in the PCA representation of the
dataset considered. We included, in the initial popula-
tion, an individual that represents a perfect metameric
solution, setting the first three weights at those com-
puted by inverting the linear model in [5] with N =3
number of basis, and the remaining three weights at

zero. This signifies the presence of an individual of
optimal fitness, if the corresponding spectrum is in the
domain of [0, 100]. This strategy ensures that, since the
first three basis functions are the most representative for
the dataset considered, a metameric solution that is
probably also a good spectral match with respect to the
original reflectance will be found. If more than one
illuminant is used, one individual in the initial popula-
tion represents a perfect metameric solution with respect
to the D65 illuminant. This solution is not necessarily
an optimum, even if the corresponding spectrum has
feasible values, since the metamerism does not in general
hold for the second or third illuminant. Table 1 reports
the statistics of results obtained using the PCA basis set
of each dataset considered.

In Table 1, the results are reported as average error,
maximum error and standard deviation of the distance
in CIELAB space between the coordinates of the mea-
sured and the estimated spectra under the illuminants
D65, A, and F2. The spectral mismatch is reported as
the mean absolute error between reflectance spectra.
Fitness values and out of range results are also reported.
For each dataset, the first row reports the results for the
estimation, assuming the tristimulus values for the D65
illuminant are available. In this case, the colorimetric
error AE D65 is low, while colorimetric errors for the A
and F2 illuminants are larger, and indicate that the
estimated spectra are metameric with respect to the
original ones. The use of two or three illuminants, as
reported in the second and third row of each dataset,
reduces the difference between colorimetric errors. As a
consequence, the spectral error is also reduced.

5.2 PCA on the Vrhel database

The PCA method described above has been applied
here, using the Vrhel database of natural surface
reflectance as the training set for calculation of the basis
components. Table 2 shows the statistics of the results.

Table 1 Statistics of results obtained using the PCA basis set of each of the dataset considered

PCA AE D65 AE A AE F2 MAE Fitness Out of range
Avg M SD Avg M SD Avg M SD Avg M SD Avg M SD Avg M SD
Macbeth, D65 0.00 0.09 0.02 2.72 824 201 226 620 152 3.19 582 1.58 0.00 0.01  0.00 0.00 0.00 0.00
D65, A 0.19 0.60 0.14 020 0.51 0.14 0.75 1.79 0.54 2.15 5.11 1.10 0.11 0.54 0.15 0.00 0.00 0.00
D65, A, F2 0.18 0.66 0.14 026 094 020 032 1.02 027 1.66 550 1.03 0.33 2.04 049 0.00 0.00 0.00
Munsell, D65 0.00 0.08 0.01 1.67 9.73 150 1.32 8.69 1.18 1.81 8.57 1.30 0.00 0.01  0.00 0.00 0.00 0.00
D65, A 0.13 0.87 0.11 0.14 1.06 0.12 090 7.54 0.84 182 7.58 1.22 0.07 1.38 0.12 0.00 0.20 0.01
D65, A, F2 0.18 221 0.17 029 190 024 027 214 023 125 4.64 0.70 0.33 9.96 0.66 0.00 0.36 0.01
Dupont, D65 0.06 0.72 0.13 3.85 229 477 3.16 168 343 281 7.38 143 0.26 2.47 0.63 024 240 0.61
D65, A 0.35 1.55 036 040 262 048 228 179 298 198 6.10 1.13 0091 9.12 1.7 027 3.09 0.67
D65, AF2 047 2.68 0.58 0.77 7.55 1.07 0.79 6.35 1.09 148 569 0.79 421 100 11.7 0.14 277 0.43
Silk, D65 0.01 0.38 0.04 192 834 1.52 185 870 1.27 2.01 8.80 1.54 0.00 0.28 0.01 0.00 0.22 0.01
D65, A 0.23 1.13 0.18 024 154 0.19 128 7.72 1.17 1.66 796 1.21 0.18 324 032 0.01 218 0.10
D65, A F2 0.28 1.29 0.21 046 3.17 0.37 047 249 036 1.55 7.77 1.14 083 1638 1.31 0.01 1.43 0.07

MAE mean absolute error, Avg mean value, M maximum value, SD standard deviation



Table 2 Statistics of results obtained using the PCA basis computed on the Vrhel database of reflectances

PCA Vrhel AE D65 AE A AE F2 MAE Fitness Out of range
Avg M SD Avg M SD Avg M SD Avg M SD Avg M SD Avg M SD
Macbeth, D65 0.01  0.07 0.02 2.64 9.63 223 223 870 193 335 734 172 0.00 0.01 0.00 0.00 0.00 0.00
D65, A 023 0.72 021 0.19 0.70 0.16 1.34 388 095 240 563 1.29 0.15 0.88 0.23 0.00 0.00 0.00
D65, A, F2 025 1.14 023 050 141 0.33 0.69 194 046 2.13 496 097 1.15 589 1.49 0.00 0.00 0.00
Munsell, D65 0.01 0.81 0.03 2.57 14.19 180 1.83 10.35 1.34 348 1223 224 0.00 1.23 0.04 0.00 1.16 0.04
D65, A 0.18 147 0.18 0.16 125 0.15 1.17 10.53 1.00 2.44 8.61 148 0.11 3.66 026 0.00 2.14 0.06
D65, A, F2 0.21 1.65 0.15 038 2.08 030 0.57 2.69 042 139 362 0.77 081 11.3 1.21 0.02 396 0.21
Dupont, D65 0.07 0.65 0.13 2.72 10.67 2.10 2.55 895 2.14 325 11.22 2.17 044 106 145 042 105 143
D65, A 036 1.86 041 049 274 0.62 2.08 810 2.0 2.69 9.63 1.71 143 247 327 0.52 162 1.85
D65, A, F2 0.562 3.14 0.69 0.81 3.53 0.81 1.21 454 120 254 9.63 1.65 554 393 892 0.55 149 1.8l
Silk, D65 0.02 0.54 0.06 2.61 10.88 2.10 2.31 12.75 1.87 4.16 11.69 2.26 0.06 129 0.58 0.05 12.8 0.57
D65, A 0.25 1.50 0.22 024 260 0.24 154 10.17 135 324 10.06 1.64 032 253 143 0.10 209 1.00
D65, A, F2 0.27 245 022 055 343 044 0.75 3.67 056 2.86 10.34 1.30 1.62 385 3.02 0.13 18.1 0.96

MAE mean absolute error, Avg mean value, M maximum value, SD standard deviation

In this case as well, the spectral match benefits from the
use of more than one illuminant: for each dataset, the
mean absolute error has the lowest values when all three
illuminants are used. The errors in estimation of the
reflectance functions are in general bigger than those
found in Table 1.

5.3 Fourier basis set

In the fixed Fourier (FF) case, each individual of the GA
is an array of five real numbers, with bounds of [0, 100]
for the first element, corresponding to an offset term,
and of [-30, 30] for the remaining four weights of the
trigonometric functions. When Fourier functions with
variable parameters are used (VF), the individuals are
arrays of 7 real numbers, with ranges of [0, 100] for the
offset term, of [-30, 30] for the amplitudes, of [0.1, 1.2]
for the frequency terms, and of [0, 1] for the phase terms.
Table 3 reports the statistics of the results obtained
using the FF basis set, while Table 4 registers those
obtained with the VF basis set.

These results indicate that the FF and the VF basis
behave in a similar manner, the performance of the

variable set being only slightly worse, as can be seen in
Fig. 1. The sum of the average mean absolute error for
each dataset is reported for the three experiments per-
formed with the FF basis (left) and the VF basis (right).
The diagram shows that, in general, increasing the
number of illuminants decreases the spectral error, but
the difference is negligible in the case of VF when
passing from two to three illuminants.

Figure 2 presents an example of reflectance estima-
tion using the VF basis set. The measured and the
estimated reflectance function of the fourth color
sample in the Dupont dataset are given, from when is
clearly seen that the match between measured and
estimated functions is best when all three illuminants
are used.

5.4 Gaussian basis set

In the FG case, each individual is an array of 15
real numbers, with bounds of [0, 1]. When Gaussian
functions with variable parameters (VG) are used,
individuals are arrays of 10 real numbers, with ranges
of [0, 100] for the offset term, of [—30, 30] for the

Table 3 Statistics of results obtained using the Fixed Fourier basis set

Fixed Fourier AE D65 AE A AE F2 MAE Fitness Out of range
Avg M SD Avg M SD Avg M SD Avg M SD Avg M SD Avg M SD
Macbeth, D65 0.02 0.21 0.05 345 102 3.03 283 8.57 2.60 551 165 4.07 0.01 0.26 0.05 0.01 0.23 0.05
D65, A 047 228 0.52 0.52 353 0.72 1.77 496 151 3.11 785 198 128 184 3.73 0.03 0.73 0.15
D65, A, F2 0.69 325 0.73 0.82 296 0.83 1.01 295 090 2.78 798 181 420 28.6 6.78 0.10 1.14 0.29
Munsell, D65 0.01 0.61 0.03 284 129 195 199 9.08 140 432 140 229 0.02 5.13 023 0.01 505 0.22
D65, A 0.35 2.79 033 036 450 040 128 9.14 1.15 2.66 10.7 1.79 0.56 28.1 1.64 0.05 10.5 0.47
D65, A, F2 048 4.25 0.52 0.61 429 0.53 0.76 3.80 0.71 240 10.6 1.64 230 522 4.11 0.08 12.2 0.66
Dupont, D65 0.13 1.54 0.23 4.57 22.6 4.77 343 144 295 505 121 280 130 113 245 1.24 112 236
D65, A 1.13 6.16 1.39 132 748 1.77 2.81 813 231 3.88 11.5 262 9.14 943 19.1 [1.11 12.6 243
D65, A, F2 1.28 741 165 1.73 733 186 189 6.68 1.73 3.60 11.6 229 185 152 31.0 1.23 12.0 2.52
Silk, D65 0.02 0.62 0.06 3.54 12.1 243 263 11.8 186 509 16.6 3.05 0.15 817 0.79 0.14 8.08 0.78
D65, A 0.52 450 0.54 0.58 504 0.71 1.65 795 1.51 330 100 1.73 1.59 474 442 020 12.7 0.99
D65, A, F2 0.73 497 0.77 0.79 528 0.77 096 551 093 3.17 9.75 1.63 442 843 9.05 0.29 151 1.37

MAE mean absolute error, Avg mean value, M maximum value, SD standard deviation



Table 4 Statistics of results obtained using the variable Fourier basis set

Variable Fourier A4E D65 AE A AE F2 MAE Fitness Out of range
Avg M SD Avg M SD Avg M SD Avg M SD Avg M SD Avg M SD
Macbeth, D65  0.02 0.18 0.04 2.51 9.51 291 2.18 892 250 3.75 12.0 3.12 0.04 0.86 0.17 0.03 0.83 0.17
D65, A 0.66 3.39 0.81 0.77 533 121 1.84 6.51 1.77 3.06 7.37 2.18 3.08 40.5 8.46 0.02 0.55 0.11
D65, A, F2 085 5.04 1.29 1.04 504 1.22 1.17 395 1.12 3.02 7.80 2.14 747 672 153 0.10 145 0.34
Munsell, D65 0.01 026 0.02 192 104 1.85 1.51 10.6 143 3.03 154 236 0.01 295 0.11 0.01 293 0.11
D65, A 0.38 3.52 045 040 535 0.59 122 634 1.16 2.48 103 2.01 088 424 316 0.02 4.27 023
D65, A, F2 0.52 581 0.72 0.60 5.66 0.65 0.77 4.71 0.77 230 12.0 1.89 2.77 89.7 6.70 0.03 5.05 0.27
Dupont, D65 0.11 129 021 521 293 6.53 3.30 16.1 3.62 499 149 3.56 135 106 2.60 129 105 2.51
D65, A 1.54 9.83 237 1.66 10.8 2.63 3.00 11.0 2.85 4.22 13.0 292 18.6 193 435 1.07 8.01 191
D65, A, F2 1.74 104 2.60 2.13 11.5 283 2.07 9.09 223 393 124 2.74 325 323 66.8 1.14 795 2.09
Silk, D65 0.02 0.44 0.05 3.18 192 221 230 133 1.87 517 157 2.66 0.17 884 0.88 0.16 8.82 0.87
D65, A 0.73 6.56 0.79 0.83 792 1.06 1.86 10.7 1.50 3.81 11.7 193 3.17 98.8 103 0.21 10.6 0.95
D65, A, F2 0.83 8.09 1.08 1.03 691 1.04 1.19 6.63 1.08 3.71 10.6 190 6.84 161 17.1 027 143 1.22
Fig. 1 Sum of the average mean FF and VF - Average Mean Absolute Error
absolute error for each dataset
. 25.00
(y-axis), for the three
experiment performed, and for
the FF basis (left) and VF basis
(right) (x-axis) 20.00
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Fig. 2 Example of reflectance
estimation for the fourth 70 VF, Dupont, sample # 4
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amplitudes, of [—0.5, 1.5] for the mean terms, and of obtained using the fitness in Eqgs. 4 and 5, and the FG
[0.1, 0.8] for the terms correlated with the standard basis set. Tables 6 shows the statistics of the results
deviation. Table 5 reports the statistics of results

obtained employing the VG basis set.



Table 5 Statistics of results obtained using the Fixed Gaussian basis set

Fixed Gaussian AE D65 AE A AE F2 MAE Fitness Out of range
Avg M SD Avg M SD Avg M SD Avg M SD Avg M SD Avg M SD
Macbeth, D65 0.13 045 0.11 3.87 9.13 2.60 3.19 567 1.51 568 102 294 0.03 0.20 0.05 0.00 0.00 0.00
D65, A 045 1.03 023 043 1.06 022 192 425 096 3.66 9.04 195 049 218 0.50 0.00 0.00 0.00
D65, A, F2 045 1.11 024 0.53 225 044 0.69 1.76 042 3.09 745 1.72 1.37 8.88 1.81 0.00 0.00 0.00
Munsell, D65 0.12 0.81 0.10 444 143 290 347 100 182 6.43 183 3.57 0.02 0.65 0.05 0.00 0.00 0.00
D65, A 0.38 1.62 021 036 133 0.19 1.67 6.21 098 335 11.7 198 0.35 391 0.38 0.00 0.00 0.00
D65, A, F2 041 1.67 026 046 1.87 027 058 2.17 032 259 836 1.54 096 829 0.97 0.00 0.00 0.00
Dupont, D65 0.19 2.56 0.33 3.16 11.3 215 236 9.58 148 528 162 345 0.14 6.54 0.70 0.00 0.00 0.00
D65, A 049 2.68 040 047 2.05 040 151 379 080 341 119 226 0.78 11.4 1.54 0.00 0.00 0.00
D65, A, F2 0.53 2.57 043 0.64 228 046 073 260 050 296 7.31 1.89 1.86 10.6 2.30 0.00 0.00 0.00
Silk, D65 0.16 143 0.16 3.71 143 252 3.08 988 1.66 517 158 2.84 0.05 2.06 0.14 0.00 0.00 0.00
D65, A 043 240 027 042 246 026 1.68 6.58 099 379 108 199 0.50 11.8 0.71 0.00 0.00 0.00
D65, A, F2 0.51 3.57 035 0.55 237 032 066 288 036 342 106 1.76 1.35 20.6 1.54 0.00 0.00 0.00
MAE mean absolute error, Avg mean value, M maximum value, SD standard deviation
Table 6 Statistics of results obtained using the variable Gaussian basis set
Variable Gaussian AE D65 AE A AE F2 MAE Fitness Out of range
Avg M SD Avg M SD Avg M SD Avg M SD Avg M SD Avg M SD
Macbeth, D65 0.00 0.01 0.00 193 7.50 2.03 1.71 7.38 2.04 295 9.0l 240 0.00 0.00 0.00 0.00 0.00 0.00
D65, A 0.24 0.75 023 023 0.62 021 143 4.09 137 267 9.84 242 031 0.83 0.21 0.20 0.94 0.27
D65, A, F2 043 149 043 045 176 0.52 0.56 1.51 047 235 626 1.71 039 0.88 0.25 1.36 590 1.77
Munsell, D65 0.00 0.25 0.01 226 112 189 1.77 104 1.52 3.10 152 2.05 0.00 0.10 0.00 0.00 0.04 0.00
D65, A 0.18 1.02 0.16 0.18 1.44 0.18 094 109 0.87 2.08 10.6 1.54 0.12 334 0.29 0.00 1.36 0.05
D65, A, F2 026 2.79 0.27 0.30 2.34 028 0.38 288 0.32 1.85 9.61 133 0.56 15.51 1.17 0.00 0.89 0.03
Dupont, D65 0.04 1.07 0.12 320 185 3.17 2.16 983 196 387 11.7 236 026 6.16 091 0.25 6.08 0.88
D65, A 0.32 2.70 0.43 0.37 395 0.61 125 424 1.05 298 124 226 0.88 22.77 3.14 0.09 3.34 0.38
D65, A, F2 0.41 392 0.50 0.50 5.03 0.69 0.53 245 0.50 3.02 10.6 2.35 1.78 48.90 526 0.12 3.62 0.48
Silk, D65 0.01 0.73 0.05 3.08 11.5 2.15 243 124 190 5.14 17.5 2.84 0.08 7.39 0.55 0.08 7.33 0.53
D65, A 0.28 2.50 0.28 0.30 4.22 0.38 1.52 12.0 144 3.68 125 223 043 2561 1.72 0.04 9.36 0.44
D65, A, F2 042 472 048 047 555 052 062 500 063 3.16 104 194 1.69 67.15 472 0.02 2.65 0.18

MAE mean absolute error, Avg mean value, M maximum value, SD standard deviation

The variable basis set performs better here than the
fixed set of Gaussian functions, as can be observed by
comparing Tables 3 and 4, and looking at Fig. 3.
Figure 4 presents an example of reflectance estimation
using the VG basis set is given. The measured and

Fig. 3 Sum of the average mean
absolute error for each dataset

(y-axis), for the three

experiments performed, using
the FG basis (left) and the VG

basis (right) (x-axis)

25.00

estimated reflectance function of the
sample in the Dupont dataset are reported. It can be
easily seen that the match between the measured and
the estimated functions is best here as well when all
three illuminants are used.
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6 Discussion

Examining and comparing the results described in the
previous section and the average errors registered, sev-
eral observations can be made:

1. When only one illuminant (D65) is considered, the
color error, in terms of Euclidean distance between
the real and the estimated color in the color space of
CIELAB coordinates under the same illuminant, is at
its minimum. The error is considerably larger under
different illuminants (A and F2). Adding a second
illuminant (A), the color error for the first illuminant
(D65) increases, while decreasing for the second and
the third (A and F2). It further decreases with the
addition of the third illuminant (F2) but the
improvement is less marked than that made by adding

Fig. 5 Plot of the average mean
absolute error for each basis set.

the second illuminant (A) in the fitness function. This
holds for all the datasets and basis sets considered.

. In general, using a fitness function that simulta-

neously minimizes the color error under different
illuminants improves the spectral match between the
original spectra and those estimated.

. Taking the spectral match as a measure of basis

performance, when a training set is available, the
basis functions computed using PCA outperform all
the other sets.

. When a training set is not available, the use of the basis

set computed by PCA on the Vrhel database provides
a better performance than either the Fourier or the
Gaussian basis sets. This can be seen in Fig. 5, where
the average mean absolute error for each basis set is
plotted, and where each vertical line refers to a dataset,
in the order: Macbeth, Munsell, Dupont, Silk.
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These results demonstrate that the best performance
is obtained when the functions computed from PCA of
the input dataset are used as the basis set. Since,
unfortunately, this information is not always available, a
second choice for representing the reflectance functions
could be the basis set computed on the Vrhel database,
or on the VG basis set.

7 Conclusion

Assuming that reflectance functions can be adequately
approximated by a linear combination of a small num-
ber of basis functions and exploiting GA, we address
here the problem of synthesizing a spectral reflectance
function, given the standard CIE 1931 tristimulus
values. Within the CIE 1931 tristimulus equations, we
describe reflectance functions with a large number of
parameters, and use GA to estimate reflectance func-
tions taking into account additional constraints about
the actual feasibility of the estimated solutions.

We have investigated different types of basis func-
tions for the linear model, and different datasets for
benchmarking. No single set of basis functions can
perfectly model all reflectance functions. Our results
confirm that PCA basis sets provide the most effective
approach to the problem. These results also indicate that
when a suitable set of reflectance data for the calculus of
PCA basis functions is lacking, a Gaussian basis set
may be satisfactorily employed instead. Future research
will be devoted to the analysis of general basis sets
for surface reflectance modeling and to the application
of our computational strategy to the recovery of surface
reflectance functions from low-dimensional device
responses.
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