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Combination of Video Change Detection
Algorithms by Genetic Programming

Simone Bianco, Gianluigi Ciocca, and Raimondo Schettini

Abstract—Within the field of computer vision, change detection
algorithms aim at automatically detecting significant changes
occurring in a scene by analyzing the sequence of frames in
a video stream. In this paper we investigate how state-of-the-art
change detection algorithms can be combined and used to create
a more robust algorithm leveraging their individual peculiarities.
We exploited genetic programming (GP) to automatically select
the best algorithms, combine them in different ways, and per-
form the most suitable post-processing operations on the outputs
of the algorithms. In particular, algorithms’ combination and
post-processing operations are achieved with unary, binary and
n-ary functions embedded into the GP framework. Using differ-
ent experimental settings for combining existing algorithms we
obtained different GP solutions that we termed In Unity There
Is Strength. These solutions are then compared against state-of-
the-art change detection algorithms on the video sequences and
ground truth annotations of the ChangeDetection.net 2014 chal-
lenge. Results demonstrate that using GP, our solutions are able
to outperform all the considered single state-of-the-art change
detection algorithms, as well as other combination strategies. The
performance of our algorithm are significantly different from
those of the other state-of-the-art algorithms. This fact is sup-
ported by the statistical significance analysis conducted with the
Friedman test and Wilcoxon rank sum post-hoc tests.

Index Terms—Algorithm combining and selection, change
detection, ChangeDetection.net (CDNET), genetic program-
ming (GP).

I. INTRODUCTION

ANY computer vision applications require the detec-
M tion of significant changing or moving areas within the
frames of video streams. In most applications, the changing
areas correspond to moving objects or novel objects entering
in a scene. In these applications, these objects are consid-
ered foreground regions in contrast to the, supposedly static,
background region. Since change detection algorithms need
to identify these two types of regions, i.e., by labeling pixels
or grouping pixels as belonging to the foreground or back-
ground, often the term background/foreground segmentation is
used. Moreover, since the relevant regions are the foreground
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ones, the term background subtraction is also often used. An
example of an application that needs a robust video change
detection algorithm as a preprocessing step is video surveil-
lance. These applications need to track moving objects or
identify abandoned ones to trigger event-related actions [1]
by analyzing and monitoring the video content. Other applica-
tions that need video change detection are smart environments
and video indexing and retrieval.

Starting from approaches based on a simple difference
of pixels, many video change detection algorithms have
been proposed in [2]-[5]. Regardless of the rationale of the
approach, the goal of any video change detection algorithm
is to segment the scene into foreground and background
components while trying to cope with the challenges that
can be found in real-world videos such as high variation
in environmental conditions, illumination changes, shadows,
camera-induced distortions, and so on. The output is thus
generally noisy, with isolated pixels, holes, and jagged bound-
aries. Post-processing of the foreground component, ranging
from simple noise removal to complex object-level techniques,
has been investigated to improve the algorithm’s accuracy.
Results indicate that significant improvement in performance
are possible if a specific post-processing algorithm and the
corresponding parameters are set appropriately [6].

Notwithstanding the improvements, change detection algo-
rithms have been demonstrated to perform well on some
types of videos but there is no single algorithm that is
able to tackle all the challenges in a robust way. This can
be clearly seen in the ChangeDetection.net (CDNET) 2014
competition [4], [7] (which follows the CDNET 2012 com-
petition [8]) where change detection algorithms are evaluated
on a common dataset composed of different types of videos
sequences and classified according to their performance. The
video sequences are grouped into categories and each category
poses different challenges to the change detection algorithm
(e.g., static versus moving camera, day versus night lighting,
etc.). There is no single algorithm that is able to success-
fully manage all the challenges, instead different algorithms
are best suited to different problems. For example, most
approaches in the literature are designed for a static cam-
era setup, and fail when used with moving cameras such as
pan-tilt-zoom (PTZ) ones. To cope with the variability of real-
world videos, algorithms are becoming increasingly complex
and thus computationally expensive. Parallelization of these
algorithms on GPU is a possible way to make them usable
in real time applications [9]-[11]. Another way to improve
performance limiting the complexity overhead could be to
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properly combine state-of-the-art algorithms using simple
operators.

The problem is how to choose the suitable algorithms to
combine and what combination strategy to apply. The selec-
tion and combination should be carried out in an automatic
way in order to explore possible solutions (under the given
assumptions) and to find a suitable one. Approaches based on
evolutionary algorithms (EAs) can be suitable candidates to
perform such search [12]-[15].

Inspired by the effectiveness of EAs, to build our change
detection algorithm from existing ones, we rely on genetic
programming (GP) [16]. As input we feed it the set of the
binary foreground/background masks that correspond to the
outputs of the change detection algorithms, and a set of unary,
binary, and n-ary functions to perform both mask’s combina-
tion (e.g., logical AND and logical OR) as well as mask’s
post-processing (e.g., filter operators). We base the fitness
function to be optimized on a set of standard performance
measures, computed on a benchmark dataset of different video
sequences. The solution tree obtained by GP will give our
change detection algorithm.

The advantage of using GP is threefold. First, we are able
to automatically select the algorithms that give the best overall
results relative to a set of predefined algorithms. Second, how
to combine algorithms to generate intermediate masks, and
with which ones, is automatically deduced. Third, which kind
of post-processing of the original or intermediate masks to be
applied in order to improve the results, is automatically built
from the unary, binary and n-ary functions. To the best of our
knowledge, this is the first work that uses GP to select and
combine different video change detection algorithms.

The organization of this paper is as follows. Section II pro-
vides an overview of literature works most directly related to
this paper. Section III illustrates how GP is used to generate
the combined change detection algorithm. In Section IV, we
describe the experimental setup used in the evaluation of the
proposed solution and we report and discuss the correspond-
ing results along with their statistical significance analysis.
Moreover, we analyze the contributions of the selection, com-
bination, and post-processing components of the proposed
solution. Finally, Section V concludes this paper.

II. RELATED WORK
A. Change Detection Algorithms

In the last decades, many algorithms have been proposed
to solve the problem of video change detection [3], [17]-[20].
The simplest strategy to detect foreground regions in video
is to directly subtract the pixels in the current frame from
those in a previous or reference one [21]. Although effi-
cient, this approach is sensitive to noise and illumination
changes. To limit these issues, temporal or adaptive filters
can be applied to build the background model. For example
median filter [22]-[24], Kalman filter [25]-[27], and a sim-
plified version of Kalman filter called Wiener filter [28] have
been applied. Pixel values can also be analyzed in a given time
slot using color histograms and considering the mode [29].

Another way to statistically represent the background is
to consider the history over time of the values of the pix-
els. For example, the background can be modeled as a single
Gaussian [30] or a mixture of Gaussians [31]. The latter
overcomes the limitation of the unimodal model that cannot
handle dynamic background motion. The approaches using the
Gaussian model can be also extended by incorporating the gen-
eralized Gaussian model [32], [33]. Bayesian approaches have
also been proposed to cope with backgrounds having large
variations [34], [35]. For example, Li ef al. [36] proposed
a Bayesian framework that incorporates spectral, spatial, and
temporal features to characterize the background appearance
in complex environments, while Benedek and Szirdnyi [37]
used spatial statistics of the neighboring pixel values to
robustly detect the foreground against an object’s shadow.
A hybrid moving object detection system that uses motion,
change, and appearance information for more reliable detec-
tions is presented by Wang er al. [38]. The method called
flux tensor with split Gaussian models (FTSG) uses a
split Gaussian method to separately model foreground and
background.

The above statistical methods require the definition of the
model’s parameters. Non parametric methods directly rely on
the observed data to statistically model the background [39].
Although these methods can deal with fast changes in the
background, they are time consuming, and have an high
memory requirement. Improvements have been proposed to
overcome these problems [40]-[42].

Sample consensus is another non parametric strategy used
to model background pixels. It has been recently used in
ViBe [43] and SUuBSENSE [44], [45]. Sample consensus deter-
mines if a given observation should be considered foreground
or background based on its similarity to recently observed
samples. ViBe and SuBSENSE use different features (RGB
for ViBe and LBP for SubSENSE) and SuBSENSE uses a
feedback mechanism to continuously improving the pixel’s
modeling. In order to reduce the number of samples to be used
to model the background, Wang and Dudek [46] exploited a
small set of adaptive background templates. The templates are
automatically discarded based on their estimated efficacy and
new templates are added in their stead.

Subspace learning is another family of background
modeling strategies. The frame image is considered as a whole
and, by taking into account spatial information, they are more
robust to illumination changes. For example, Oliver et al. [47]
proposed an eigenbackground model. A set of images are used
to build a vectorization representation of the scene within a
given time frame. This representation is then decomposed via
principal component analysis to determine the background
via the most descriptive eigenvectors. Using a subset of
eigenvectors makes the background more robust to illumina-
tion changes. The need to efficiently update the background
model within the video sequence has generated many vari-
ants such as incremental [48], incremental non-negative matrix
factorization [49], and robust matrix factorization [50].

Other methods try to learn information about background
or foreground by using machine learning techniques. These
techniques conveniently incorporate domain knowledge from
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available samples. For example, Lin e al. [51] used the nor-
malized optical flow and normalized frame differences with
a probabilistic SVM to build a background block classifier.
Han and Davis [52] integrated color, gradient, and Haar-like
features to handle spatio-temporal variations for each pixel
within a kernel density approximation framework, while back-
ground subtraction is performed using SVM. To overcome
the problem of providing large sets of positive and negative
examples to the learner, Cheng et al. [10] proposed a 1-class
SVM method that is able to update the classifier’s parameters
online.

Also, neural network-based solutions have received
considerable attention. For example, the background seg-
mentation approach proposed by Culibrk et al. [53] relies
on a Probabilistic Neural Networks combining a neu-
ral network for background modeling and a Bayesian
classifier for pixel’s foreground/background detection.
Maddalena and Petrosino [54] designed the SC_SOBS algo-
rithm that models the background with the weights of a neural
network. A modified version of the algorithm is proposed
by Ferone and Maddalena [55] where the neural network is
used to specifically detect moving object for PTZ cameras.
A weightless neural network is proposed by Gregorio and
Giordano [56]. The approach is called CwisarDH and uses a
buffer of pixel values to store previous foreground values in
order to make the algorithm more robust against intermittent
objects.

The above mentioned approaches are based on visual fea-
tures computed on the video frames, either at pixel or higher
semantic level. A physics-based change detection approach
is proposed by Sedky et al. [57]. It uses image formation
models to computationally estimate a consistent physics-based
color descriptor of the spectral reflectance of foreground and
background surfaces.

B. Combination and Fusion Techniques

Several attempts to combine the outputs of different change
detection algorithms have been investigated. For example the
creators of the CDNET challenge have evaluated the perfor-
mances of the top-3, top-5, and all the 28 reviewed algorithms
using a simple majority vote (MV) fusion strategy [4]. The
first two fusion schemes obtained the best results in seven
performance measures with respect to the top-ranked algo-
rithm and even with respect to the fusion of all the 28 tested
algorithms. Also Jodoin et al. [58] explored a fusion scheme
using MV. In this case, the results of 22 algorithms have been
fused as well as subsets of 3, 5, and 7 methods. Results show
that the combinations of different algorithms perform better
than single ones.

Solutions used for combining classifier could also be used
for combining change detection algorithms. By considering
the output masks generated by the algorithms as responses of
pixel-based classifiers, the problem can be seen as selection
and combination of, in our case, binary classifiers (foreground
versus background). Several works studied the problem of
classifier combining or fusion (e.g., [59]-[64]).

Also in the context of image segmentation, the fusion
of different algorithms’ outputs is often exploited to

obtain a more robust segmentation algorithm. For example,
Aljahdali and Zanaty [65] investigated several fusion rules
to improve segmentation accuracy. Specifically, the median,
mean, product, minimum, and maximum rules are considered,
with the mean rule obtaining the overall best performances on
the segmentation datasets considered.

If the outputs of the classifier can be expressed as pos-
teriori probabilities, a Bayesian methodology can be used
to integrate the belief measure associated with each classi-
fier to provide a combined final belief [61]. For example,
Warfield et al. [66], [67] used the STAPLE algorithm, an
expected maximization strategy, for estimating the “ground
truth” segmentation from a group of experts’ segmentations
in the context of medical imaging. STAPLE takes different
segmentations and simultaneously estimates the final segmen-
tation and the sensitivity and specificity parameters character-
izing the performance of each expert. A similar approach is
also used by Rohlfing er al. [68] to estimate the final seg-
mentation from atlas-based segmentations of 3-D con-focal
microscopy images of bee brains. Mignotte [69] designed
the probabilistic rand index-based algorithm (PRIF) fusion
scheme. This scheme is based on a Markovian Bayesian fusion
procedure, and the fusion is guided by the PRIF [70]. This
index measures the agreement of one segmentation result
to multiple ground-truth segmentations, in a quantitative and
perceptual way.

Recently Wang et al. [71] formalized the problem of image
segmentation fusion as a combinatorial optimization problem
in terms of information theory. To reduce the computational
complexity required with respect to previous optimization
techniques a generative Bayesian image segmentation fusion
model is proposed.

C. Image-Related Genetic Programming

EAs attempt to solve complex problems by finding the opti-
mal solution mimicking aspects of the natural evolution of
biological systems. Specifically, individuals in a population
evolve and compete with each other toward a defined goal.
Different EA approaches have been proposed, such as genetic
algorithm (GA), evolutionary strategy, GP, and memetic algo-
rithm. All these approaches have been successfully applied
to a wide range of problem domains: optimization [72],
parameters’ estimation [73], classification [74], feature selec-
tion [75], and in image processing and computer vision
applications [76]—[78].

With respect to image-related applications, GP has been
widely used for image segmentation, enhancement, classifi-
cation, feature extraction, and object recognition.

For example, Song and Ciesielski [79] used GP to seg-
ment texture images under a supervised learning approach.
Overlapping image regions are processed and labeled as
belonging to one of the defined texture classes. A MV strat-
egy on the multiple pixel labels assign the final class for each
pixel. Singh et al. [80] tackled the segmentation as a recog-
nition problem. Segmentation programs are evolved by GP
from a pool of low level image analysis operators in order to
obtain the one able to perform the most accurate segmentation.
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Existing segmentation approaches can be improved by GP as
done, for example, by Amelio and Pizzuti [81], where seg-
mentation is performed using a normalized cut algorithm [82].
Images are represented as weighted undirected graphs and
GP is used to find an optimal partitioning of the graphs
corresponding to the final segmentation.

For the task of image enhancement, GP has been used
to create pseudo-colored images for visualization purposes
as done by Poli and Cagnoni [83]. Gray-scale images are
optimally colored in such a way to enhance the readability
of magnetic resonance images. Image enhancement can be
achieved by appropriate linear and non linear image filters.
An approach for the automatic construction of image filters
using GP for different image analysis tasks is proposed by
Pedrino et al. [84]. By combining input images, goal images,
and a set of image processing operators, the developed algo-
rithm searches for the best solution that can be directly used
for hardware control.

One of the most important task in image processing and
analysis pertains the classification of image contents. An early
example of application of GP to image classification tasks
is the work presented by Agnelli er al. [85]. Simple arith-
metic operations, along with exponential function, conditional
function and constants are used to construct binary classifica-
tion trees on a set of domain-specific features detecting image
primitives. Zhang and Smart [86] investigated GP for multi-
class object classification. Instead of relying on fixed thresh-
olds to separate the class boundaries, a multiclass classifier is
build using GP to dynamically determine a set of boundaries to
distinguish between different classes. Muni et al. [87] used GP
to build a multitree classifier consisting of evolved trees, where
each tree represents a classifier for a particular class. Trees
with poor performances are given more chances to evolve and
improve their performances exploiting a tree unfitness concept.
Usually, GP image classifiers are based on selected domain-
specific image features. Differently, Al-Sahaf et al. [88] used
GP to classify raw images directly. A two-tier GP is used for
both image feature extraction and image classification. The
features are self-constructed by GP along the evolutionary
process in the first tier. The second tier makes classifica-
tion decisions. In order to build reliable classifiers, many
labeled data are required during the training phase. To over-
come this issue, several GP image classification strategies have
been recently proposed that use few labeled instances of each
class to evolve classifiers capable of generalizing to unseen
data [89], [90].

Using the appropriate image features is essential to suc-
cessfully approach a given task. Often these features are
manually chosen or crafted by domain experts. GP has
been used to automatically derive the most effective fea-
tures for the problem that must be solved. For example,
Krawiec and Bhanu [91] used features for object recog-
nition that are automatically coevoluted along with image
processing operators. Trujillo and Olague [92] used GP to
synthesize low-level image operators that detect interesting
points on digital images. The algorithm generates improved
versions of existing image processing operators as well as
new ones. Transform-based evolvable features are introduced

by Kowaliw et al. [93]. A Cartesian GP algorithm is used
to generate them for image classification. The idea at the
base of these features has been extended for the problem
of object recognition [94]. The authors introduced a network
superstructure that co-evolves with the low-level GP represen-
tations, and that is able to generate improved image features.
Recently, GP has been used to synthesize rotation-invariant
texture image descriptors using few image samples [95]. The
approach is able to automatically discover rotation-invariant
image keypoints that can be effectively used for texture
classification. GP has also been used together with trans-
fer learning to solve complex image classification problems
by extracting and reusing blocks of knowledge/information,
which are automatically discovered from similar as well as
different image classification tasks during the evolutionary
process [96].

Closely related to the problem of video change detection,
is that of motion detection in a scene. Pinto and Song [97]
used a multiframe accumulate representation to describe the
video frames. GP is exploited to generate a motion detec-
tor (i.e., learn a classifier) which can differentiate “motion”
versus “‘no-motion” areas. Shi and Song [98] presented
a GP-evolved motion detector. The algorithm is able to
detect a target motion ignoring irrelevant ones, and is capa-
ble of distinguishing different kinds of motions. Action
recognition requires the temporal analysis of a sequence
of images by using suitable image descriptors able to
capture motion trajectories. Liu er al. [99] used spatio-
temporal motion features automatically evolved via GP on
a population of primitive 3-D operators. The approach out-
performs state-of-the-art hand-crafted and machine learned
techniques.

III. PROPOSED APPROACH

As stated in the introduction, our idea is to combine together
different change detection algorithms. We named our proposed
approach IUTIS quoting the Greek fabulist Aesop (620 BC-
560 BC): “In Unity There Is Strength.”

Since there is no clear procedure to obtain a robust change
detection algorithm by combining existing ones, a possible
solution could be that of designing it by a trial-and-error pro-
cess as done by Goyette et al. [4] and Jodoin et al. [58] where
different algorithms selections are tested. Instead, we propose
an approach to automatically determine a good selection and
combination of algorithms using GP [16].

The major difference between GP and the other EAs is
that GP is a domain-independent evolutionary method that
genetically breeds a population of functions, or more gener-
ally, computer programs to solve a problem. In our case the
solutions correspond to fusion strategies.

The solutions can be represented as trees, lines of code,
expressions in prefix or postfix notations, strings of vari-
able length, etc. We use the representation first introduced by
Koza [16]: potential solutions are represented as LISP-like tree
structures built using a set of terminal symbols 7 and a set of
nonterminal or functional symbols F. The iterative process of
a generic GP is given in Algorithm 1.
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Algorithm 1: GP

1 begin
2 Generate a population P composed of an even
number N of individuals ;

3 Generation < 0 ;

4 repeat

5 Calculate the fitness f of all the individuals in
population P ;

6 Create a new empty population P’ ;

7 repeat

8 Select two individuals C;, C; € P using the

chosen selection operator ;
9 Perform the crossover between C; and C;

with probability p., and let C; and E'J be the
offspring. If crossover is not applied, let

C,‘ = C,‘ and Cj = Cj;

10 Mutate each node and leaf in a and C; with
certain probability p,,, and let a and C; be
the off/s\pring;

o~

11 Insert C; and C; into population P’ ;

12 until until population P' is composed of exactly
N individuals;

13 Perform the copy P < P’ and delete P ;

14 Generation < Generation + 1 ;

15 until a rermination condition is satisfied,

Before running GP, we need to set a number of parameters,
which are as follows.

1) The sets F and 7 of functional (or nonterminal) and
terminal symbols that are used to build the potential
solutions.

2) The fitness function f(-).

3) The population size N.

4) The maximum size of the individuals, typically
expressed as the maximum number of tree nodes or the
maximum tree depth.

5) The maximum number of generations.

6) The algorithm used to initialize the population. A set of
initialization algorithms can be found in [16]).

7) The selection operator.

8) The crossover rate.

9) The mutation rate.

10) Presence or absence of elitism (i.e., preserving unaltered

the best solutions to the next iteration).

Given a set of n primitive change detection algorithms
C = {Ci}}_,, the solutions evolved by GP are built using
the set of functional (or nonterminal) symbols F and the
set of terminal symbols 7 = (. The functional sym-
bols correspond to operations performed on the inputs. We
explicitly incorporate into the GP framework the list of
operations given in Table I along with their functional
symbols. They operate in the spatial neighborhood of the
image pixel, or combine (stack) the information at the
same pixel location but across different change detection
algorithms.

TABLE I
SET OF FUNCTIONAL SYMBOLS USED IN GP AND THEIR
CORRESPONDING OPERATORS

Function Inputs Domain Effect

ERO 1 spatial  Morphological erosion with a
33 square structuring element

DIL 1 spatial ~ Morphological dilation with a
3% 3 square structuring element

MF 1 spatial ~ Median filter with a 5x 5 kernel

OR 2 stack Logical OR operation

AND 2 stack Logical AND operation

MV >2 stack Majority vote

We define the fitness function used in GP taking inspi-
ration from the CDNET website, where change detection
algorithms are evaluated using different performance measures
and ranked accordingly. More specifically, the performance
measures used are: recall, precision, specificity, false posi-
tive ratio (FPR), false negative ratio (FNR), percentage of
wrong (pixels) classifications (PWCs), and F-measure [4], [7].
Each measure is averaged across the video sequences. Given
a set of video sequences V = {Vi,...,Vs}, and a set of
performance measures M = {my, ..., my}, the fitness of a
candidate solution Cy, f(Cp), is based on the average ranking
of the solution across all performance metrics, averaged across
al frames in all training video sequences V. For each measure
there are three components, that are weighted by [wg, wi, wa].
Then the weighted sum is averaged across all measures. The
per-measure components are as follows.

1) The individual’s integer rank, when compared against
the primitive algorithms, on measure m;; since the dif-
ferent measure might be uncommensurable with each
other, and since finding a single metric to accurately
measure the ability of a method to detect motion or
change without producing excessive false positives and
false negatives is not trivial [4], the role of this com-
ponent is to solve both issues by producing a single
number.

2) The individual’s value on measure m;j, shifted by the
best value achieved by any primitive algorithm for that
measure computed on the frames of the video sequences;
the role of this component is that of adding gradient to
the integer rank and to continue improving a solution
when its rank is 1.

3) A size penalty equal to the proportion of primitive
algorithms used by the individual. The role of this com-
ponent is to force GP to select a small number of
algorithms in C to build the candidate solutions.

Formally, the fitness function is defined as follows:

1 n
f(Co) =14, FZI wo - rank(Co; {m;(CkOM}i_y)
M .
+wi- Y P{(Co)+wa-Pa(Co) | (1)
j=1

where rank(Cp; -) computes the rank of the candidate solution
Co with respect to the set of algorithms C according to the
measure m;. P{ (Cp) is defined as the signed distance between
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TABLE 1T
Topr NINE CHANGE DETECTION ALGORITHMS LISTED ON THE CDNET 2014 CHALLENGE WEBSITE (AS OF JULY 2014)
RANKED BY THEIR AVERAGE RANKING ACROSS THE 11 VIDEO CATEGORIES

Rank  Method Abbrev.  Description Reference
1 FTSG FTS Flux Tensor with Split Gaussian models [38]

2 SuBSENSE  SBS Self-Balanced SENsitivity SEgmenter [45]

3 CwisarDH CWS Change Detection with Weightless Neural Networks [56]

4 Spectral-360  SPC Change Detection based on Spectral Reflectaces [57]

5 AMBER AMB Extension of the Adapting Multi-resolution Background ExtractoR  [46]

6 KNN KNN Adaptive Gaussian Mixture Model [40]

7 SC_SOBS SCS Spatial Coherence Self-Organizing Background Subtraction [54]

8 RMoG RMG Region-based Mixture of Gaussians [100]

9 KDE KDE Change detection based on Kernel Density Estimation [101]

the candidate solution Cp and the best algorithm in C according
to the measure n1;

—m;j(Co(V)) + max m;(Cr(V))
Ci:k=1...n

if the higher m; the better

PJ(Co) = :
mj(Co(V) = _ min mj(C(V))

2

if the lower m; the better

and P»(Cp) is a penalty term corresponding to the number of
different algorithms selected for the candidate solution Cp

Py(Co) = # of algorithms selected in Cy 3)
2= # of algorithms in C '

The relative importance of the three components of the
fitness is regulated by the weights wg, wy, and wp, respec-
tively. Since we want the fitness function to be driven by the
first component, i.e., the average rank, and since both P and
P, output values in the interval [0, 1], we set the weights
[wo, w1, w2] = [1,0.01,0.01]. In this way the contribution
of Py and P, are encoded starting from the hundredths, thus
avoiding any risk of rank inversion.

Our proposed combination strategy is able to simultane-
ously achieve three goals: algorithm selection, combination
and processing. The functional symbols in Table I, act both as
aggregation functions for the combination, as well as image
processing functions (specifically the local functions such as
the morphological ones and the median filter). Moreover, the
nature of the GP algorithm coupled with the penalty factor
P,, allow us to perform automatic algorithm selection in a
seamless manner during the generation of the intermediate
solutions. This is an advantage of our proposed strategy com-
pared to other combination algorithms where the selection has
to be performed in advance.

IV. EXPERIMENTS

In this section, we describe the experimental setup used in
combining state-of-the art algorithms and the results. We based
our experiments on the CDNET 2014 challenge [7] that has
received great attention in the evaluation of change detection
algorithms. It provides a set of video sequences of various
categories that can be used to test the algorithms on different
environment conditions. Moreover, it provides an evaluation

protocol that can be used to compare the performances of
change detection algorithms against each other.

A. Setup

As the set of algorithms to be combined we considered the
top ranked ones that have been evaluated within the CDNET
2014 challenge as of July 2014. We have chosen the top
ranked ones because we are interested to investigate how far
can we get by combining the top performing change detection
algorithms. Table II shows the top nine algorithms listed
according to their average ranking across video categories.
The outputs of the various algorithms are available on the
website allowing us to perform our combination experiment
on “certified” data. In our experiments, we selected a subset
of the top ranked algorithms and executed the GP algorithm
using a training set of video sequences of the CDNET 2014
challenge. In particular, the training set was created by
extracting from each category the shortest video sequence.

Specifically, these sequences are (category/sequence):
baseline/pedestrians, dynamicBackground/canoe, cam-
eralitter/badminton, intermittentObjectMotion/parking,

shadow/peoplelnShade, thermal/park, badWeather/wetSnow,
lowFramerate/tramCrossroad_1fps, nightVideos/winterStreet,
PTZ/zoomInZoomOut, and turbulence/turbulence3.

As for performance measures we computed them using the
framework of the challenge that evaluates the seven different
measures listed in the previous section. A ranking of the tested
algorithms is also computed starting from the partial ranks on
these measures.

We evaluate our proposed combining strategy against three
different fusion algorithms: 1) a simple MV scheme; 2) the
STAPLE method [66], [67] (STAPLE); and 3) a PRIF [69].
Following the challenge’s rules, each algorithm uses a sin-
gle set of parameters. The STAPLE algorithm estimates its
parameters on-line (i.e., the sensitivities and specificities of
each expert) while for the PRIF algorithm we used the default
parameters. The parameters used to initialize the GP algorithm
are reported in Table III.

B. Results

We applied GP on different sets C constructed using the top
n algorithms in Table II with n € {3, 5,7, 9}. For each setting,
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TABLE III
SET OF PARAMETERS USED IN GP

Parameter name Setting

F (see Sec. III)

T (see Sec. III)

f(+) defined in Eq. 1
Population size 50

Max tree depth Dynamic

Max number of gen. 100

Ramped half-and-half [16]

Functional symbols
Terminal symbols
Fitness function

Initialization
algorithm
Selection operator Tournament, with tournament size 5

Crossover and Muta-  Adaptive: each operator probability value is

tion rates adapted to reflect its performance. A percent-
age of the probability value is replaced by a
value proportional to the operator’s performance
[102].

Elitism Yes

Number of runs 25

the shortest best solution across the 25 independent runs is
considered. The resulting algorithms, that we named IUTIS-3
and IUTIS-5, are shown in Figs. 1 and 2, respectively. In the
same figures, for each solution tree, an example of the output
at each node on a sample frame is also reported.

The solutions obtained with n > 5 are not reported since
in these cases the GP algorithm found a solution identical
to IUTIS-5. This is an evidence that GP is able to automat-
ically select the best set of algorithms. This is one of the
major differences between our method and the other fusion-
based algorithms considered, which are not able to perform
automatic algorithm selection, and thus use all the given
algorithms. From the solution trees it is possible to notice
that TUTIS-3 automatically created MV-3 in its right branch.
IUTIS-5, instead, automatically created as part of the solution
MV-3 and MV-5 in its left and right branch, respectively.

Fig. 3 shows the average rank and F-measure of our solu-
tions compared with the fusion-based algorithms considered
(i.e., MV, PRIF, and STAPLE) varying the number of algo-
rithms available in C. For sake of comparison with the other
methods in the state of the art performance are measured
on the whole CDNET 2014 challenge video sequences. Note
that the results on the CDNET website are computed on the
whole dataset and the algorithms compared on the website
are often tuned on it. Given that the training set contains
less than 10% of the total number of frames, the influence
of the training set on the performances is negligible. In fact,
if we consider for example the overall F-measure, IUTIS-3
obtains 0.7694 on the whole CDNET 2014 dataset, 0.7781
excluding the video sequences used for training, and 0.7413 on
the training set alone. IUTIS-5, respectively, obtains 0.7821,
0.7896, and 0.7573. Similar differences are observed for the
other performance measures. These numbers permit us to say
that no overfitting occurred during training. For completeness,
the separate train/test results are reported in Supplementary
material.

From the plots reported in Fig. 3 we can see that the
average rank of IUTIS-3 is 3.41 points lower than that
of MV-3, while IUTIS-5 is 4.42 points lower than that

Fig. 1. IUTIS-3 solution tree and its example masks. SBS, FTS, and CWS
refer to SUBSENSE, FTSG, and CwisarDH algorithms, respectively.

Fig. 2.

IUTIS-5
SPC, and AMB refer to SUBSENSE, FTSG, CwisarDH, Spectral-360, and
AMBER algorithms, respectively.

solution tree and its example masks. SBS, FTS, CWS,

of MV-5. Since IUTIS-3 and IUTIS-5 contain MV-3 and
MV-5 as part of them, this improvement is due to the addi-
tional filtering and post-processing operations automatically
selected by GP.
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Fig. 3. Plots of the average rank (left) and F-measure (right) for the different fusion-based algorithms considered by varying the number of algorithms

available in the combination, i.e., n = 3,5,7,9.

TABLE IV
COMPARISON OF OUR PROPOSED SOLUTIONS TO SINGLE AND FUSION-BASED ALGORITHMS IN THE STATE-OF-THE-ART IN
TERMS OF RANK IN EACH VIDEO CATEGORY AND AVERAGE RANK

Method ID Overall Bad

Weath.

Avg rank Low Night

Frate  Videos

TUTIS-5
TUTIS-7
TUTIS-9
PRIF-3
TUTIS-3
PRIF-5
MV-5
STAPLE-3
PRIF-7
MV-3
STAPLE-5
PRIF-9
FTSG
SuBSENSE
MV-7
STAPLE-7
STAPLE-9
MV-9
CwisarDH
Spectral-360
AMBER
RMoG
SC_SOBS
KNN

KDE

11.83 15 11 13 15

We observe also how the performance of PRIF and STAPLE
decrease by increasing the number of algorithms available.
MV-5 instead outperforms MV-3, but also in this case the
performance decrease for n = 7 and 9. A different trend can be
observed for IUTIS, which being able to perform automatic
algorithm selection, is able to remove from the final solu-
tion those algorithms that could degrade the performance. The
complete comparison of our proposed solutions with respect to
the single algorithms of Table II and fusion-based algorithms
in the state-of-the-art is reported in Table IV. It is possible to
notice that all fusion-based algorithms with n < 5 outperform

PTZ  Turb. Interm.  Shadow  Therm.

Obj. M.

Camera
Jitter

Base.

Dynam.
Backg.

16 11 9 13 10 10 9 10

all the single algorithm, while this is true only for IUTIS and
PRIF for higher values of n. In particular we can observe that
there are three categories on which IUTIS-5 is not ranked first,
i.e., turbulence, dynamic background and intermittent object
motion.

To ensure that the performance of IUTIS-5 are statisti-
cally different from those of the other algorithms, we con-
ducted a statistical significance analysis on the results in
Table VIII using the Friedman test [103], [104]. The anal-
ysis shows that there is a statistically significant difference
in the performance of the algorithms with a x2(24) = 240.7
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Fig. 4. Examples of binary masks created by the tested algorithms. The superscripts indicate in what fusion set C the algorithm is used (e.g., SUBSENSE,
FTSG, and CwisarDH are used to build IUTIS-3, MV-3, PROF-3, and STAPLE-3).

and p < 0.01. We subsequently performed a post-hoc test algorithms against each other. As it can be seen, apart from
using pairwise Wilcoxon rank sum test [105] at the signifi- IUTIS-7 and IUTIS-9, IUTIS-5 compared against the other
cance level @ = 0.05. Table V shows the p-values of the 25 algorithms, obtains p-values lower than o« also considering the
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TABLE V
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Fig. 5. Two variant solutions of IUTIS-3 found by GP. These were discarded
having size greater than IUTIS-3. SBS, FTS, and CWS refer to SuBSENSE,

FTSG, and CwisarDH algorithms, respectively.

Outputs of some of the tested algorithms on sample frames

in the CDNET 2014 dataset are shown in Fig. 4 together

with input images and ground truth masks. Detailed evaluation
results of the IUTIS-3 and IUTIS-5 algorithms in terms of

all the seven performance measures and for each category

of the evaluation dataset are reported in Tables VI and VII,

respectively.

Since the proposed algorithm is stochastic by nature, we
report in Fig. 5 two variant solutions found in different runs

by our GP fusion scheme using the top three algorithms in
Table II. In most of the runs the solutions found are identical

to IUTIS-3. In the rest of cases they have the same overall
results. The variants of IUTIS-3 reported in Fig. 5 are taken

among the latter ones. These solutions trees are similar to

introns [106]. In fact they possess nonfunctional branches: the
sequence of erosions and dilations in the left branch of the top
tree in Fig. 5 is equivalent to a single erosion; in the bottom
tree, the top OR operation is uninfluential on the final result.

IUTIS-3, have the same overall results, and contain semantic
We observe the same behavior for ITUTIS-5.

Finally, Table VIII reports the complete official ranking on
the CDNET 2014 website at the moment of the submission
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(September 14, 2016). As it can be seen, both our solu-

Bonferroni correction. This indicates that the performance of
IUTIS-5 are significantly different with respect to the other

algorithms examined.

tions outperform all the evaluated change detection algorithms

including the most recent ones.
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TABLE VI
DETAILED EVALUATION RESULTS OF THE IUTIS-3 ALGORITHM FOR EACH CATEGORY OF THE EVALUATION DATASET

Scenarios Recall  Specificity FPR FNR PWC  Precision FMeasure

Overall 0.7896 0.9944  0.0056 0.2104 1.1813 0.7951 0.7694

Bad Weather 0.7502 0.9993 0.0007 0.2498  0.5010 0.9280 0.8246

Low Framerate 0.8183 0.9964 0.0036 0.1817 0.8224 0.7813 0.7949

Night Videos 0.6243 0.9839 0.0161 0.3757 2.4354 0.4312 0.4814

PTZ 0.6508 09885 0.0115 0.3492  1.4869 0.3886 0.4230

Turbulence 0.7708 0.9998 0.0002 0.2292  0.1823 0.9368 0.8416

Baseline 0.9712 0.9981 0.0019 0.0288  0.3002 0.9393 0.9546

Dynamic Background 0.8778 0.9993 0.0007 0.1222  0.1985 0.9239 0.8960

Camera Jitter 0.7923 0.9924  0.0076  0.2077 1.5231 0.8520 0.8139

Intermittent Object Motion ~ 0.6987 0.9946 0.0054 0.3013 3.2481 0.8146 0.7136

Shadow 0.9478 0.9914 0.0086 0.0521 1.0410 0.8585 0.8984

Thermal 0.7832 0.9945 0.0055 0.2168 1.2552 0.8922 0.8210

TABLE VII

DETAILED EVALUATION RESULTS OF THE IUTIS-5 ALGORITHM FOR EACH CATEGORY OF THE EVALUATION DATASET

Scenarios Recall  Specificity FPR FNR PWC  Precision FMeasure

Overall 0.7972 0.9952 0.0048 0.2028 1.0863 0.8105 0.7821

Bad Weather 0.7503 0.9994  0.0006 0.2497 0.4977 0.9349 0.8289

Low Framerate 0.8376 0.9974 0.0026 0.1624  0.7452 0.7724 0.7911

Night Videos 0.6333 0.9848 0.0152 0.3667 2.3252 0.4578 0.5132

PTZ 0.6687 0.9917 0.0083 0.3313  1.1465 0.4348 0.4703

Turbulence 0.7730 0.9999 0.0001 0.2270 0.1713 0.9624 0.8507

Baseline 0.9680 0.9983  0.0017 0.0320 0.3053 0.9464 0.9567

Dynamic Background 0.8636 0.9996  0.0004 0.1364 0.1808 0.9324 0.8902

Camera Jitter 0.8220 0.9925 0.0075 0.1780  1.4389 0.8511 0.8332

Intermittent Object Motion ~ 0.7047 0.9963 0.0037 0.2953  3.0420 0.8501 0.7296

Shadow 0.9492 0.9923  0.0077 0.0508 0.9484 0.8766 0.9084

Thermal 0.7990 0.9952 0.0048 0.2010 1.1484 0.8969 0.8303
e two contributions of the GP, and consists of the MV of n algo-
_ _ _ rithms among the nine available algorithms, where the set of n
078 1 / - N members is chosen by GA. The relevant GA parameters are the
/ - * same used for GP (see Table III). The second baseline isolates
0,767 R the influence of post-processing from the other contributions,
% and consists in a GP instance without the post-processing
3 0741 operators. The comparison of IUTIS with these baselines is
E reported in Fig. 6. Two different lines are present for the GA
072 4 P— baseline: the black one (MVGA n) consists of the MV of a
—a— MV set of exactly n algorithms, while the gray one (MVGA < n)
0.70 - Wgﬁ:n considers up to n algorithms. The GP instance without the
—o— IUTIS- post-processing operators (IUTIS—) is represented by a pur-
e . . . . ple line. From the plot it is possible to see that when n < 5,
3 5 7 9 algorithm selection is not able to find a solution better than

# of algorithms available for the combination (n)

Fig. 6. Plots of the F-measure for the different baseline algorithms considered
in the ablation study by varying the number of algorithms available in the
combination, i.e., n =3,5,7,9.

C. Ablation Study

In the introduction we stated that the advantage of using
GP is threefold, namely: 1) algorithm selection; 2) algorithm
combination; and 3) post-processing. In this section, we con-
duct an ablation study to separate their contribution. Two new
baselines are therefore evaluated. The first one isolates the
influence of the choice of primitive algorithms from the other

MYV; in these cases, the higher performance of IUTIS is due to
the algorithms combination and post-processing. When n > 7
instead, most of the performance gain over the simple MV is
due to algorithm selection. Even for the GA baseline, when
forced to select n algorithms (i.e., MVGA n), performance
start to drop. The plot of the baseline IUTIS— is always higher
than that of MVGA < n by almost a constant amount, indi-
cating that the logical operators are useful to fuse the outputs
of the different algorithms. Concerning the post-processing,
its importance is evinced from the fact that the line of TUTIS
is always higher than that of IUTIS—. Its influence is larger
when a larger number of algorithms is considered (i.e., n > 3).
Moreover, MVGA < n often ends up using the same primitive
algorithms as are used by IUTIS and IUTIS—.
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TABLE VIII
AVERAGE RANKING OF THE ALGORITHMS OF THE CDNET
WEBSITE AS PER SEPTEMBER 14, 2016

Method Average ranking

across categories
IUTIS-5 2.18
IUTIS-3 5.45
PAWCS [111] 6.36
SuBSENSE [45] 7.82
SharedModel [112] 8.64
FTSG [38] 8.82
SaliencySubsense [*] 9.45
M4CD Version 2.0 [*] 9.73
Superpixel Strengthen Backgr. Subtr. [*] 9.82
CwisarDRP [*] 10.36
MA4CD Version 1.0 [*] 12.27
Multimode Backgr. Subtr. [*] 12.36
C-EFIC [113] 12.91
Multimode Backgr. Subtr. V.0 (MBS VO0) [114] 14.55
EFIC [115] 14.73
CwisarDH [56] 14.82
Spectral-360 [57] 17.73
Sample based background subtractor (SBBS) [*] 18.55
AMBER [46] 19.36
AAPSA [116] 21.18
GraphCutDiff [117] 23.00
KNN [40] 23.55
SC_SOBS [54] 23.55
Mahalanobis distance [21] 24.00
SOBS_CF [118] 24.09
RMoG [100] 24.27
KDE [101] 25.73
GMM Stauffer & Grimson [31] 27.73
CP3-online [119] 27.73
GMM Zivkovic [120] 28.91
Multiscale Spatio-Temporal BG Model [121] 30.36
Euclidean distance [21] 32.00

Note: Methods with reference[*] have been submitted to journals or confer-
ences. See the changedetection.net website for current status.

V. CONCLUSION

In this paper, we have presented an evolutionary approach,
based on GP, to combine video change detection algorithms
to create a more robust algorithm. The solutions provided by
GP allow us to automatically select the best subset of the
input algorithms. This is one of the major differences between
our method and the other fusion-based algorithms considered,
which are not able to perform automatic algorithm selection,
and thus use all the given algorithms. Moreover, we are able
to automatically combine them in different ways, and perform
post-processing on their outputs using unary, binary and n-ary
operators embedded into the GP framework.

We have shown that applying our approach on the best algo-
rithms in the state-of-the-art, we are able to create the IUTIS-5
algorithm that ranks first by a large margin among a total
of 32 change detection algorithms on the CDNET 2014. The
statistical significance analysis performed using the Friedman
test and the Wilcoxon rank sum post-hoc tests show that the
performance of IUTIS-5 are significantly different from the
ones of the other state-of-the-art algorithms.

As a future work we plan to investigate if the same
approach, applied on very simple change detection algorithms,
is able to create solutions with comparable results to more
complex algorithm. Moreover, it would be interesting to use

our framework to create new algorithms from scratch using
atomic image processing operators as building blocks. We
also plan to investigate the improvement that recent contri-
butions in GP could give such as Pareto multiobjective [107],
implicit fitness sharing [108], [109], and the use of novelty as
an objective [110].
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