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Abstract: We present a multi-task learning-based convolutional neural network (MTL-CNN) able to
estimate multiple tags describing face images simultaneously. In total, the model is able to estimate
up to 74 different face attributes belonging to three distinct recognition tasks: age group, gender
and visual attributes (such as hair color, face shape and the presence of makeup). The proposed
model shares all the CNN’s parameters among tasks and deals with task-specific estimation through
the introduction of two components: (i) a gating mechanism to control activations’ sharing and to
adaptively route them across different face attributes; (ii) a module to post-process the predictions
in order to take into account the correlation among face attributes. The model is trained by fusing
multiple databases for increasing the number of face attributes that can be estimated and using a
center loss for disentangling representations among face attributes in the embedding space. Extensive
experiments validate the effectiveness of the proposed approach.

Keywords: face analysis; convolutional neural networks; multi-task learning; gender recognition;
age group recognition; face attributes’ estimation

1. Introduction

A detailed face annotation might include a wide variety of information such as: demographic
attributes (gender, age and ethnicity), visual attributes (e.g., hair style, clothing, face shape)
and emotional state (facial expressions). Automatic systems for face annotation have numerous
practical applications including user-verification, video surveillance and image retrieval. In the last
few decades, many algorithms have been developed to address problems, such as face recognition and
verification [1,2], facial expressions recognition [3,4], landmark localization [5] and facial attributes
estimation, independently [6,7]. Recently, new approaches involving the use of multi-task learning
(MTL) frameworks [8] for dealing with several face tasks have been presented [9,10]. With respect to
single-task learning-based methods, where each task is addressed separately, ignoring any correlations
between tasks, MTL-based methods enable learning shared representations.

In order to enrich the annotation of face images, in this paper, we employ a multi-task learning
framework to train a single convolutional neural network (CNN) in an end-to-end manner for
fine-grained face annotation. Moreover, due to the lack of datasets providing a ground-truth for
several tasks, we fuse multiple sources of label information to increase the number of attributes that
can be estimated.

The contributions of this paper are:

• a model trained for simultaneously estimating up to 74 different attributes describing face images
in terms of gender, age group and visual attributes (e.g., hair color, face shape and the presence
of makeup);
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• a gating mechanism acting as a routing system to encode attribute-specific features, enabling the
proposed model to share all the CNN’s parameters among tasks, thus resulting in a lower number
of parameters compared to classical multi-task architectures;

• a layer for conditioning predictions in order to take into account the correlation among attributes
based on the co-occurrence matrix estimated on training data.

2. Related Work

The proposed approach covers gender and age group recognition, face attribute estimation and
multi-task learning. We present an overview of the relevant works organized by these topics.

Gender and age group recognition. The Adience benchmark consisting of a challenging
collection of face images labeled for age and gender has been designed in [11]. The authors also
proposed a system involving the use of LBP descriptors for face representation and dropout-SVM
for classification. The use of synthetic frontalized face images was demonstrated to be effective for
improving gender recognition performance in [12]. In [13], two different convolutional neural networks
(CNNs) have been trained from scratch for addressing respectively gender and age group recognition
on the Adience benchmark. A hybrid approach combining deep features of a fine-tuned CNN and a
linear SVM has been applied in [14] for face gender recognition on the color FERETand the Adience
databases. In [15], the Deep EXpectation (DEX) pipeline consisting of a VGG-16 architecture trained
on well-aligned images of faces from the large IMDB-WIKIdataset has been proposed for apparent age
estimation, and then, it has been tested on Adience images for age group recognition.

Face attribute estimation. The first work on the automatic estimation of multiple attributes is the
FaceTracer system [16]. This approach involved the use of independent classifiers for 65 different face
attributes trained using several hand-crafted features (i.e., image intensities in RGB and HSV color
spaces, edge magnitudes, gradient directions) extracted from hand-picked facial regions. More recent
approaches leverage deep learning techniques. The pose-aligned networks for deep attribute (PANDA)
model [17] exploited a CNN to localize face parts and to extract features from the localized parts.
These features have been used to train SVM classifiers for attribute prediction. In [18], a combination of
two localization networks (LNETs) and an attribute recognition network (ANET) have been proposed.
LNETs have been trained in a weakly-supervised manner; instead, ANET has been pre-trained by
classifying massive face identities and then fine-tuned by attributes to extract features that are fed into
independent linear support vector machines (SVMs) for the final classification of 40 face attributes.
Experiments have been conducted on two large-scale face attribute databases proposed, namely
CelebAand LFWA. The training and usage of CNNs for separately estimating face attributes have been
performed in [19,20]. In [21], an ensemble of multi-class SO-SVM predictors has been trained on top of
deep features extracted from a VGG-16 architecture pre-trained on ImageNet and then fine-tuned on
IMDB-WIKI and ChaLearn2015 LAPdatasets for apparent age, gender and smile prediction. Recently,
semantic segmentation has been used to guide the attention of the attribute prediction in [7].

Multi-task learning. Deep learning approaches have been proven to be well suited for multi-task
learning (MTL). Several MTL approaches have been proposed for attribute estimation. A multi-task
restricted Boltzmann machine (MT-RBM) has been used in [6] for facial attribute classification.
Some works [10,22] categorized the attributes into different groups to take advantage of their mutual
relationships. In [22], the authors suggested an auxiliary network on top of the multi-task CNN to
further exploit the relationships among the attributes. In [10], the DMTLwas defined as a modified
AlexNet with both shared and category-specific sub-branches to model both attribute correlation and
attribute heterogeneity.

3. Databases

For the evaluation of the proposed end-to-end multi-task convolutional neural network,
we selected the three most widely-used publicly available face databases for face attribute estimation
(see Figure 1).
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Female — 0-6 ArchedEyebrows — BigNose —
BlondHair — HeavyMakeup — 

HighCheekbones — MouthSlightlyOpen — 
NarrowEyes — NoBeard — PointyNose — 

RosyCheeks — Smiling — WavyHair — 
WearingLipstick — WearingNecklace

5oClockShadow — BagsUnderEyes — 
BigNose — Chubby — HighCheekbones — 

MouthSlightlyOpen — NarrowEyes — 
NoBeard — PointyNose — 

RecedingHairline — RosyCheeks — 
Smiling — StraightHair — WavyHair — 

WearingNecktie

Male — 60- Bangs — BigNose — Eyeglasses — 
GrayHair — NoBeard — PointyNose — 

WearingEarrings — WearingLipstick

Attractive — BigLips — BlondHair — 
Blurry — HeavyMakeup — 

HighCheekbones — MouthSlightlyOpen — 
NarrowEyes — NoBeard — OvalFace — 
PointyNose — RosyCheeks — Smiling — 

WavyHair — WearingEarrings — 
WearingLipstick — WearingNecklace — 

Young

(a) (b) (c)

Figure 1. Example images from evaluated databases. (a) Adience benchmark image labeled in terms
of gender and age group. (b) Images from the CelebAdatabase with occurring face attributes coming
from the 40 attributes in Table 1. (c) Images from the LFWAdatabase and occurring attributes from the
same list of 40 attributes as in the CelebA database.

Adience benchmark. The Adience benchmark [11] is a database designed for age and gender
classification. Images were collected from Flickr uploads mainly from smart-phone devices, and they
were manually labeled with one among eight age groups (0–2, 4–6, 8–13, 15–20, 25–32, 38–43, 48–53,
60+ years) and gender annotations. Faces from Adience are highly unconstrained, reflecting many of
the real-world challenges, such as occlusions, extreme variations in head pose and lighting conditions’
quality. The database contains about 26 K images of 2284 subjects.

CelebA. CelebA is a large-scale face attributes database [18] consisting of more than 200 K images
of more than 10 K celebrities. Each facial image is manually annotated with 40 binary attributes
(see Table 1). Database images present high variations in pose, expression, race, background and
imaging conditions. CelebA provides two type of images, i.e., aligned and cropped face images and
raw images. For the experiments, we used the aligned and cropped face images.

LFWA. LFWA is an unconstrained database for face attributes’ estimation [18]. It has 13,233 images
of 5749 identities automatically annotated with the same 40 binary attributes as in the CelebA
database (see Table 1). Recently, a larger set of annotations consisting of 73 binary attributes was
released (see Table A1 in Appendix A for the complete list). The machine-based ground-truth for the
73 face attributes is integrated in the set of files that can be downloaded from the following website:
http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html.

http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html
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Table 1. List of the 40 face attributes provided with the CelebA database.

Index Definition Index Definition Index Definition Index Definition

1 5o’ClockShadow 11 Blurry 21 Male 31 Sideburns
2 ArchedEyebrows 12 BrownHair 22 MouthSlightlyOpen 32 Smiling
3 Attractive 13 BushyEyebrows 23 Mustache 33 StraightHair
4 BagsUnderEyes 14 Chubby 24 NarrowEyes 34 WavyHair
5 Bald 15 DoubleChin 25 NoBeard 35 WearingEarrings
6 Bangs 16 Eyeglasses 26 OvalFace 36 WearingHat
7 BigLips 17 Goatee 27 PaleSkin 37 WearingLipstick
8 BigNose 18 GrayHair 28 PointyNose 38 WearingNecklace
9 BlackHair 19 HeavyMakeup 29 RecedingHairline 39 WearingNecktie

10 BlondHair 20 HighCheekbones 30 RosyCheeks 40 Young

4. Deep Multi-Task Learning for Face Annotation

The aim of the proposed approach is to simultaneously estimate a large number of facial attributes
using a single model.

Multi-task learning by convolutional neural network models has been demonstrated to be very
effective for many face-related tasks [10,23,24]. Following this success, a multi-task learning approach
based on a convolutional neural network (MTL-CNN) to estimate multiple facial attributes jointly
from a single face image was proposed. This model takes into account the attribute inter-correlations
to obtain informative and robust feature representation. This property is desirable for problems like
facial attributes estimation, where classes are correlated with each other. As shown in Figure 3,
several attributes of the CelebA have strong pair-wise correlations (elements with red color).
For example, “Male”, “Attractive” and “NoBeard” are highly correlated; this means that gender
the and presence/absence of a beard affect face’s attractiveness.

For an input face image, the resulting model is able to predict all the learned facial attributes
jointly. Given that many of the public-domain databases provide a ground-truth only for a subset of
desired facial attributes (e.g., only facial expressions or soft biometrics), the training set is composed
by aggregating data from multiple databases labeled with a single attribute. The MTL-CNN consists
of shared parameters for all the tasks, while parameters from lower layers adapt to the complete
set of domains, and attribute-specific parameters are specialized for the estimation of each attribute.
The aforementioned CNN is trained by combining two different losses: the first is used for attributes
that are defined as mutually exclusive (e.g., age group and gender); instead, the second is used for
attributes that are defined as co-occurrent. Additionally, a gating mechanism is introduced in order to
pass/suppress information. Finally, to better reflect the correlation between facial attributes, a label
post-processing layer is applied.

4.1. The Model

Figure 2 shows our architecture for face annotation. We first introduce the CNN architecture we
used for encoding face images and then explain the other components in the following sections.

4.1.1. Image Encoder

ResNet-101 [25] is used as the CNN architecture for the image encoder. It has 101 parameter layers:
the first is a 7× 7 convolutional layer followed by four blocks each containing 3, 4, 23, 3 residual units,
respectively. The network ends with a global average pooling layer followed by a fully-connected
layer. This last layer represents the classification layer, which directly maps the output of the average
pooling layer into logits. To obtain global features related to different face regions, we replace the
classification layer with e : R2048 7→ R2048, which consists of a fully-connected layer followed by ReLU
non-linearity and producing Oe ∈ R2048 as a feature vector.
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Figure 2. A complete illustration of our model for face annotation. The face image I is fed into
the network. The model consists of seven components: the image encoder (e), which produces
the output Oe by a non-linear transformation of the activations of ResNet-101; the gate layer (gf )
designed to remember or forget features across different attributes and that produces the output Ogf ;
the classification layer (c), which produces the output Oc, i.e., the logits for the considered attributes;
the gate layer (gp) designed to remember or forget probabilities across different attributes and that
produces the output Ogp ; the label processing layer (p) designed to reflect the relationships among the
different attributes and that produces the output Op; and the loss functions (L and Lcenter).

4.1.2. Gating Mechanism

Gate layers are employed to select contextual attribute features. The idea is based on the
mechanism of the gate unit in Long Short-Term Memory (LSTM) [26], which is used to learn to
remember or forget the history information from a long sequence of input data. Differently from LSTM,
the introduced gate layers do not depend on temporal data, but are designed to “remember” or “forget”
features across different attributes. The gate equation used is:

y = σ(Wgx + b) · x, (1)

where σ is the element-wise sigmoid non-linearity, Wg and b are learnable parameters, x is a feature
vector and (·) indicates the element-wise multiplication. The gate function is used at the feature-level
and prediction-level. The feature-level gate, g f : R2048 7→ R2048, defined as follows:

Ogf = σ(Wgf Oe + bgf) ·Oe, (2)

is introduced immediately before the classification layer to disentangle the representation of the
different attributes. The prediction-level gate, gp : R48 7→ R48, controls the co-occurrence between
predicted attributes, and it is formalized as follows:

Ogp = σ(Wgp Oc + bgp) ·Oc. (3)

4.1.3. Classification Layer

The classification layer is defined as c : R2048 7→ R48 and consists of a fully-connected layer.
It takes Ogf as the input and outputs the 48 logits Oc for the 40 binary attributes plus the eight age
groups into which the age attribute is divided.

4.1.4. Label Processing Layer

The label processing layer is designed to reflect relationships among facial attributes. For example,
in the CelebA database [18], “WearingLipstick”, “RosyCheeks” and “HeavyMakeup” are strongly
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correlated. Although some relationships among face attributes might be peculiar to this specific data
distribution [27,28], in order to exploit this information, the co-occurrence matrix Mc (see Figure 3)
is computed by counting the number of pair-wise co-occurrences for the 40 facial attributes.
The co-occurrent value Mc[i, j] between the i-th and the j-th attribute is calculated as higher as
i-th and j-th appear together in more images. Label processing layer p is then formalized as follows:

Op = ReLU(WlpMcOgp) ·Ogp . (4)

Here, ReLU is the element-wise ReLU non-linearity; Mc is the co-occurrence matrix; Wlp is a
weights matrix; Ogp is the prediction; and (·) indicates the element-wise multiplication. The label
processing layer multiplies the original prediction Ogp by its processed version in order to weight the
original prediction and not to replace it.

Whether the predicted probability oMale is around one, while probabilities oHeavyMakeup and
oWearingLipstick are high, given that the pair-wise correlation between these attributes is high,
the resulting probability for the attribute “Male” due to the label processing layer will be penalized.
Differently from the prediction-level gate, which learns the relationships among attributes in a
self-supervised manner (see Section 4.1.2), the label processing layer exploits the co-occurrence matrix
to find out attributes with strong correlation.
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Figure 3. Co-occurrence matrix of the 40 attributes provided with the CelebA database (only training
set labels are considered). Blue means low correlation among face attributes, while red means high
correlation among face attributes.

4.1.5. Mutually Exclusive vs. Co-Occurrent Attributes

Many of the considered attributes are mutually exclusive, i.e., only one class is the correct one.
For example, for the age group problem, it is not possible that the same subject is simultaneously
classified in the ranges “15–20” and “25–32”. For these attributes, softmax cross-entropy loss,
the most popular loss function for single-label image classification in CNNs, is used. On the other
hand, co-occurrent attributes are present such as “Smiling” and “Mustache”. These are attributes
that can simultaneously occur, and practically, this means that their probabilities are independent.
The binary cross-entropy loss is used because, unlike the softmax, which gives a probability distribution
around classes, it allows one to deal with multi-label problems. Although the CelebA and LFWA
databases contain facial attributes that are mutually exclusive such as “BrownHair”, “BlackHair”
and “BlondeHair” and the use of softmax cross-entropy would enhance the learning algorithm to
maximize only one attribute among them, given that the ground-truth says only the presence/absence
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of the attribute, the estimation of these attributes is maintained as a multi-label problem (instead of a
single-label multi-class problem). The algorithm would adapt to learn such dependencies.

4.1.6. Center Loss

Center loss was first proposed for the face recognition task [29] and used for other problems
because of its effectiveness at making discriminative embedding features. The purpose of center
loss is to minimize intra-class variations while maximizing inter-class variations. The original center
loss was designed for the single-label classification problem, and it is hard to exploit for multi-label
classification. Therefore, we modified the criterion in order to address the multi-label classification
problem as follows:

LCenter =
1
M

M

∑
i=0

(
1
N

N

∑
j=0
‖O(i)

gf − c(i)yj ‖
2
2

)
, (5)

where O(i)
gf is the embedding feature vector from the feature-level gate layer for the i-th sample,

c(i)yj is the class center feature vector (centroid) for the corresponding ground-truth label and M is the
mini-batch size. More in detail, the centroids’ matrix is defined as N × 2048, where N is the number of
attributes. Each embedding feature vector Ogf is compared with all the centroids corresponding to 1 s
in yj, which is one-hot encoded.

4.2. Training

The model is trained end-to-end by using random batches of images: half of the samples are taken
from the Adience benchmark, and the remaining half are taken from the CelebA database. We perform
data augmentation by producing a crop with a random size covering at least 80% of the original image
and a random aspect ratio of 3/4–4/3 of the original aspect ratio. The obtained crop is finally resized to
the given size of 224× 224 pixels. Furthermore, we obtain diverse samples by horizontally flipping the
input image and, finally, by applying color jittering (brightness and contrast). We train our MTL-CNN
using SGDwith Nesterov momentum, using a batch size of 32 samples, and the learning rate is kept
fixed to a value of 1× 10−4. Momentum is set to 0.9, and the weight-decay parameter is 5× 10−4.
The model is trained for 15 epochs, and the best model is selected using the early stopping strategy
(i.e., the best performance achieved in all tasks on the validation sets). The total loss used to train
the model is given by Ltotal = LCE + LBCE + αLcenter, where LCE is the softmax cross-entropy loss,
LBCE is the binary cross-entropy, Lcenter indicates the center loss and α weights the contribution of the
center loss and has been heuristically set to 0.95.

5. Experiments and Results

In the following, we detail the experiments conducted and the evaluation protocols, and we
compare the performance of the proposed model with state-of-the-art methods.

Experiments were conducted by simultaneously training the model on two databases: the Adience
benchmark and one among the CelebA and the LFWA (see Section 3). The test sets of the
corresponding datasets were used for evaluation. Moreover, to supplement the analysis and to
demonstrate the generality of the proposed method, the experimental results were also collected in a
cross-database fashion.

5.1. Evaluation Protocols

Testing for both age group and gender classification on the Adience benchmark was performed
using the standard five-fold, subject-exclusive cross-validation protocol defined in [13], while for the
CelebA and LFWA databases, the results were computed on the test set provided in [18]. Specifically,
the average accuracy over the five-folds of cross-validation is reported for both age and gender
classification; concerning facial attributes’ estimation on the CelebA and LFWA databases, the average
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classification error on the test set obtained by the five models resulting from the cross-validation
is reported.

5.2. Experimental Results

Since the source codes are not available for any of the other state-of-the-art methods, we report
the results directly from the corresponding publications.

Gender and age group recognition: Results for gender and age group classification on the
Adience benchmark are measured in terms of accuracy in Table 2. For age group classification, both the
accuracy when the algorithm gives the exact age group classification and when the algorithm is off by
one adjacent age group (i.e., the subject belongs to the group immediately older or immediately younger
than the predicted group) were measured. For gender classification, we achieved a performance of
90.7%, which was around 3% higher than the best result in the state-of-the-art [14].

Table 2. Gender and age group recognition results on the Adience benchmark. Mean accuracy ± the
standard error over all ages is reported (a). For age group recognition (b), we measure the accuracy both
when the algorithm gives the exact age group (exact) and when the algorithm is off by one adjacent age
group (1-off).

(a) (b)

Method Accuracy Method Exact 1-off

Eidinger et al. [11] 77.8± 1.3 Eidinger et al. [11] 45.1± 2.6 79.5± 1.4
Hassner et al. [12] 79.3± 0.0 Levi et al. [13] 50.7± 5.1 84.7± 2.2

Levi et al. [13] 86.8± 1.4 DEX [15] 64.0± 4.2 96.6± 0.9
van de Wolfshaar et al. [14] 87.2± 0.7 RAGN [30] 66.5± 5.1 –

Proposed (noGates) 87.9± 0.9 Proposed (noGates) 52.9± 4.3 91.3± 1.5
Proposed (noCenter) 89.8± 1.8 Proposed (noCenter) 56.4± 5.8 92.6± 1.6

Proposed 90.7± 1.7 Proposed 57.8± 6.4 94.1± 1.6

For the age group task, the obtained accuracy corresponded to 57.8% for exact classification and
94.1% for 1-off classification. This performance was lower than those of RAGN [30] and DEX [15] for
both exact and 1-off classification accuracy. These two approaches took advantage of the fine-tuning of
a pre-trained CNN on the large IMDB-WIKI database: in fact, the results of and end-to-end learning of
DEX dropped respectively to 55.6± 6.1 for exact and 89.7± 1.8 for 1-off classifications. The pre-training
on IMDB-WIKI improved the model generalizability, and this is very important especially given that
samples in folders were not homogeneously divided. This was confirmed by the huge difference
among classification accuracy obtained for distinct folders: 68.3% on the first folder, while 49.72% on
the second one. When predicting the 1-off accuracy, we achieved 94.1%, which was 2% lower than
DEX with IMDB-WIKI pre-training and 4% higher than DEX without IMDB-WIKI pre-training.

Face attribute estimation. The experimental results for CelebA and LFWA databases are
expressed in terms of classification error. The performance of the proposed method is compared
with state-of-the-art methods for CelebA and LFWA databases in Table 3. The column “Prior” shows
errors obtainable by only applying the knowledge from the prior probabilities of the presence or
absence of an attribute in the datasets. The first four rows report results for 40 binary attributes’
estimation. More in detail, the first row shows the classification error for the CelebA test set classified
using a model trained on the CelebA training set, and it corresponds to 8.69%. The third row shows
the classification error for the LFWA test set classified using a model trained on the LFWA training set,
and it is equal to 15.59%.

Cross-database testing results are reported in Rows 2 and 4; 26.40% and 23.33% were the errors
on the CelebA and LFWA test sets, respectively. These errors were lower than the ones obtained by
DMTL [10], which was the only one dealing with this testing setup. This indicates that the proposed
algorithm generalized better than other methods and that it was more appropriate to apply in the wild.
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The performance for the larger set of 73 annotations is reported in the last row of Table 3.
This was the first time results had been collected for these labels, so there was no comparison with the
state-of-the-art methods. The error percentage was considerably smaller than the one achievable by
only using the prior probabilities; furthermore, it was even lower than the one obtained for 40 attributes’
estimation. Figure 4 shows some sample images annotated using the proposed model.

Table 3. Binary attribute estimation results on the CelebA and LFWA databases. The performance
was evaluated by classification error on the LFWA and CelebA. Results are reported both for the set of
40 binary attributes and for the new larger set of 73 attributes.

Training Testing #attr.
Classification Error (%)

Prior [16] [17] [18] [7] [10] Proposed Proposed Proposed Proposed(noGates) (noLP) (noCenter)

CelebA CelebA 40 19.43 18.88 15.00 12.70 8.20 7.00 12.20 9.28 9.27 8.69
CelebA LFWA 40 – – – – – 27.00 31.12 26.95 26.93 26.40
LFWA LFWA 40 28.73 26.07 19.00 16.00 12.87 16.08 18.02 16.00 15.96 15.59
LFWA CelebA 40 – – – – – 29.80 26.84 23.94 23.83 23.33
LFWA LFWA 73 35.18 – – – – – 18.24 15.62 14.15 13.31

Male — 0-2 BrownHair — HighCheekbones — 
MouthSlightlyOpen — NoBeard — Smiling — 

Young

Attractive — BrownHair — HeavyMakeup — 
HighCheekbones — NoBeard — OvalFace — 

PointyNose — Smiling — WavyHair — 
WearingEarrings — WearingLipstick — 

WearingNecklace — Young
PaleSkin

(a)

Female
38-43
15-20

5’oClockShadow — NoBeard — Smiling
BigLips — BigNose — NarrowEyes — PointyNose 

— StraightHair — WearingNecktie
Attractive — BlackHair — HighCheekbones — 

OvalFace — Young

5o’ClockShadow — Attractive — BagsUnderEyes 
— BigNose — BrownHair — BushyEyebrows — 

Goatee — NarrowEyes — OvalFace — PointyNose 
— RecedingHairline — RosyCheeks — Sideburns

— Smiling — WearingNecktie
Eyeglasses — GrayHair —

MouthSlightlyOpen — WavyHair
HighCheekbones — NoBeard — PaleSkin

(b)

Figure 4. Some sample images annotated using the proposed model. Correct (black), missed (red) and
wrong (blue) face attributes are reported. (a) Correctly-annotated samples (from left to right: Adience,
CelebA and LFWA). (b) Samples wrongly annotated (from left to right: Adience, CelebA, and LFWA).
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5.3. Ablation Study

The core ideas of the proposed model lie in the gating mechanism, the module to post-process the
predictions, namely the label processing layer, and the center loss. In this subsection, we evaluate the
contribution they provided to the final model.

5.3.1. Gating Mechanism

The purpose of the gating mechanism and specifically of the feature-level and prediction-level
gate layers was to disentangle the representation among different attributes. The entries denoted with
noGates in Table 2 report the performance of the model without the use of gates, respectively for gender
(Table 2a) and age group (Table 2b) recognition. Testing results showed a lower performance with
respect to the final model of around 3% for the gender recognition task and of around 5% for the age
group recognition task. Column noGates in Table 3 shows the performance of the model without gates
for face attributes’ estimation. Also for this task, the model without gates performed worse than the
final one. Comparing the improvement given by the gate layer across the three tasks, we can observe
that the smallest improvement was gained for the gender recognition task. This difference could be
motivated by the fact that features for age group and face attributes’ estimation was required to be
more discriminative than the ones for gender recognition. The importance of the gating mechanism is
further supported by the huge improvement obtained by adding it in the final model trained on the
larger set of 73 face attributes.

5.3.2. Label Processing

To evaluate the importance of the Label Processing (LP) layer, we estimate the performance also
for a model without this specific layer. The column noLP in Table 3 reports the classification error for
all the experiments we ran. Given that the LP layer influenced only attributes’ estimation, we do not
report any results for the tasks of gender and age group recognition. From the results, we see that the
model with the LP layer performed better than the one using only the two gating layers.

5.3.3. Center Loss

The importance of using the center loss as an additional criterion during the training is evaluated
in this subsection. Specifically, we trained the model comprising both gate and label processing layers
without using the center loss. The entries for noCenter in Table 2 show the performance of the model
trained without the use of the center loss, respectively for gender (Table 2a) and age group recognition
(Table 2b), while Column 3 reports the results of the proposed model trained without center loss for
face attribute estimation. We can observe that the performance obtained by the model trained without
the use of the center loss was worse than the final one. This supports the importance of using the center
loss both for regularizing the training and for increasing the discriminative power of the features.

6. Conclusions

In this work, we have made the following contributions: First, we have designed a multi-task
model able to simultaneously predict up to 74 tags describing face images. While other CNN-based
methods used sub-branches towards individual attribute estimation, the proposed model shared all
the CNN’s parameters. One of the key ideas was to focus on the use of mechanisms that could manage
the flow of information among attributes. To this end, we proposed two architecture components: a
gating mechanism to route attribute-specific feature encoding and a layer for conditioning predictions
in order to take into account the correlation among attributes. We also defined a new loss function
based on the center loss to disentangle attributes’ representation in the embedding space by learning a
distinct center for each attribute. Experimental results demonstrated the effectiveness of the proposed
model. Moreover, cross-dataset results highlighted the robustness of the approach. Since learning on
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different classes of visually similar tasks pushes representation to be more discriminative, we assume
the proposed model stores knowledge useful for solving different, but related problems.
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Appendix A

In this Appendix, we report the extended list of 73 face attributes for the LFWA database
(see Table A1) and the co-occurrence matrix computed by counting the number of pair-wise
co-occurrences for the same set of attributes in Figure A1.

Table A1. List of the 73 face attributes recently released for the LFWA database. Overlapping attributes
with the smaller list of 40 are in bold.

Index Definition Index Definition Index Definition Index Definition

1 Asian 21 HarshLighting 41 MouthClosed 61 RosyCheeks
2 White 22 Flash 42 MouthSlightlyOpen 62 ShinySkin
3 Black 23 SoftLighting 43 MouthWideOpen 63 PaleSkin
4 Baby 24 Outdoor 44 TeethNotVisible 64 5o’ClockShadow
5 Child 25 CurlyHair 45 NoBeard 65 StrongNose-MouthLines
6 Youth 26 WavyHair 46 Goatee 66 WearingLipstick
7 MiddleAged 27 StraightHair 47 RoundJaw 67 FlushedFace
8 Senior 28 RecedingHairline 48 DoubleChin 68 HighCheekbones
9 BlackHair 29 Bangs 49 WearingHat 69 BrownEyes

10 BlondHair 30 Sideburns 50 OvalFace 70 WearingEarrings
11 BrownHair 31 FullyVisibleForehead 51 SquareFace 71 WearingNecktie
12 Bald 32 PartiallyVisibleForehead 52 RoundFace 72 WearingNecklace
13 NoEyewear 33 ObstructedForehead 53 ColorPhoto 73 Male
14 Eyeglasses 34 BushyEyebrows 54 PosedPhoto
15 Sunglasses 35 ArchedEyebrows 55 AttractiveMan
16 Mustache 36 NarrowEyes 56 AttractiveWoman
17 Smiling 37 EyesOpen 57 Indian
18 Frowning 38 BigNose 58 GrayHair
19 Chubby 39 PointyNose 59 BagsUnderEyes
20 Blurry 40 BigLips 60 HeavyMakeup

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73

1
5
9

13
17
21
25
29
33
37
41
45
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73 0.0
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Figure A1. Co-occurrence matrix of the 73 attributes provided with the LFWA database (only training
set labels are considered).
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