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Abstract:
texture images acquired under variable conditions. T1K+ contains 1129 classes of textures ranging

In this paper we present T1K+, a very large, heterogeneous database of high-quality

from natural subjects to food, textile samples, construction materials, etc. TIK+ allows the design of
experiments especially aimed at understanding the specific issues related to texture classification and
retrieval. To help the exploration of the database, all the 1129 classes are hierarchically organized in
5 thematic categories and 266 sub-categories. To complete our study, we present an evaluation of
hand-crafted and learned visual descriptors in supervised texture classification tasks.

Keywords: texture recognition; texture retrieval; color and Texture; texture features; texture descrip-
tors; color texture databases

1. Introduction

Texture classification and retrieval are classic problems in computer vision that find
applications in many important domains including medical imaging, industrial inspection,
remote sensing, and so on. In the last decade, the shift to deep learning within the
computer vision community made it possible to face these domains with very powerful
models obtained by training large neural networks on very large databases of images [1].

This data hungry approach promotes the collection of larger and larger databases.
The result is an increase in variability of content and imaging conditions, but at the price
of a reduced control over the experimental conditions. In the field of texture recognition,
this change manifested as a progressive switch from the experimentation with carefully
acquired texture samples to the use of images randomly downloaded from the web.

Many recent texture databases include images that do not depict only the texture
patterns, but also the context in which they are placed. As a result, they lack distinctive
properties of textures such as the stationarity of the distribution of local features. It is not
surprising, therefore, that the most accurate models for texture classification are those that
also excel in general image recognition. In fact, the state of the art consists in using large
convolutional neural networks trained for generic image recognition tasks like the ILSVRC
challenge [1].

In this paper we present the T1K+ database, a large collection of high-quality texture
images for benchmarking color texture classification and retrieval methods. T1K+ contains
1129 texture classes ranging from natural subjects to food, textile samples, construction
materials, etc. To help the exploration of the database, all 1129 classes are hierarchically
organized in 5 thematic categories and 266 sub-categories. Unlike many other large
databases, T1IK+ does include images taken from the web, but pictures that have been
especially acquired to be part of the collection. The acquisition protocol ensures that only
images actually representing textures were collected, excluding images depicting scenes,
objects, or other kinds of content. Thanks to these properties, the database allows the design
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of experiments especially aimed at understanding the specific issues related to texture
classification and retrieval. Some of these experiments, together with their outcomes, are
described in this paper.

The rest of the paper is organized as follows. Section 2 presents the main characteristics
of the proposed database: acquisition conditions, type of classes, hierarchical organization
of the classes, and distribution of the perceptual features. In this section, we also discuss
how T1K+ compares with respect to existing texture databases. In Section 3, we present
all the visual descriptors used in the evaluation while in Section 4 we present all the
experiments performed. Section 5 discusses the results we obtained and Section 6 presents
future challenges and conclusions.

2. The Database

The T1K+ database was conceived as a large collection of images of surfaces and
materials. At the present time, the database includes pictures of 1129 different classes of
textures ranging from natural subjects to food, textile samples, construction materials, etc.
Expansions are planned for the future. The database is designed for instance-level texture
recognition. That is, each surface is considered as having a texture of its own class. This
feature differentiates the database from other large-scale collections of textures where
classes are defined to contain multiple instances of the same concepts.

Images have been collected by contributors who were asked to take pictures of as
many texture samples they could find during their daily activities. To do so they used their
personal smartphones as acquisition devices. Modern smartphone cameras, in fact, are
able to provide high-resolution pictures of reasonable quality, without sacrificing the ease
of the acquisition procedure.

For each texture sample several pictures have been taken, each time slightly varying
the viewpoint or the portion of the surface acquired. The contributors were also asked to
vary the lighting conditions when possible, for instance by turning on and off artificial
light sources (for indoor acquisitions) or by moving the sample in different positions (for
movable texture surfaces). Pictures have been post-processed by excluding those with
low overall quality (excessive motion blur was the main cause) and by removing near
duplicates. In the end, a minimum of four images per texture sample were retained. The
result was the collection of 6003 images in total, for an average of 5.32 images per class.
Figure 1 shows the distribution of the classes over the data set images. Seeing the plot,
we decided to not address the unbalancing in the class distribution. Unbalanced classes
could become an issue in the future after the expansion of the database. In such a case,
appropriate techniques such as those in [2-5] should be considered.
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Figure 1. Distribution of the classes within the T1K+ database.

All images are in the sSRGB color space and have an average resolution of 2465 x 3312
pixels, making it possible to extract multiple non-overlapping patches at various scales.
This way the data set can be used for different kind of experiments, from retrieval to
classification. Figure 2 shows the images acquired for a selection of eight classes. Note the
intra-class variability caused by the changes in the viewpoint and in the lighting conditions.
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Figure 2. Samples of eight classes of textures in the T1K+ database.

2.1. Composition

In order to better understand the composition of the database, we divided the
1129 classes in five thematic categories: nature (239 classes), architecture (241),
fabric (355), food (143), and objects (151). These can be further subdivided into a
second level of 266 categories and a third one of 1129 (in which there is one class per texture
instance). Figure 3 shows the hierarchical organization of the three levels. Within this
organization the database can be used to analyze classification methods in coarse- and
fine-grained scenarios.
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Figure 3. Hierarchical representation of T1K+ texture classes. The first ring is composed of five classes: nature, architecture,
fabric, food, and objects. The second ring is composed of 266 classes: wall, floor, shirt, flowers, pavement, textile, and many
others. The last ring is composed of 1129 leaves.
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An overview of the inter-class variability in the database is given by Figure 4 which
shows one sample for each of the 1129 classes. Note how there are clusters of classes with a
similar dominant color (e.g., foliage), others with a high chromatic variability (e.g., fabrics).
There are many regular and irregular textures, low- and high-contrast, etc. Overall, a large
number of combination of possible texture attributes is represented in the database.

Figure 4. Overview of the database. For each class is included a patch taken from one of the images.

To better analyze the distribution of the content of the database we applied the t-SNE
algorithm [6]. We run the algorithm twice, by directly using the image pixels as features
and by using the features extracted by a Resnet50 convolutional network trained for image
recognition on the ILSVRC training set. The algorithm places similar images near each
other on the two-dimensional plane. The result can be observed in Figures 5 and 6.

2.2. Perceptual Features Distribution

To further illustrate the main characteristics of our database, in this section we show
statistics of perception-based features introduced by Tamura et al. [7] in 1978. These
features are based on a set of psychological experiments which have the aim to assess how
humans perceive texture properties like coarseness, contrast, directionality, line-likeliness,
and roughness.
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Figure 6. Result of the application of t-SNE to the features extracted by a Resnet50 CNN trained on
ILSVRC data.
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coarsness

Coarseness is defined on the basis of the size of the texture elements. The higher the
size, the coarser the texture and the smaller the size, the finer the texture. Contrast depends
on the distribution (histogram) of gray-levels, the sharpness of edges, and the period of
repeating patterns. Directionality is related to the probability that the variation of the pixels’
intensities occurs along certain predefined orientations. The higher are parallel lines within
an image and the higher is the value of directionality. Line-likeliness is a property that
encodes how much an image is perceived as composed by lines. Roughness is related to
how surface is perceived by a haptic touch. The term ‘rough’ stands for a surface marked
by protuberances, ridges, and valleys. The higher the presence of surface irregularities, the
higher the roughness.

There are several implementations of these features, we refer to the one by Bian-
coni et al. [8] in which, differently from the original definition, each feature is represented
by a real number in the [0, 1] interval. To better explore the statistics of this features, we
divide the [0, 1] range into 5 bins and we plot for each features histograms over those
5 bins.

Figure 7 shows the histograms of the Tamura’s features of the TIK+database. Note that
there is a good variability in terms of contrast, roughness, and coarseness. Directionality
and line-likeness, instead, are generally low. In fact their value is typically high for
artificially generated texture images.
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Figure 7. Distribution of the perceptual features of the T1K+database.

2.3. Comparison with State-of-The-Art Texture Databases

Texture databases play a fundamental role in the development of texture analysis
methods. Earlier databases, such as Brodatz [9] and VisTex [10], were formed by a single
image per class. They were mainly used to define texture classification tasks, in which
multiple patches were extracted and used as samples of the class corresponding to the
image they were taken from. This approach was limited by the lack of intra-class variability,
and it was abandoned in favor of databases in which the texture samples were taken
under a multitude of acquisition conditions obtained by changing the viewpoint or the
lighting conditions in a controlled way. The CUReT database is a notable example of this
kind of database. It includes 61 texture samples, each one acquired under 93 different
conditions. Other databases collected with the same approach are KTH-TIPS [11,12],
ALOT [13], UIUC [14], RawFooT [15], and many others.

More recently, researchers departed from the traditional approach of taking controlled
pictures of single surfaces and started to take pictures of texture images “in the wild”. Cat-
egories are also defined to increase the intra-class variability. Examples of this alternative
approach are the DTD [16] and the FMD [17] databases.

Concerning the content of the images, most databases are generic and include a variety
of surfaces. Some databases focus on specific domains; for instance, there are databases
made of images of leaves [18], images of barks [19], food [15], ceramic tiles [20], terrain [21].

Table 1 summarizes the most relevant databases in the literature and compares them
with the newly proposed T1K+. The database significantly increases the number of texture
classes and the quality of the images in terms of resolution.
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Table 1. Summary of a selection of texture databases in the literature. All the databases except Brodatz contain color images.

Acronym Subject Classes Images Per Class Image Size Year Reference
Brodatz Mixed 111 1 640 x 480 1966 [9]
VisTex Mixed 167 1 785 x 512 1995 [10]
CUReT Mixed 61 93 200 x 200 1999 [22]

KTH-TIPS Mixed 10 81 200 x 200 2004 [11]
UlIuC Mixed 25 40 640 x 480 2005 [14]

KTH-TIPS2b Mixed 11 432 200 x 200 2006 [12]

VxC_TSG Ceramic tiles 42 12 128 x 128 2008 [20]

ALOT Mixed 250 100 1536 x 1024 2009 [13]
FMD Materials 10 100 512 x 384 2009 [17]
PlantLeaves Plant leaves 20 60 128 x 128 2009 [18]
DTD Texture attributes 47 120 640 x 640 2014 [16]
NewBarkTex Barks 6 273 64 x 64 2014 [19]

RawFooT Food 68 46 800 x 800 2016 [15]

GTOS Terrain 40 856 240 x 240 2016 [21]
T1K+ Mixed 1129 53 2465 x 3312 2021 This paper

3. Benchmarking Texture Descriptors

We experiment with several state-of-the-art hand-crafted and learned descriptors [23].
For some of them we consider both color (RGB) and gray-scale (L) images, where L is
defined as L = 0.299R + 0.587G + 0.114B. For all the feature vectors we consider the >
normalization. In the following we list the visual descriptors employed in this study:

¢ Hist L: this is a 256-dimensional gray-scale histogram [24];

e Hist RGB (with 256 bins) and 3 marg. hist.: these are two variants of RGB histograms,
both of size 768 [25];

*  Quantized RGB histogram (with 48 bins) [25];

e  Spatial RGB histogram as described in the paper by Huang et al. [26]. Four subregions
are considered,;

¢  Chrom. Mom.: a feature vector composed of normalized chromaticity moments of
size 10. We use the version defined by Pachos et al. [27];

e  Segmentation-based Fractal Texture Analysis as described in the paper by Costa et al. [28]
that outputs a 24-dimensional feature vector for a gray-level image;

e Cooccurrence matrix of color indexes as described in [29].

e  Granulometry feature vector as described in [30,31]

*  Gist: this feature vector is obtained considering eight orientations and four scales for
each channel. The size is 1536 [32];

e DT-CWT: this is 24-dimensional Dual Tree Complex Wavelet Transform obtained by
considering four scales, mean, and standard deviation, and three color channels. We
use the implementation by Bianconi et al. [33,34];

e  Color and Edge Directivity Descriptor (CEDD) is a 144-dimensional feature vector
based on a fuzzy version of the five digital filters proposed by the MPEG-7 Edge
Histogram Descriptor (EHD);

e  Histogram of Oriented Gradients (HoG) is a 81-dimensional feature vector computed
as nine histograms encoded with nine bins [35];

e  Gabor: mean and standard deviation of six orientations extracted at four frequencies
for each color channel filters. The final size is 96 [33,36];

*  Local Binary Patterns (LBP) with a circular neighborhood of radius 2 and 16 elements,
and 18 uniform and rotation invariant patterns for each channel for a total of 54 [37];

*  Local Binary Patterns (LBP-nri) with a circular neighborhood of radius 2 and 16 ele-
ments, and 243 uniform and no-rotation invariant [37];
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e LBP-nri combined with a 256-dimensional Local Color Contrast (LCC) [38-42];

U Learned descriptors, obtained as the intermediate representations of several Convolu-
tional Neural Networks [43]: VGG 16 and 19, SqueezeNet, Inception V3, Google Net,
Residual Network of depth 50 (ResNet-50). The resulting feature vector is obtained
by removing the final softmax nonlinearity and the last fully-connected layer. The
network used for feature extraction is pre-trained for scene and object recognition [44]
on the ILSVRC-2015 dataset [45].

4. Experiments

The T1K+ database contains 1129 classes and an average of about 5.32 images for
each class. We divide the database in two sets: 4871 training images (4 images per class
on average) and 1129 test images (1 image per class). Each image is further separated in
tiles of size 250 x 250. Following a chessboard strategy: we keep the tiles corresponding to
the “black” cases on the chessboard and we discard the remaining ones. The resulting tiles
are: 584,836 for training (500 per class) and 134,957 for test (100 per class). Figure 4 shows
sample tiles, one for each class.

To alleviate the computational burden we reduce, for all the experiments, the training
and test sets by a factor of 10 and 8, respectively, thus obtaining: 58,484 training tiles (50 per
class) and 16,870 tiles (15 per class). Later on we will demonstrate that this choice does not
influence the goodness of this study.

4.1. Evaluation Metrics

In all the experiments we measure performance in terms of:

Accuracy = Z =l c TPC ey
AR

Precision = IiciPrc = % i % ()

Recall = % f Re. = % i % 3)

SOV @

where, K is number of classes, ¢ represents a generic class, P. is the number of positives
for the class ¢, TP; is the number of true positives for the class ¢, FP, is the number of false
positives for the class ¢, and FN, is the number of false negatives for the class c.

4.2. Texture Classification Experiments

The aim of the first experiment was to evaluate the robustness of the visual descriptors
in a traditional classification task. We use a 1-Nearest Neighbor (1-NN) classifier with the
Euclidean distance. We evaluate the visual descriptors on the three classification tasks,
each for each semantic level depicted in Figure 3: 1129 classes, 266 classes, and 5 classes.

Table 2 shows results achieved by each visual descriptors in the 1129-classes problem.
Residual Networks, both RGB and L, outperform by about 40% and 30%, respectively, the
best hand-crafted descriptor that is the RGB histogram. The best accuracy is 82.34%.

Table 3 shows results achieved by each visual descriptors in the 266-classes problem.
Additionally in this case, Residual Networks, both RGB and L, outperform hand-crafted
descriptors. The best accuracy is 85.77%, that is about 3% higher than the accuracy of the
1129-classes experiment.
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Table 2. Benchmark using 1-Nearest-Neighbor (1-NN) (1129 classes).

Features Acc. Pr Re F1
Hist L 16.48 14.73 16.52 15.58
Hist RGB 42.24 41.97 42.38 42.18
3 marg. hist. 37.67 36.56 37.98 37.25
qHist RGB 42.49 42.10 42.62 42.36
sHist RGB 26.28 31.12 26.63 28.70
Chrom. Mom. 15.70 15.94 15.88 15.91
Cooc. Matr. 4.55 4.62 4.52 4.57
SFTA 10.28 10.03 10.35 10.19
Granulometry 26.40 27.08 26.63 26.86
GIST 29.53 33.28 29.74 31.41
DT-CWT 25.20 25.44 25.33 25.39
CEDD 22.31 23.05 22.45 22.74
HOG 11.67 12.88 11.70 12.27
Gabor 29.63 30.01 29.84 29.92
LBP 26.94 27.51 26.93 27.21
LBP-nri 31.26 3191 31.23 31.57
LBP-LCC 29.88 29.76 29.92 29.84
vggl6 64.85 65.84 64.79 65.31
vggl9 65.17 65.75 65.13 65.44
squeezenet 62.51 62.55 62.51 62.53
Inception V3 71.09 71.69 71.10 71.39
Google Net 58.40 58.71 58.36 58.53
Resnet50 L 67.23 67.53 67.17 67.35
Resnet50 82.34 82.95 82.32 82.64

Table 3. Benchmark using 1-NN (266 classes).

Features Acc. Pr Re F1
Hist L 21.62 13.69 14.79 14.22
Hist RGB 47.58 40.33 39.22 39.77
3 marg. hist. 42.86 33.44 35.22 34.30
qHist RGB 47.89 40.51 39.82 40.16
sHist RGB 31.61 31.82 23.60 27.10
Chrom. Mom. 21.75 16.39 16.85 16.62
Cooc. Matr. 9.31 4.80 4.76 4.78
SFTA 15.52 10.12 10.12 10.12
Granulometry 32.53 27.37 28.24 27.80
GIST 34.70 29.89 29.24 29.56
DT-CWT 31.71 26.47 27.56 27.00
CEDD 28.62 21.96 22.07 22.02
HOG 17.36 13.63 12.71 13.15
Gabor 36.39 31.33 31.15 31.24
LBP 33.87 29.82 29.98 29.90
LBP-nri 38.11 32.04 31.68 31.86
LBP-LCC 36.92 30.30 30.21 30.25
vggl6 70.63 68.01 66.96 67.48
vggl9 70.81 67.06 67.07 67.06
squeezenet 68.09 62.47 63.62 63.04
Inception V3 76.73 71.56 70.65 71.10
Google Net 64.23 59.70 59.39 59.55
Resnet50 L 72.32 65.57 65.40 65.49

Resnet50 85.77 82.78 82.13 82.45
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Table 4 shows results achieved by each visual descriptors in the 5-classes problem. Again,
learned features outperform hand-crafted descriptors. The best accuracy is now very high:
93.41%. In this task hand-crafted descriptors achieve higher accuracy with respect to the
previous experiments. The RGB histogram achieves an overall accuracy of 64.92%.

Table 4. Benchmark using 1-NN (5 classes).

Features Acc. Pr Re F1
Hist L 42.36 38.96 38.06 38.50
Hist RGB 64.92 63.59 61.82 62.69
3 marg. hist. 62.54 60.19 59.94 60.07
qHist RGB 65.14 63.70 62.14 6291
sHist RGB 52.77 54.80 47.55 50.92
Chrom. Mom. 47.26 44.96 45.32 45.14
Cooc. Matr. 33.79 3248 32.60 32.54
SFTA 40.26 37.61 37.66 37.63
Granulometry 55.91 53.98 54.36 54.17
GIST 56.05 55.06 53.69 54.37
DT-CWT 56.82 54.81 54.85 54.83
CEDD 51.44 49.92 49.68 49.80
HOG 41.83 41.37 39.75 40.55
Gabor 61.03 59.03 58.98 59.00
LBP 59.99 57.87 57.86 57.86
LBP-nri 60.89 59.03 58.12 58.57
LBP-LCC 61.01 58.08 58.08 58.08
vgglé 85.86 84.66 84.50 84.58
vggl9 85.90 84.60 84.63 84.61
squeezenet 83.39 81.50 81.89 81.70
Inception V3 89.95 88.74 88.40 88.57
Google Net 81.32 79.62 79.41 79.51
Resnet50 L 85.89 83.95 83.94 83.95
Resnet50 93.41 92.59 92.55 92.57

Figures 8 and 9 show accuracy comparison of each texture descriptor with respect to
the five thematic categories. In all the categories colored Residual Networks overcome other
descriptors. Hand-crafted features achieve a lower accuracy with respect to other classes.
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Figure 8. Visual descriptor comparison for each of the thematic categories.
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Figure 9. Performance of each visual descriptor on each thematic categories.

4.3. Accuracy vs. Training Set Size

To demonstrate that the reduction of training samples does not influence the goodness
of this study, we experiment different sizes of the training set ranging from 1 to 135 tiles
on average for each class. Figure 10 shows the accuracy trend with respect to the increase
in the number of training samples for each class. For this experiment, both the ResNet50
and ResNet50 L are employed. In both cases, the curve reaches a plateau after 45 tiles for
each texture class. The number of tiles used in the texture experiments is 50 on average for
each class.
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Figure 10. Accuracy trend as the average number of tiles per class of the training set increases.

4.4. One Shot Texture Classification

The aim of this experiment was to evaluate the goodness of visual descriptors when
only one tile for each texture class is available. We employ one tile per class as the training
samples and a total of 16,870 tiles as the testing samples. We repeat the experiment 10 times
to reduce possible bias related to the choice of the single tile.

Table 5 shows results achieved on average by each visual descriptor. In this case, none
of the descriptors achieve good performance. The best is still the ResNet-50 RGB with
43.48% of accuracy. Most of the hand-crafted descriptors are below 10% accuracy.

Table 5. One-shot learning using 1-NN.

Features Acc. Pr Re F1
Hist L 4.58 4.92 4.63 4.77
Hist RGB 11.74 14.32 1191 13.00
3 marg. hist. 13.20 15.28 13.45 14.30
qHist RGB 11.92 14.52 12.08 13.19
sHist RGB 7.06 9.42 7.27 8.20
Chrom. Mom. 7.31 7.65 7.42 7.54
Cooc. Matr. 1.69 1.90 1.69 1.79
SFTA 3.62 412 3.69 3.89
Granulometry 6.03 7.82 6.08 6.84
GIST 8.89 12.27 9.04 10.40
DT-CWT 7.86 9.43 7.98 8.65
CEDD 9.78 10.86 9.93 10.37
HOG 3.38 4.05 3.39 3.69
Gabor 7.43 8.97 7.52 8.18
LBP 6.49 8.46 6.51 7.36
LBP-nri 6.91 9.89 6.88 8.12
LBP-LCC 7.72 9.64 7.68 8.54
vgglé 27.70 32.86 27.94 30.20
vggl9 27.80 33.38 28.07 30.49
squeezenet 24.38 27.26 24.57 25.84
Inception V3 31.88 39.13 32.15 35.29
Google Net 2417 29.12 24.35 26.52
Resnet50 L 30.21 36.21 30.45 33.08
Resnet50 43.48 50.55 43.83 46.95

5. Discussion

The results of the experiments give important insights about the T1K+ database. First
of all, it is clear that features computed by pre-trained convolutional networks vastly
outperform hand-crafted descriptors. This fact confirms the large amount of evidence
that characterized the last decade of research in computer vision. Complex models are
definitely more effective in automatically identifying discriminative visual representations
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than any human expert. Among neural architectures, Resnet50 clearly outperformed all
the alternatives considered in all the tasks.

Another interesting result is that color is still a very important cue for the recognition
of textures. Descriptors that make use of it tend to perform better than their color-blind
versions. This also applies to features extracted by neural networks. Despite the variability
in the lighting conditions, color information allows to distinguish most textures, leaving
as ambiguous only the texture classes with similar color distributions. In fact, with color
histograms, we obtained the best results among hand-crafted descriptors. This contradicts
other results in the literature, and shows that increasing the number of classes and, therefore,
increasing their density in the feature space seriously hampers even complex hand-crafted
descriptors such as HOG, GIST, and LBP.

A very important factor in obtaining high classification accuracy is the availability
of a large number of training samples. Without it, the descriptors alone cannot capture
the intra-class variability. The extreme case is the one-shot learning scenario, in which
we observed relatively poor results with all the descriptor. The highest accuracy in that
scenario has been obtained by neural features and it is only of about 43%. This result shows
that there is still plenty of room for possible improvement in this field.

6. Conclusions

In this paper we presented T1K+, a database of high-quality texture images fea-
turing 1129 diverse classes. Intra-class variability is ensured by the acquisition pro-
tocol, which required changes in the viewpoint and in the lighting conditions across
multiple acquisitions of the same texture. The database is publicly available at http:
//www.ivl.disco.unimib.it/activities /t1k/ and we plan to continue the collection of new
texture classes to further enlarge it.

The database is not only large but is also organized in a taxonomy that makes it
suitable for a large variety of experiments and investigations ranging from classification to
retrieval. To provide an initial benchmark, we tested several well known texture descriptors
for classification using nearest neighbor classifiers.

Several further investigations are suggested:

®  The database has been acquired with a weak control of viewing and lighting conditions.
We have shown in [38,46] that different color temperature light can be artificially
simulated and that these may have an impact on texture classification performance.
It would be interesting to generate such an augmented database and verify if the
absolute and relative ranking of the descriptor performance is maintained.

e Other type of image artifacts and/or distortions could be artificially generated on the
T1K+, such as noise, blur, jpeg compression, etc. In that case, the performance of the
CNNs may decrease.

*  Deep learning models could be especially designed for texture classification, with the
aim of making it possible to obtain a high classification accuracy without relying on
large models pre-trained for object and scene recognition.

e It would be also interesting to focus on specific portions of the T1K+, such as ar-
chitecture, food, leaves, textile, etc. and to develop optimized ad-hoc methods for
each domain.
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