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ABSTRACT

We present a general-purpose framework for the optimiza-
tion of parametric contrast enhancement algorithms. We first
define a regression module for image acceptability, which is
based on deep neural features and which is trained on a large
dataset of user-expressed preferences. This regression mod-
ule is then used as the objective function of a Bayesian opti-
mization process, guiding the search for the optimal param-
eters of a given contrast enhancement algorithm. In our ex-
periments we optimize three different contrast enhancement
algorithms of varying levels of complexity. The effectiveness
of our optimization framework is experimentally confirmed
by evaluating the output of the optimized contrast enhance-
ment algorithms with respect to reference enhanced images.

Index Terms— Contrast enhancement, Bayesian Opti-
mization, Convolutional Neural Networks

1. INTRODUCTION

Image contrast enhancement is one of the last operations con-
ducted in a typical camera pipeline, and it serves the purpose
of improving the perceivability of objects in the scene by en-
hancing the brightness difference between objects and their
backgrounds [1].

The problem has been treated with different approaches
in the state of the art, from the simplest gamma correction
and histogram equalization, up to transform based methods,
exposure-based methods and image fusion based methods.
Most of the existing approaches for image contrast enhance-
ment rely on the values of one or more parameters to operate
on images in order to perform the correction steps. These pa-
rameters are in general tuned manually on a set of different
possible case scenarios or for specific images.

In this paper a user-preferences based framework for con-
trast enhancement algorithms optimization is proposed, as
shown in Figure 1. The proposed framework is based on
the use of a logistic regressor, capable to model user prefer-
ences based on the concept of image acceptability defined by

� Source code and data available at: https://github.com/
TheZino/contrast-algo-opt-framework
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Fig. 1. Overview of the proposed framework for contrast en-
hancement algorithms optimization.

Jaroensri et al. [2] and described later on. The logistic regres-
sor score given to new images is used as objective function for
bayesian optimization for the selection of the best parameters
of different algorithms for image contrast enhancement.

Several methods for adjusting image contrast have been
developed through the years. In general two groups of con-
trast enhancement algorithms can be identified: based on
global correction or local correction. In the first group is pos-
sible to find approaches like gamma correction and histogram
equalization. Multiple versions of the histogram equalization
technique have been proposed in the years, making it adaptive
to the content of the image [3], preserving the original image
brightness while enhancing the contrast [4, 5], or incorpo-
rating models of perception [6, 7]. Other approaches in this
first group are exposure-based methods [8], which adjust the
exposure level of an image using a mapping function between
the light values and the pixel values of interested objects, and
image fusion based methods [9], which combine relevant
information from multiple images taken from the same scene
in order to produce a final more informative one. In the sec-
ond group, related to local correction, it is possible to find
the method by Moroney et al. [10], and the Local Contrast
Correction (LCC) by Schettini et al. [11]: these are based on
either the Gaussian or the Bilateral filter to selectively deter-
mine image areas to be brightened or darkened. In the last
years a number of approaches for image contrast enhance-
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ment exploiting machine learning have also been presented.
Here can be found solutions based on Neural Networks for
image enhancement [12] and techniques for hyperparameter
selection and optimization of specific algorithms [13, 14].
Jaroensri et al. [2] proposed in 2015 a solution to model
user-expressed preferences of image acceptability: starting
from a subset of the MIT-Adobe 5K dataset [15], the authors
modified the images using different combinations of contrast
and brightness, which were later evaluated by a pool of users
as being acceptable or not acceptable. A logistic regression
classifier was then trained to fit the acceptability label based
on low level image content features such as the fraction of
highlight and shadow clipping, luminance histogram, root-
mean-square luminance contrast, and others. In our work we
develop an alterntive deep-feature-based acceptability regres-
sor, which we exploit to guide an optimization process for
image contrast enhancement.

2. PROPOSED FRAMEWORK FOR CONTRAST
ENHANCEMENT

The proposed framework for contrast enhancement trains a
logistic regressor for image acceptability estimation, and uses
it as objective function to guide a Bayesian optimization for
the selection parameters in contrast enhancement algorithms.
A general overview of the approach is depicted in Figure 1.

2.1. Regression of user-expressed image acceptability

A logistic regressor is first trained with the purpose of using
it as objective function of the contrast enhancement parame-
ters optimization step, described in the next section. Where
preliminary works relied on low-level image features for this
task [2], here we adopt an approach based on convolutional
neural networks, allowing for a much faster training proce-
dure and inference step. Specifically, we rely on a VGG-
16 model [16] previously trained for image classification on
1000 classes, extracting features from the last convolutional
layer, after which an average pooling operation is applied
in order to bring the spatial resolution to dimension 1 × 1.
The features obtained from the deep neural network are used
to train a tree ensemble regressor based on Adaptive logistic
regression (LogitBoost) [17], minimizing binomial deviance.
Different instances of the regressor are trained in relation to
the data preprocessing as later described in section 3.1.

2.2. Parametric contrast enhancement

Given a model of user preferences capable to associate a score
of acceptability to an image, is possible to design an optimiza-
tion procedure in order to maximize the score of an image,
given a certain enhancement algorithm. The proposed ap-
proach for algorithm optimization can be applied to any kind
of algorithm for contrast enhancement whose performance

depends on one or more parameters. In order to prove the
effectiveness of user-preference-driven optimization, three al-
gorithms for contrast enhancement are here considered.

The first algorithm consists of a simple combination of
two global operators: first the image is processed using a
gamma function (with parameter γ), and then an histogram
stretching operation (with two parameters max value and
min value) is performed over the output of the gamma func-
tion. The second one is a slightly different configuration
which adopts a parametric S-curve function defined by Kang
et al. [13], dependent on two parameters: λ, which deter-
mines the slope of the S-curve, and a which determines the
flex point of the S-curve:

y =

{
a− a(1− x

a )
λ ifx ≤ a

a+ (1− a)(x−a
1−a )

λ otherwise
(1)

The last algorithm is Local Contrast Correction (LCC) by
Schettini et al. [11], which determines areas of images to be
brightened or darkened based on their local intensity, relying
on a bilateral filter to reduce halo-like artifacts. The parame-
ters of this algorithm are α, which determines the exponent of
the gamma-like function applied to the luminance channel of
the input images, and two standard deviation values σ1 and σ2

which are the parameters of the bilateral filter function. This
algorithm works on the Y channel of the YCbCr color space.

2.3. Bayesian parameters optimization

We exploit Bayesian optimization [18] to determine the best
parameters of the considered contrast enhancement algo-
rithms. Let x be the N -dimensional parameter configuration
of a given algorithm for contrast enhancement. Let f(x), the
objective function, be composed as: I) the application of the
algorithm with parameters x on an input image or dataset,
II) the extraction of VGG-16-based neural features from the
enhanced images, III) the processing of neural features by
the trained regressor, which assigns an acceptability score
between 0 and 1. Let a be an acquisition function that eval-
uates the expected amount of improvement in the objective
function. Bayesian optimization updates a Gaussian model of
f(x) to obtain a posterior distribution Q over functions, and
finds the new point x that maximizes a(x). In other words, it
finds the set of parameters that maximizes the score given by
the logistic regressor on the newly-enhanced images.

Two versions of each algorithm are considered for op-
timization: one by optimizing over a training dataset and
one optimizing per individual image. In the first case the
optimization is performed offline, optimizing the parameters
based on the performance on the whole dataset, and then
using these parameters for the corresponding algorithm at
inference time. In the second case the optimization is per-
formed directly over the images at processing time, thus
leading to a set of parameters specifically optimized for each
new image.



Fig. 2. Example of data points distribution in con-
trast/brightness space, before (left) and after (right) data
cleaning. Green dots are images labelled as “acceptable” la-
bel, blue crosses are images labelled as “non acceptable”.

3. EXPERIMENTAL SETUP

3.1. Acceptability dataset and data preprocessing

The dataset presented by Jaroensri et al. [2] has been adopted
to train the logistic regressor of user-expressed acceptability.
It contains user-expressed binary acceptability judgments of
500 images, adjusted to various configurations using bright-
ness and contrast settings in roughly 600 variations. The
images were originally taken from the MIT-Adobe fiveK
Dataset [15], all processed with white balancing and satura-
tion according to “Expert C”. The total amount of data points
collected is 301320, of which 241148 constitute the training
set while the remaining 60174 are used as test set.

Due to the presence of an high amount of outliers, a clean-
ing procedure has been performed: as can be seen in Fig-
ure 2, in the areas where most of the images are labeled as
being acceptable, sparse points with the non-acceptable label
can occur, and viceversa. A visual inspection of these out-
liers confirmed them as being unequivocally mislabelled by
the original users (such as completely dark images). In or-
der to properly train the regressor model, those points have
been removed from the training dataset. The cleaning proce-
dure consists of a density analysis in the brightness/contrast
space, performed by dividing the space in bins and counting
the amount of positive labels in each bin. Using a fixed thresh-
old the points have then been removed obtaining a new set of
data points for each image. An example is shown in Figure 2.

Secondly, since in the original dataset the 600 data points
per image present an high disparity in the labels (around 75%
of the data points are labeled as not-acceptable, while the re-
maining 25% are labeled as acceptable), a data replication
procedure has been applied to re-balance the training data dis-
tribution: the acceptable images have been replicated in order
to reach the same amount of not-acceptable images.

3.2. Bayesian optimization dataset and configuration

The optimization procedure of the three contrast enhancement
algorithms has been performed using the test set of the dataset
proposed by Jaroensri et al. [2]. For each image in the dataset,
the version with no contrast or brightness modification is used
as input to the contrast-enhancement algorithm.

Table 1. Evaluation of user-expressed acceptability regres-
sion, analyzing the impact of the data augmentation and dat-
apoint cleaning procedure on the dataset by [2].

Data
balancing

Outliers
removed

Micro
accuracy

Macro
accuracy Precision Recall F-Score

78.85% 64.26% 0.607 0.360 0.452
✓ 75.01% 73.19% 0.489 0.697 0.575
✓ ✓ 74.98% 73.33% 0.488 0.701 0.576

Starting from this image and a set of random values for
the algorithm parameters, each of the three algorithms have
been optimized using the result of the logistic regressor as ob-
jective function. The optimization has been performed using
Bayesian optimization procedure for a total amount of 30 iter-
ations. In the case of optimization on training dataset, at each
iteration 120 random images are processed and evaluated. In
the case of per-image optimization, the procedure processed
the same image for a total amount of 30 iterations.

3.3. Optimized contrast enhancement evaluation

The final evaluation of the contrast enhancement results has
been performed using a full-reference metric. In order to de-
termine which metric is the most suitable for our domain,
each of the 14 metrics analyzed in the work of Ponomarenko
et al. on the TID2013 dataset [19] has been compared with
users Mean Opinion Score only on images distorted under
the label “Contrast change”. The collected correlation val-
ues, based on Spearman and Kendall indices, highlighted the
Visual Information Fidelity metric (VIF-P) [20] as the most
suitable option for the evaluation of the optimized algorithms
performances, with 0.86 and 0.64 correlation values respec-
tively.

Since the used dataset provides for each image multiple
enhanced versions but not a target one, it is necessary to select
a reference image to perform the comparison. To this end, the
following selection procedure has been defined: considering
only the positive labels, the image closest to the average con-
trast/brightness data point has been selected as “average user
preferred image”, and used as a final reference for evaluation
of the optimized contrast enhancement algorithms.

4. EXPERIMENTAL RESULTS

The results for the training of the acceptability regressor are
presented in Table 1, following different versions of the data
preprocessing procedure. Since the test set presents the same
unbalanced nature of the training set in terms of labels, macro
accuracy has been used to select the best configuration to be
used for the optimization procedure. It is possible to ob-
serve how the data balancing procedure contributes drasti-
cally to improve macro accuracy, which evaluates both classes
equally. The outliers removal procedure introduces a small,



Table 2. Results in terms of VIF-P score and percentage of
images from [2] improved after our contrast enhancement.

Optim.
level Contrast enhancement algorithm VIF-P

% improved
images

None Original input 0.8162 -
None Local Contrast Correction (LCC) 0.7874 31%

Gamma + Histogram Stretch 0.8765 95%
Dataset Gamma + S-curve 0.8166 52%

Local Contrast Correction (LCC) 0.8645 80%

Gamma + Histogram Stretch 0.8582 85%
Image Gamma + S-curve 0.8405 66%

Local Contrast Correction (LCC) 0.8720 84%

Gamma +
Histogram Stretch Gamma + S-curve LCC
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Fig. 3. Distributions of the differences in VIF-P values be-
tween the enhanced images and the original input ones.

yet consistent, improvement across different metrics. This
suggests that the specific combination of neural features and
logistic regressor are inherently robust to label noise.

The final results for optimized contrast enhancement are
presented in Table 2 for all three considered algorithms, in
terms of average VIF-P before and after enhancement. Two
groups of scores are reported, corresponding to the optimiza-
tion on dataset and per image. As can be seen from the table,
the application of the optimization procedure improves the
quality of the output images with respect to the input ones.
Analyzing in details the three algorithms, different behaviours
can be observed. While for both the S-curve and LCC algo-
rithms the per-image optimization brings higher performance
with respect to the optimization on dataset, the behaviour with
the gamma correction with histogram stretch operation is the
opposite. However, with the only exception given by the S-
Curve approach optimized on the dataset, the optimization
procedure brings an improvement in terms of average VIF-P.
The best result in terms of percentage of images whose quality
improved after correction is given by the Gamma + Histogram
Stretch algorithm, which positively affected 95% of the test
images. Finally, the LCC algorithm can be compared against
its default parametrization (non-optimized), highlighting the
positive impact of its optimization.

A more in detail view of the distribution of differences
of quality score between the target images and the ones pro-

Input
Gamm +

Histogram Stretch
Gamma +
S-curve

Local Contrast
Correction (LCC)

Fig. 4. Images processed with different optimized contrast
enhancement algorithms, to highlight the difference in output
enhancements. Other examples available in our repository.

cessed by the three algorithms is shown in Figure 3. As can be
seen in this representation, the Gamma + Histogram Stretch
algorithm brings the most noticeable improvement, alongside
the LCC algorithm in the per-image optimized version.

Figure 4 visually presents the effect of modifying input
images using the three contrast enhancement algorithms op-
timized through our framework. It is possible to observe
how different algorithms operate differently. Although all the
considered algorithms involve non-linear processing, which
can introduce modifications in the image chromaticity, the
Gamma+S-curve solution appears to be the most strongly
affected. These results prove the effectiveness of using user
preferences to drive an optimization procedure for contrast
and brightness enhancement, and demonstrates how it can
also be applied to different kind of algorithms.

5. CONCLUSIONS

We have presented a framework for the optimization of para-
metric contrast enhancement algorithms. Our solution is
based on the definition of an acceptability regression module,
trained on user-expressed preferences, which is then exploited
as the guiding optimization function for the selection of the
best parameters of chosen contrast enhancement algorithms.
We have experimented with both dataset-level optimization
and image-level optimization, of three different contrast en-
hancement algorithms of different levels of complexity. Our
evaluation shows that the output of the optimized algorithms
is consistently improving the quality of the input image, as
measured by the Visual Information Fidelity metric. The
improvement has been also visually confirmed. In the future,
we will collect judgements on the final results by relying to
a panel of human observers, and we will expand our analysis
to other types of image enhancement [21].
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