
Journal of Electronic Imaging 14(2), 023008 (Apr–Jun 2005)
Spectral-based printer modeling and
characterization

Silvia Zuffi
Construction Technologies Institute

ITC-CNR
Milano, Italy

E-mail: zuffi@itc.cnr.it

Raimondo Schettini
Giancarlo Mauri

DISCo
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Abstract. Spectral characterization involves building a model that
relates the device dependent representation to the reflectance func-
tion of the printed color, usually represented with a high number of
reflectance samples at different wavelengths. Look-up table-based
approaches, conventionally employed for colorimetric device char-
acterization cannot be easily scaled to multispectral representa-
tions, but methods for the analytical description of devices are re-
quired. The article describes an innovative analytical printer model
based on the Yule–Nielsen Spectral Neugebauer equation and for-
mulated with a large number of degrees of freedom in order to ac-
count for dot-gain, ink interactions, and printer driver operations. To
estimate our model’s parameters we use genetic algorithms. No as-
sumption is made concerning the sequence of inks during printing,
and the printers are treated as RGB devices (the printer-driver op-
erations are included in the model). We have tested our character-
ization method, which requires only about 130 measurements to
train the learning algorithm, on four different inkjet printers, using
different kinds of paper and drivers. The test set used for model
evaluation was composed of 777 samples, uniformly distributed
over the RGB color space. © 2005 SPIE and IS&T.
[DOI: 10.1117/1.1900137]

1 Introduction

Multispectral imaging is attracting increasing attentio
triggered by the appealing advantages of the multispec
approach compared with traditional colorimetric imagin1

In image acquisition, the possibility of capturing the refle
tance spectra of surfaces in a multispectral image con
tutes a powerful tool for detailed and accurate color inf
mation regarding objects and scenes. In ima
reproduction, the multispectral approach can significan
reduce the undesirable effects of metamerism between
original and the corresponding reproduction.2

In the multispectral reproduction of an image, the
mensions of the color space are no longer the three of c
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rimetric systems employing CIELab or CIEXYZ colo
spaces, but amount to the number of samples used to
scribe the spectrum. The color space of image reproduc
devices will probably increase as well from three or four
more dimensions, to enhance the capability of these dev
to reproduce the reflectance spectra of colors. Conventio
reproduction systems, in fact, cannot establish spec
matches between a generic color and an halftone print,
to the limitation in the number of different inks used by th
devices on the market nowadays. Printer characteriza
consists in the definition of the relationship between dev
dependent and device independent color representatio3

Conventionally, colorimetric characterization is done
printing and measuring a large number of colors rang
over the whole gamut of the device, storing these
look-up tables~LUT!, and applying some sort of interpola
tion method to map intermediate points. LUT-based me
ods of printer characterization require the measurement
large number of sample color patches due to the hig
complex nonlinear relationship between the devic
dependent values and the colorimetric color space.

Spectral characterization involves building a model th
relates the device-dependent representation to the re
tance function of the printed color, usually represented w
a high number of reflectance samples at different wa
lengths. A LUT-based approach for device characterizat
is consequently not feasible in the context of multispec
reproduction as the size of the LUT to be built would
very large.

Models for the analytical description of printing pro
cesses have long been proposed due to the advantage
respect to LUT-based approaches, of the small numbe
measurements they require. Most of the methods develo
for the spectral-based characterization of binary printers
based on the color mixing model introduced by Hans N
gebauer in 1937. It assumes additive color theory, and c

;
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putes the reflectance of an halftone print as the sum of e
combination of inks weighted by the proportion of pap
that it covers. Each ink combination is therefore a prima
in the additive model, and is called a Neugebauer prim
The model was unable, however, to predict the reflecta
of colored halftones with sufficient accuracy until 195
when the Yule–Nielsen correction accounting for the sc
tering of light within the paper was introduced.

The Yule–Nielsen effect of light scattering causes
shadow around the edge of the dots that makes them
larger. The light, entering from points where there is ink,
reflected in a region around the point of incidence due
multiple scattering in the substrate. This makes the
flected image a diffuse version of the incident pattern
light, and as a consequence, the dots on paper appear la
This phenomenon, referred to as optical dot gain, was m
eled by Yule and Nielsen with the introduction of a simp
n factor as a power function in the equation of a sing
color halftone, and successively applied in the Neugeba
color mixing model.

Much has been published on the physical grounds
the Yule–Nielsenn value. It has been observed that valu
between 1 and 2 are physically meaningful, and val
greater than 2 represent various effects, among which
variation in dot density, and are required for high-resolut
printers.4

In its original formulation, the physical justification o
the Neugebauer model is quite intuitive, but it is also tr
that many phenomena, unpredictable or unknown, t
place in printing due to the interaction among inks and
inks with paper. Much research has been devoted to
optimization of the model, whose results indicate that
physical integrity of the mixing model can be sacrified
maximize its performance of color prediction. It is also o
opinion that the adoption of a correction without a cle
physical justification is permissible if it improves the mo
el’s performance. Hence, then value is usually treated as
free parameter to improve the model fit; a waveleng
dependentn value has been also used.5 Several methods
more complex than the simplen value have been succe
sively introduced to model optical dot gain, among whi
the convolution with a point spread function,6 or probabil-
ity models.7,8

Another effect, commonly called mechanical dot ga
determines a color darker than that predicted: due to
spread of the ink on paper, the real size of a dot printed
a substrate is larger than its theoretical size. The nonlin
relationship between the theoretical concentration of ink
paper and the effective concentration~that is, the area the
dot actually covers!, due to the combination of optical an
mechanical dot gain, is usually taken as a parameter in
model fit optimization. Alternative approaches describe
spreading of the ink, as proposed by Emmel and Hersc
a method that models the ink spread by enlarging the d
impact on the basis of the configuration of its neighbors a
the state of the surface,9,10 or by Gustavson,6 who models
the physical dot gain with a transmission function defin
on a blurred version of the halftone image. The accuracy
the various Neugebauer models has been investigate
Rolleston and Balasubramanian.11 They observed that a
considerable improvement may be obtained with a cellu
model if broadband measurements are employed, whe
02300Journal of Electronic Imaging
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spectral measurements are less useful. Cellular approa
have also been followed by Agar and Allebach.12 Bala-
subramanian has proposed a technique based on a weig
least squares regression to optimize the Neugeba
primaries,13 whereas Xiaet al.14 has approached Neuge
bauer optimization with a total least squares regress
method that accounts for errors in the measured reflecta
for both the primaries and the modeled samples. Berns
his colleagues at the Munsell Color Laboratory have be
working on multispectral color reproduction for sever
years.2 Tzeng in his PhD thesis15 and Tzeng and Berns16

have presented a spectral-based color separation algor
exploiting the Yule–Nielsen Spectral Neugebauer mo
for a six-ink inkjet printer, which takes into account th
limit of inktrapping, considering the printer model th
union of ten four-ink printer models. The same color sep
ration approach has been used by Taplin and Berns with
the ink-limiting constraints.17 The paper is organized as fo
lows: Section 2 describes the proposed method, Sec.
lustrates the experiments performed, and Sec. 4 reports
conclusions.

2 Printer Modeling and Spectral Characterization

We have adopted the Yule–Nielsen modified Spectral N
gebauer~YNSN! model for binary printer characterization
The parameters of the YNSN model are usually compu
with regression-based methods. The Yule–Nielsenn value
may be derived from an exhaustive procedure of er
minimization between the measured and the predicted s
tra of a set of colors, where n varies over a limited range
values. Dot gain functions can be estimated before,13 or
after4,15 then-value optimization. In a context in which th
physical meaning of the Yule–Nielsenn value has been
lost, then and dot gain functions represent two strateg
for dealing with the effect of dot gain regardless of
origin, optical or mechanical, and should therefore be e
mated at the same time. Moreover, our experience sh
that the training set of reflectance data does not alw
exhibit the characteristics of regularity that make it possi
to fit the model to the printer simply by using least-squa
estimated parameters. To solve this problem, we have
signed an analytical printer model that can be used reg
less of the characteristics of the device considered.
model is based on the Yule–Nielsen Spectral Neugeba
equation, formulated with a large number of degrees
freedom in order to account for dot gain, ink interactio
and printer-driver operations. In the definition of the who
characterization model, we kept the printer driver and
print process transformations as separate modules. We
ploy a general but plausible equation to relate RGB
CMYK. Our approach, therefore, would allow an ea
adoption of more complex and complete RGB to CMY
models, if they would be available.

To estimate the model’s parameters we use genetic a
rithms. The basic elements of genetic algorithms are
scribed in Sec. 2.1. Section 2.2 describes the printer mo
and Sec. 2.3 the genetic algorithm used.

2.1 Genetic Algorithms

Genetic algorithms~GA! are one of the heuristic searc
methods that have been proposed and extensively studie
deal with difficult optimization problems, as an alternati
8-2 Apr–Jun 2005/Vol. 14(2)
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to conventional optimization methods. They are a gene
method inspired by the mechanisms of evolution in biolo
cal systems, based on the Darwinian principle of the s
vival and reproduction of the fittest, and are appropriate
complex nonlinear models where location of the global o
timum is a difficult task~see, e.g., Refs. 18 and 19 for a
introduction to GA and their applications!.

In the basic genetic algorithm every candidate solut
to the optimization problem is represented by a sequenc
binary, integer, real, or even more complex values, ca
an individual, or chromosome. Further, a function assign
a suitable ‘‘fitness’’ value to every individual is defined;
a nonlinear programming scenario, the fitness function w
reflect the objective value of the given model.20 Then, a
small numbern of individuals~with respect to the cardinal
ity of the whole solution space! are randomly generated a
an initial populationP. The GA then iterates a procedu
that produces a new populationP8 from the currentP, until
a given ‘‘STOP’’ criterion is satisfied. Each iteration co
sists in the following steps:

• fitness evaluation: for every individualx in P, the
value f (x) is computed;

• selection:n/2 pairs of individuals are randomly se
lected from populationP; the probability of selection
is higher for individuals of greater fitness;

• crossover: two new individuals~sons! are generated
by cutting the two individuals of each pair~parents! at
a randomly chosen point and interchanging the fo
parts so obtained; and

• mutation: the value of each position of the elements
P8 is changed with a given probabilitypm .

In this way, since the sons inherit the distinctive featu
from their parents, the mean fitness of the population
creases from a generation to the next one, that is we c
centrate our search to regions of the solutions space ne
optimal solutions. The GA techniques are particularly u
ful when dealing with complex nonlinear models that r
quire the simultaneous management of many parame
and with irregular training data sets. In these situatio
globally optimal solutions can be found only by exhaust
search, which is computationally infeasible. So, the
turned solution is, in general, a local optimum. Howev
especially when handling integer variables, GA have so
advantages versus conventional gradient search techn
applied to non-linear programming models, as shown
example in Ref. 20. The disadvantages are that geneti
gorithms cannot guarantee an optimal solution, and tha
is, in general, also difficult to tune their free parameters

2.2 Printer Modeling

Spectral characterization involves building a model that
lates the device dependent representation to the reflect
function of the printed color. In our approach, the dev
dependent color representation is the RGB values sen
the printer driver by the application. The printer driver o
erations that implement the conversion from RGB to
CMYK ink amounts to print are therefore included in th
model. This strategy is functional to the definition of
02300Journal of Electronic Imaging
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general method for printer characterization, as in most
the cases the printer driver operations are unknown to
user.

2.2.1 Printer model

The model of the printer we refer to is based on the we
known equation. According to the YNSN model, the spe
trum of aN inks halftone print is the weighted sum of 2N

different colors, called Neugebauer primaries, given by
the possible overprints of inks. The weight of each Neu
bauer primary is the area it covers in the halftone cell. T
YNSN model for a 4-ink halftone print is

Rprint,l5F (
p50

15

apRp,l
1/n Gn

l51,...,M , ~1!

whereRprint,l is the reflectance of the printed color,n is the
Yule–Nielsen factor,Rp,l is the reflectance of thep’th Neu-
gebauer primary, andap is the primary area coverage. Th
area coverage is the percentage of the halftone cell cov
by the Neugebauer primary.

A model by Demichel can be used to compute the p
centage of the area covered by each primary. The dot o
lap is the product of the relative area covered by sin
inks, computed in a stochastic fashion that assumes the
dots are randomly arranged. The model is considered v
for random or rotated halftone screen;21 it fails in all cases
in which there is a singular screen superposition, althou
the color deviation observed is not excessively large.22 For
dot-on-dot printing a different formulation must b
considered.23

We have used the model for a random screen, and c
puted area coverage according to the equations in Tab
where c5@c, m, y, k# represents the concentration
inks for printing a given color.

Table 1 Calculation of the area coverage for each Neugebauer pri-
mary, given the concentration of inks.

Index
(p)

Neugebauer
primary Area coverage (ap)

0 W (12c)(12m)(12y)(12k)

1 K (12c)(12m)(12y)k

2 Y (12c)(12m)y(12k)

3 YK (12c)(12m)yk

4 M (12c)m(12y)(12k)

5 MK (12c)m(12y)k

6 R (12c)my(12k)

7 RK (12c)myk

8 C c(12m)(12y)(12k)

9 CK c(12m)(12y)k

10 G c(12m)y(12k)

11 GK c(12m)yk

12 B cm(12y)(12k)

13 BK cm(12y)k

14 CMY cmy(12k)

15 CMYK cmyk
8-3 Apr–Jun 2005/Vol. 14(2)
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2.2.2 Printer driver

In this work, as in the majority of practical situation
printer drivers accept only RGB images, and the inter
operations that perform the conversion from the input i
ages RGB values to CMYK printer digital counts are u
known. For these reasons, in our work, printers are con
ered RGB devices, and some reasonable assumption
made on how the printer driver computes the amounts
CMYK. In the conversion from RGB to CMYK, gray com
ponent replacement~GCR!, replaces the neutral or gra
component of a three-color image with a certain level
black ink. This process might be accomplished by sim
techniques up to a sequence of complex operations. B
cally, the least predominant of the three primary inks
used to calculate a partial or total substitution by black, a
the color components of that image are reduced to prod
a print image of nearly equivalent color to the origin
three-color print.24

A fundamental assumption in GCR is that the gray co
ponent of an arbitrary CMY combination is given by th
minimum of C, M, and Y. The gray component can then
used as input to the K addition function, which defines
amount of requested black. A simple model of GCR
based on the rationale that the CMY reduction should
proportional to the K addition, usually chosen to mee
desired behavior along the neutral axes.3 The printer driver
is therefore modeled according to

X5min~C,M ,Y!,

k5X,

c5C2 f ~X!, ~2!

m5M2 f ~X!,

y5Y2 f ~X!,

where the set of CMY primaries are simply computed
complementary values of RGB, here representing dig
counts in the printer color space, and the K addition fu
tion is the identity. This simplified model is a basic GC
model, based on an assumption of ideal CMY inks.

The function f (X), that defines the reduction of colo
components, has the following form:f (X)5UX. The co-
efficient U spans in the range@0,1#; its actual value, for the
device to be modeled, is estimated during the character
tion phase by the genetic algorithm.

2.2.3 Dot gain and ink interaction

If we consider the print of a single ink on paper, the YNS
model is simplified to

Rprint,l
1/n 5~12cink!Rw,l

1/n 1cinkRink,l
1/n ~3!

wherecink is the ink concentration.
If we print and measure a ramp of samples with i

concentrations ranging from 0 to 1, and compute the eff
tive concentration of ink using the above equation w
02300Journal of Electronic Imaging
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n51.0, the effective concentration appears to depend on
wavelength~Fig. 1!, indicating that the Yule–Nielsen facto
may be far from being a constant.

The scattering of light within the substrate is waveleng
dependent;13 this has been taken into account by Iino a
Berns with a wavelength-dependentn factor.5 Nevertheless,
in our work we follow a different strategy: we refer t
wavelength dependence when considering the effec
concentration of inks, in order to be able to account
different types of inks in another way. That is, in o
model, the complex interaction of inks and substrate de
mining optical and mechanical dot gains depends upon
wavelength, but also upon the quantity and number,
types of inks in the halftone.

In general, dot gain functions represent an increase
the effective concentration with respect to the theoreti
concentration, and peak at around 50% of the latter,
have observed a nonuniform behavior depending on
wavelength, and even a negative gain in some cases~Fig.
1!. Consequently, we have looked for a function that co
describe both positive and negative dot gain while using
smallest possible number of parameters for the model.
function used, tuned with only one parameter, is

cl5
ct

~12Cl!•ct1Cl
, ~4!

wherect is the theoretical concentration of ink, compute
from RGB values using Eq.~2!, andCl is the wavelength-
dependent parameter. The same type of function has b
used by Roberts.25

Dot gain functions are commonly used to model t
spread of inks on paper, but the spread may be altered w
covering a previously deposited ink. Various strategies
be employed to account for this phenomenon.26,27,10 We
have chosen to account for the interaction of the inks
providing a different dot gain function for any overprinting
Table 2 lists the parameters used to compute the effec
concentration of inks, with Eq.~4!, to obtain the area cov
erage for any Neugebauer primary indicated in Table 1

The subscripts in the dot gain parameters refer to
inks present in the Neugebauer primary. For example,Ccy,l
is the parameter used to compute dot gain for the effec
concentration of cyan when computing the area coverag
the Neugebauer primary G~green!, which is an overprint of
cyan and yellow. The same parameter is used to comp
the amount of cyan in the Neugebauer primary Y~yellow!
because if any amount of cyan is present, the dot gain m
account for the presence of both yellow and cyan inks.

There are 32 different dot gain parameters in the mod
each is a vector, the dimension of which is the number
wavelengths considered. The area of paper covered is c
puted as the difference between the sum of the area co
age of the inks and their overprints, with the constraint
be positive:

a0512 (
p51

15

ap ~5!
8-4 Apr–Jun 2005/Vol. 14(2)
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Fig. 1 Effective concentrations of cyan ink when computed with Eq. (3) (x axis: theoretical concentration and y axis: effective concentration):
(a) effective concentration with n51 and n510.3 for the Epson Stylus Color printer. (b) effective concentration with n51 and n57.3 for the HP
2000C printer. Each curve is referred to a wavelength. The values of n have been numerically estimated to minimize the CIELAB DEab* under
the D65 illuminant between the measured and computed reflectance spectra of the cyan ramp. The plot shows that the wavelength depen-
dence of ink concentration for the HP printer cannot be reduced by setting an optimum value for n.
us-
we
for

on-
the
el-
ith
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Table 2 Dot gain parameters for computing effective ink concentra-
tion using Eq. (4).

Index
(p)

Neugebauer
primary Dot gain parameters

1 K Cck,l Mmk,l Yyk,l Kk,l

2 Y Ccy,l Mmy,l Yy,l Kky,l

3 YK Ccyk,l Mmyk,l Yyk,l Kky,l

4 M Ccm,l Mm,l Yym,l Kkm,l

5 MK Ccmk,l Mmk,l Yymk,l Kkm,l

6 R Ccmy,l Mmy,l Yym,l Kkmy,l

7 RK Ccmyk,l Mmyk,l Yymk,l Kkmy,l

8 C Cc,l Mmc,l Yyc,l Kkc,l

9 CK Cck,l Mmck,l Yyck,l Kkc,l

10 G Ccy,l Mcmy,l Yyc,l Kkcy,l

11 GK Ccyk,l Mcmyk,l Yyck,l Kkcy,l

12 B Ccm,l Mmc,l Ycmy,l Kkcm,l

13 BK Ccmk,l Mmck,l Ycmyk,l Kkcm,l

14 CMY Ccmy,l Mcmy,l Ycmy,l Kcmyk,l

15 CMYK Ccmyk,l Mcmyk,l Ycmyk,l Kcmyk,l
02300Journal of Electronic Imaging
2.2.4 Training set

To effectively tune the model, the training set must be c
tomized to employ all the parameters. At the same time
want to have as few color patches to print and measure
printer characterization as possible. The training set c
sists therefore of ramps of eleven patches, ranging from
absence of ink to full ink coverage of cyan, magenta, y
low, red, green, blue, black, cyan with black, magenta w
black, yellow with black, red with black, green with blac
and blue with black, for a total of 143 samples~Fig. 2!.

Fig. 2 Specimens (133 patches) for the training set and for the
measurement of the Neugebauer primaries.
8-5 Apr–Jun 2005/Vol. 14(2)
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2.3 Estimation of the Printer Model Parameters
Using Genetic Algorithms

The choice of the representation of candidate solutions~in-
dividuals! and the fitness function used to evaluate in
viduals are crucial factors in the effectiveness of this
netic approach. The genetic material, called the genome
each individual must consist of the minimum amount
data required to represent a solution to the problem.

In the printer model we have introduced:

• the Yule–Nielsen factor@Eq. ~1!#,

• U for the printer driver model@Eq. ~2!#, and

• and 32 parameters for the dot gain functions~Table 2!.

Reflectance spectra have been sampled at intervals o
nm in the range from 400 to 680 nm, producing 8 samp
The dot gain parameters are wavelength dependent, gi
us a total of 258 real numbers.

Since the genome is an array of real numbers, a ra
must be specified. And since we consider that the dot g
functions do not alter the theoretical value of ink conce
tration by more than some 30%, consequently the range
real parameters has been set at@0.3;3.0#. The theoretical
value of the Yule–Nielsen factor ranges from 1.0, cor
sponding to the absence of scattering, to 2.0, correspon
to Lambertian or perfectly diffused scattering, with the a
sumption that the dots are rectangular in cross section
reality the dots have soft transitions and, in cases of h
frequency rotated screens, or error diffusion, much of
paper is covered by transitory regions. In these cases
Yule–Nielsen factor experimentally computed, may exce
the theoretical limit of 2.28 In our experiment, we have
considered a range of@1.0;12.0# for the Yule–Nielsen fac-
tor. The fitness function is computed as

fitness5
1

SS (
s51

S
1

G S (
l51

G

~Rprint,l,s2Rmeas,l,s!
2D D , ~6!

whereS is the number of elements in the training setS
5143), G is the number of wavelengths~G58!, andRprint,l
is computed with Eq.~1!.
02300Journal of Electronic Imaging
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We have used the ‘‘simple’’ genetic algorithm in th
Galib library.29 It employs non-overlapping populations: a
each generation the algorithm creates a new population
individuals by selecting parents from the previous popu
tion, and then mating to produce the new offspring. T

Fig. 3 HSV diagram and image of the 777 colors in test set speci-
men.
Table 3 Statistics of color distances and spectra differences for the training set (m5mean,
M5maximum, sdv5standard deviation). rms is the root mean square error between measured and
computed reflectance spectrum.

Epson 890
photo quality paper

Linux driver

Epson Stylus Color
photo quality paper

Linux driver

HP 2000C
plain paper

Windows driver

Epson Stylus C80
plain paper

Windows driver

m M sdv m M sdv m M sdv m M sdv

DEab* 2.30 7.63 1.80 1.49 6.47 1.15 2.29 8.02 1.67 1.67 5.93 1.21

DH 0.93 4.61 1.02 0.70 3.67 0.74 0.87 3.29 0.82 0.78 3.33 0.71

DL 0.96 6.25 1.01 0.52 3.27 0.56 0.79 3.56 0.73 0.92 5.24 1.11

DE94* 1.85 6.95 1.43 1.18 4.85 0.91 1.71 5.77 1.25 1.47 5.85 1.18

CIEDE2000 1.59 5.60 1.25 1.02 3.69 0.87 1.49 5.39 1.15 1.30 6.31 1.15

rms 0.86 3.43 0.73 0.65 2.34 0.41 1.12 3.23 0.82 0.96 4.69 0.68

Fitness 1.26 0.59 1.92 1.38
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Table 4 Statistics of the color distances and spectra differences for the Test Set (m5mean,
M5maximum, sdv5standard deviation). rms is the root mean square error between measured and
computed reflectance spectrum.

Epson 890
photo quality paper

Linux driver

Epson Stylus Color
photo quality paper

Linux driver

HP 2000C
plain paper

Windows driver

Epson Stylus C80
plain paper

Windows driver

m M sdv m M sdv m M sdv m M sdv

DEab* 3.21 11.0 2.05 1.92 7.99 1.22 5.4 18.5 3.12 2.74 8.51 1.45

DH 1.36 7.87 1.26 0.87 6.31 0.97 2.01 12.2 1.88 0.97 6.00 0.76

DL 1.70 7.97 1.64 0.9 3.41 0.71 1.74 6.62 1.31 1.74 7.98 1.56

DE94* 2.78 8.54 1.72 1.64 6.03 0.95 4.09 11.0 1.95 2.51 8.45 1.42

CIEDE2000 2.41 7.22 1.39 1.50 6.48 0.89 3.41 8.87 1.56 2.30 7.24 1.35

rms 1.42 4.49 0.85 0.90 5.82 0.56 2.24 12.2 1.34 1.72 5.37 1.15
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best individual from each generation is also carried o
into the next generation~elitism!. The probability of cross-
over and mutation are set at 0.9 and at 0.002, respectiv
Selection is based on the ‘‘roulette wheel’’ method. T
initial population of 12 individuals is randomly selecte
only the initial value of parameterU in the conversion from
RGB to CMYK @Eq. ~2!# is initialized at 1. The stopping
criterion is the number of iterations performed: we have
this at 4000 iterations.

3 Experiment and Results

We have applied our model in the characterization of fo
printers:

• Epson Stylus Color,

• HP 2000C,

• Epson Stylus C80, and

• Epson 890.

For the Epson Stylus Color and the Epson 890 a Lin
driver was used, which employed Floyd Steinberg dither
and Epson Photo Quality paper; for the Epson Stylus C
and the HP 2000C, the drivers were those supplied by
02300Journal of Electronic Imaging
y.
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printer manufacturers for Windows 2000, disabling a
color management or color enhancement, and using p
paper.

The characterization procedure started with the print
and measurement of the Neugebauer primaries and
training set~Fig. 2!. The Neugebauer primaries were o
tained by measuring the printed inks at full coverage, a
their overprints, by successive prints on the same sheet.
test set consisted of 777 samples, uniformly distributed
the RGB color space~Fig. 3!.

The spectra were measured with a Gretag Spectrol
considering values in the wavelength range from 400
680 nm with a step of 40 nm. Reflectance spectra lie in
range of@0;100#. The results are reported in terms of col
difference in CIELAB DEab* , CIELAB DE94* ,30 and
CIEDE2000,31 hue and lightness difference,32 and root-
mean-square error between measured and computed re
tance samples, in Tables 3 and 4.

We note that theDE94* values are small and quite simila
for all four printers for the training set of data, indicatin
that the genetic algorithm can provide a good solution
training in diverse configurations. Results for the test
are more varied. The best performance was obtained w
the Epson Stylus Color printer, employing the Linux driv
Table 5 Statistics for the Epson 890 printer using photo quality paper, with both Windows and Linux
driver (m5mean, M5maximum, sdv5standard deviation). rms is the root mean square error between
measured and computed reflectance spectrum.

Epson 890—Training
Linux driver

Epson 890—Training
Windows driver

Epson 890—Test
Linux driver

Epson 890—Test
Windows driver

m M sdv m M sdv m M sdv m M sdv

DEab* 2.30 7.63 1.80 3.23 8.97 2.45 3.21 11.0 2.05 4.85 11.41 2.15

DH 0.93 4.61 1.02 1.43 5.26 1.35 1.36 7.87 1.26 2.42 10.25 1.77

DL 0.96 6.25 1.01 1.41 7.35 1.49 1.70 7.97 1.64 2.11 9.14 1.74

DE94* 1.85 6.95 1.43 2.57 7.87 2.06 2.78 8.54 1.72 4.10 9.67 1.90

CIEDE2000 1.59 5.60 1.25 2.16 8.53 2.00 2.41 7.22 1.39 3.65 8.68 1.89

rms 0.86 3.43 0.73 1.14 4.16 0.75 1.42 4.49 0.85 1.70 5.32 0.76

Fitness 1.26 1.87
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Table 6 Statistics for the Epson C80 printer using a Windows 2000 driver, with both quality and plain
paper (m5mean, M5maximum, sdv5standard deviation). rms is the root mean square error between
measured and computed reflectance spectrum.

Epson Stylus C80—Training
photo quality paper

Epson Stylus C80—Training
plain paper

Epson Stylus C80—Test
photo quality paper

Epson Stylus C80—Test
plain paper

m M sdv m M sdv m M sdv m M sdv

DEab* 2.19 5.47 1.49 1.67 5.93 1.21 3.79 13.5 2.04 2.74 8.51 1.45

DH 0.93 4.71 0.86 0.78 3.33 0.71 2.04 10.3 1.86 0.97 6.00 0.76

DL 0.84 3.32 0.86 0.92 5.24 1.11 1.48 5.11 1.22 1.74 7.98 1.56

DE94* 1.70 4.17 1.14 1.47 5.85 1.18 3.17 9.48 1.61 2.51 8.45 1.42

CIEDE2000 1.59 4.67 0.97 1.30 6.31 1.15 2.86 7.86 1.39 2.30 7.24 1.35

rms 0.92 2.66 0.55 0.96 4.69 0.68 1.47 4.45 0.61 1.72 5.37 1.15

Fitness 1.15 1.38
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and photo quality paper. The worst is with the HP 200
printer, employing its Windows 2000 driver and pla
paper.

The model’s performance, we see, can be strongly in
enced by the printer driver, to the point that it may
impossible for the training set to provide a full descripti
of the printer’s behavior. We report in Table 5 the statist
for the Epson 890 printer with photo quality paper and b
Windows and Linux drivers. Results indicate that the p
formance of the proposed method may be substantially
fluenced by the strategy adopted to perform the conver
from RGB to inks amounts. But the type of paper also pla
a role. We report in Table 6 the statistics for the Epson C
printer using a Windows 2000 driver with both photo qu
ity and plain paper. The results are again quite similar
the training set, but worse for the test set when photo q
ity paper is used.

4 Conclusions

We have experimented an innovative approach to the s
tral characterization of binary printers. Our objective was
see whether it is feasible to approach the complex prob
of printer spectral modeling by introducing a set of para
eters into the mathematical framework of the Yule–Niels
Spectral Neugebauer equation. Considering the comple
teraction between these parameters, we also tested to
whether stochastic optimization could be used to prod
an acceptable solution. If this were so, with our method
spectral characterization of a generic binary printer wo
require only some 130 measurements performed manu
by an operator, without any of the equipment needed
measure the large number of samples required for co
metric printer characterization based on interpolation. O
results indicate that characterization is possible, with
meanDE94* ranging from 1.64 to 4.09, and a maximum h
difference of 12.2.

Some key aspects of our work should be noted. First,
have assumed that any overprinting of inks can be p
dicted on the basis of model optimization performed on
small set of samples. If this method were not correct, th
would be large shifts in hue in the test set prediction, es
cially when using a stochastic method for parameter e
mation. Second, we have made no assumption concer
the sequence of printing. Third, the printers have be
02300Journal of Electronic Imaging
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treated as RGB devices, and we have therefore inclu
printer-driver operations in our model. In fact, it is ofte
impossible to directly command the printer in terms
CMYK ink amounts, moreover in many cases the act
conversion algorithm between the input RGB digital cou
and the CMYK amounts is not known. To address the
problems we employed a simple, but plausible, model
relate RGB to CMYK in which the only free parameter
simultaneously estimated with the actual printer model
rameters during the training phase. The work presented
also be seen as a combination of analytical and empir
modeling. The high number of degrees of freedom of
proposed model gives a great flexibility to the characteri
tion method; its modular structure would allow an eas
adoption of more complex and complete RGB to CMY
models, if they would be available.
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