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From Color Sensor Space to
Feasible Reflectance Spectra

Silvia Zuffi, Member, IEEE, Simone Santini, Member, IEEE, and Raimondo Schettini

Abstract—The interaction of light and object surfaces generates
color signals in the visible band that are responsible for digital ac-
quisition system outputs. Inverting this mapping from the sensor
space back to the wavelength domain is of great interest for many
applications. Since 1964, with the idea of Cohen to exploit the char-
acteristic of smoothness of surface reflectance functions, a lot of
work has been done in the analysis, synthesis and recovering of
spectral information using linear models. The general use of such
models is for the establishment of a one-to-one relationship be-
tween sensor’s data and reflectance spectrum, with the require-
ment of ensuring the quality of the recovered spectrum in terms
of physical feasibility and naturalness. In this paper, we propose
a solution to correct the outcome of a generic recovery method,
in order to take into account quality constrains. Our strategy as-
sumes the smoothness of the solution of the recovery method, an
assumption implicitly satisfied from the adoption of linear models
to represent reflectance functions.

Index Terms—Color, color reflectance spectra, color sensors,
color signal, recursive estimation, reflectance linear models, spec-
tral recovery.

I. INTRODUCTION

THE color of objects may be communicated in many forms.
Color may be described by physical samples, by color

terms or by numerical parameters that encode its appearance.
The description that completely characterizes the physical
property of surfaces rendering color is the reflectance spectrum,
a function defined on the domain of visible wavelengths that
represents the percentage of incident light that the surface re-
flects at each wavelength. The product of the surface reflectance
and the spectral power distribution of the illuminant defines,
for given incident and viewing geometries, the color signal
[1], which, entering the eye is filtered by the photoreceptors to
determine at post receptoral and cognitive levels the perceived
color. Likewise, the color signal is filtered and processed in dig-
ital cameras to give a color description in the device color space.
The problem of relating measurements like those coming from
a color measuring device, with spectral information—often
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in the form of a reflectance function—has many applications,
such as estimating a reflectance function given outputs of a
camera system for the characterization of such devices [2];
or inverting a spectrum-to-colorimetry mapping for a given
color reproduction process for the simulation of the behavior
of imaging systems [3]. A typical example of the recovery
of spectral data for color surfaces is their rendering under
different illuminants, a procedure known as color correction.
Color correction methods simulate different illuminants by
computing tristimulus values under a target illuminant, given
the tristimulus values under a reference illuminant. Color cor-
rection may exploit the knowledge of the reference illuminant
to recover a reflectance spectrum to increase the simulation
accuracy [4], [5]. Spectral recovery, i.e., the estimation of the
spectra of objects surfaces from data having lower dimension-
ality (i.e., from the RGB values of an image, from LMS cone
signals or from a generic N-filters camera responses) is based
on the limitation in bandwidth, in terms of Fourier frequency,
of the reflectance spectra of the majority of natural surfaces,
which are, for most natural objects, smooth and slowly varying
functions of the wavelength, just like are the spectra produced
in photography, printing processes, or painting [6]. There are
exceptions, such as the surface reflectance spectra of some
earth metals and of some animals (e.g., wings of insects, fish
scales and birds feathers), but in general, the overwhelming
majority of functions spectra are smooth and slowly varying
functions of the wavelength in the visible range [7], [8]. Since
the work of Stiles et al. [8], who observed the smooth spectral
profiles of color signals, it has been widely demonstrated that
the reflectance spectrum of natural surfaces is a smooth and
low-pass function of wavelength. Band-limited functions can
be adequately approximated with linear models having a small
number of basis functions. As a consequence of the sampling
theorem, the frequency content in the Fourier domain of a
signal determines the minimum number of parameters of its
linear model: if the number of parameters is limited to three, the
corresponding frequency limit is approximately 0.005 cycle/nm
[9]. A study of Maloney [11] investigated the frequency content
of the reflectance functions in terms of Fourier analysis of
natural and artificial surfaces (the Nickerson–Munsell set and
natural formations collected by Krinov [12]), and related it to
the number of basis functions necessary for their characteriza-
tion. Values of 0.01 and 0.015 cycle/nm were reported as band
limits of surface reflectance functions, which, consistently with
the results of Stiles [8] of 0.01–0.02 cycle/nm, correspond to
a linear model with 6 to 12 parameters. A similar frequency
cut-off was observed from a more recent study conducted on
a more general dataset, including natural surfaces of fruits,
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flowers and leaves [10]. As already said, the color signal is the
product of the reflectance function and the illuminant spectral
power distribution: an upper bound for its frequency limit can
be therefore evaluated by the convolution theorem in the sum of
the frequency limits of the reflectance and illuminant functions.
An analysis conducted by Romero et al. [13] considered the
frequency limit of color signals, corresponding to biochrome
and nonbiochrome surfaces illuminated by daylight, incan-
descent and fluorescent illuminants. In these signals, as far as
daylight and incandescent illuminants are concerned, a limit
of 0.016 cycle/nm can be considered. Fluorescent illuminants
limit the possibility to adopt models with a small number of
parameters due to the information content at high frequencies.
On the other hand, daylights have a very low frequency limit,
suggested in 0.0033 cycle/nm [10] and can be modeled with
very few parameters: three are sufficient [13], [14].

In the recovery of the reflectance spectra, one may assume
that the illuminant is unknown, and, considering a suitable basis
set, model it with a linear model as well [15], [16]. More fre-
quently, one assumes that the illuminant of the scene is known
or can be previously estimated, and the measurements are sen-
sors values. The problem therefore entails inverting the sensor
equations (possibly with some spatial constraints). This con-
stitutes an underdetermined, constrained problem: underdeter-
mined because, in general, for a given illuminant there will be
several (uncountably many, in fact) metameric functions that,
under that illuminant, will produce the desired sensor response;
constrained because one seeks solutions that are physically fea-
sible, a constraint that entails, inter alia, that the values of the
reconstructed spectra fall into a the range [0, 1]. This constraint
is due to the fact that physically a reflectance spectrum is de-
fined as the fraction of the incident light that the body reflects at
each wavelength. Most of the standard methods for inverting the
sensor’s equations do not guarantee the feasibility of the solu-
tion they find. Feasible solutions can be found by associating a
cost to the sensor’s equations (a cost that would be zero when the
equations are satisfied), and solving a nonlinear constrained op-
timization problem [17] or, considering the equations as a linear
constraint, a linear programming problem [18]. These methods,
however, are often computationally cumbersome and can have
additional drawbacks. In the case of nonlinear optimization, the
method may fail to find a solution even if one existed while in
the case of linear programming (a method that we will consider
more extensively in the following, as it will constitute part of
our numerical analysis) one has little control over the properties
of the solution that is found.

There is considerable research literature on methods for
spectral recovery. The analysis in the frequency domain of
reflectance spectra and color signals motivates the recourse
to dimensionality reduction techniques involving, in the most
common approach, empirical linear models. In general, when
representative data are available, linear models are defined
on the basis of statistical information, applying principal
component analysis (PCA) [19] and independent component
analysis (ICA) [20]. The number of basis functions necessary
to accurately represent the reflectance spectra depends on the
characteristics of the data that one is modeling, and on the char-
acteristics of the functions used in the linear model. There are

many studies on the dimensionality of such linear models based
on PCA. PCA seeks the set of basis functions that minimizes
the correlation among dimensions and identifies those dimen-
sions that are most descriptive of the data set [15]. In general,
for natural reflectance spectra, a number of basis functions be-
tween 6 and 9 is considered adequate, as emerged from studies
from Cohen [21] on a subset of the Munsell surface spectral
reflectances collected by Kelley et al. [22], from Maloney
[11] on spectral reflectances of natural formations collected by
Kirnov [12], and from Jaaskelainen [23] on samples derived
from several different kinds of plants. Similar studies on skin
reflectance indicate that three functions are sufficient [24]. A
comparison of the linear model representation of the Munsell
color chips with three basis components can be found in [25].
The methods considered, PCA, ICA, and non-negative matrix
factorization [26], [27], performed similarly. Linear models
based on PCA components or on functions computed with
ICA assume knowledge in advance of the surfaces to model.
More general representations adopt generic basis functions,
such as Fourier functions. In an early study from Wandell
[15], the surface reflectances of a set of 462 Munsell chips
have been modeled with a three-dimensional linear system
composed of Fourier basis functions, with a rather good fit
between measured spectra and linear model representations.
Many of the studies on the dimensionality of linear models
evaluate a degree of fit between the reflectance function and
its representation in the wavelength domain. But in spectral
information recovery from low-dimensional data, the definition
of the linear system based on a least squares cost function on
reflectance representation may be inappropriate [28]. In fact, a
least-square criterion ignores potential effects of the sensor sen-
sitivities in the model fit. In selecting linear models for human
vision, a weighted least-squares criterion across wavelength
may be considered. According to Maloney, in fact, surface
spectral reflectances fall within a linear model composed by
five to seven parameters (basis reflectance vectors), but when
the effect of human photoreceptors sensitivities is included,
linear model with as few as three to four parameters provide
excellent fit to the data sets [11]. Linear models based on the

metric are optimal when the input data follow a Gaussian
distribution. When the data deviate from normal, a nonlinear
approach may improve linear estimation methods [29]. When
it is not possible to exploit previous knowledge on data, one
can use linear models with generic function components [15],
[30], [31], or exploit different strategies that do not assume any
a priori knowledge. A comparison of many of these methods to
recover a reflectance spectrum of a set of textile samples from
colorimetric triplets was reported by Dupont [32]. Dupont con-
sidered the simplex method, the simulated annealing method,
the Hawkyard method [33], genetic algorithms, and neural
networks. The simplex method, set to assign a reflectance
value for each wavelength, gave very chaotic results, physically
unacceptable. To solve this problem, the simplex was used to
assign the proportion (between 0 and 1) of a bell curve for each
wavelength. For accuracy, the simplex and Hawkyard methods
were superior to the others, and the simplex coupled with the
bell functions gave the most realistic shape of the curves. The
high computational cost of these methods, however, was a
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drawback. The Hawkyard method has been recently modified
to reduce computation time [34]. The methods were evaluated
according to colorimetric differences, but no information about
spectral match between the real and the recovered spectra was
provided. The approaches investigated by Dupont [32] were
not based on training datasets. A further method that does
not require the knowledge of statistical information about the
reflectance spectra of the input material was proposed by Li
and Luo [35]. Their work was motivated by that of van Trigt
[36], [37], and uses a smoothness condition for recovering the
reflectance of a set of tristimulus values, given the illuminant.
The smoothness constraint corresponds to the integral of the
first derivative of the reflectance curve on the whole wavelength
band, and the feasibility of the solution is imposed in the
optimization.

In recovery methods based on training sets, the occurrence of
negative values in spectral recovery may indicate that the input
color is out of the gamut defined by the recovery model. For this
reason, in many of the methods based on statistical analysis of
input data, the feasibility problem is not addressed, or nonfea-
sible solutions are omitted [30]. A method to correct reflectance
functions that have negative values based on metameric black
functions is described in Wyszecki and Stiles [38, p. 187]. A
metameric black is a spectrum that, for a specific illuminant
and a set of sensors, produces tristimulus values equal to zero.
For any given illuminant and a set of sensors, there are infinite
metameric blacks, which have the feature of being positive at
some wavelength and negative at others. The procedure is to add
a metameric black to a given spectral reflectance function. To
ensure that the resulting curve is positive for all wavelengths, the
metameric black function is multiplied by an appropriate scaling
factor. The metameric black approach was exploited by Mo-
rovic et al. [39] to define the infinite set of metameric solutions
obtainable by adding to the solution of an RGB-to-spectrum
problem an arbitrarily scaled metameric black. To get the so-
lution to the recovery problem, an appropriate selection within
the metameric set is performed, in search of a function satis-
fying the properties of physical realisability (the belonging to
the range [0, 1], a constraint that we call feasibility), smoothness
(satisfied by linear model approach), and naturalness (property
of the solution to be realizable as a convex combination of ex-
isting surface reflectances).

In this paper, we present a method of a different nature to
find a feasible reflectance spectrum. Our technique consists in
using a simple linear method to find a (possibly unfeasible) re-
flectance spectrum that generates the required sensor measure-
ments, and then to apply repeatedly a transformation that, while
maintaining metamerism, will make the spectrum converge to-
wards a feasible one. The method we propose may contribute to
render applicable recovery methods based on linear system so-
lutions that do not address the problem of the feasibility while
computing the reflectance spectrum. The method we propose
is based on the assumption that the recovery procedure com-
putes a smooth function. As previously discussed, many of the
methods found in the literature are of this kind, as the smooth-
ness of the reflectance function is the primary assumption made
to estimate a reflectance function at many wavelengths points
from a smaller set of sensor’s responses.

II. THE MODEL

In a simplified model of light–surface interaction, a single
light source is absorbed and re-emitted by just one surface, pro-
ducing a color signal that impinges on the retina or on an ac-
quisition sensor. The effect that the color signal would generate
on the human eye or on the imaging device can be expressed
in a model where human photoreceptors or acquisition sensors
can be described by their sensitivity functions. The same model,
if sensitivity functions are replaced by the color matching func-
tions, holds for the calculus of tristimulus values, as long as nor-
malization factors are not considered. In our work, we consider
the tristimulus equations as our light–surface–sensor interaction
model. The tristimulus values equations are

(1)

where is the spectral power distribution of the illuminant,
and is the surface reflectance function. Our goal is to solve
the above equations for the unknown function . Note that,
for the sake of compactness, we use the letter to denote the
visible wavelength interval (in this paper, we always use

400 nm 700 nm ), and write the tristimulus values
as rather than in the customary way as

; correspondingly, the color matching functions
are written as . Both and are
column vectors: throughout the paper, apices will denote row
numbers and pedices will denote column numbers. The tris-
timulus equations are typically used in their sampled form. For

, let
; the tristimulus equation can then be approximated as

(2)

Defining
, we obtain the matrix form of the tristimulus equations

(3)

In order to simplify the notation, define the matrix
so that the tristimulus equations can be written as or

(4)

We express reflectances as a linear combination of basis func-
tions: given functions, , the reflectance is ex-
pressed as

(5)
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where are suitable coefficients. Defining the matrix
, (4) can be rewritten in terms of the coeffi-

cients as

(6)

or , with .
In order to estimate the reflectance function given the tristim-

ulus values and the spectrum of the illuminant, one must solve
(6) for the coefficients , and then apply (5) to derive the sam-
pled reflectance spectrum. If the number of basis functions is
limited to three, then the tristimulus (6) can be solved by in-
verting the 3 3 matrix C. If the number of functions is greater
than three, then standard linear algebra methods can be used to
find a solution with certain optimality conditions, such as the
minimal norm solution or a solution with the maximum number
of zero components [18]. These methods, as mentioned in the
introduction, do not guarantee that the computed spectrum is
feasible, that is, that all its components lie in the desired in-
terval. One solution that has been sometimes used in practice
is to clip the spectrum forcing it to the desired range. This solu-
tion, however, causes a distortion, possibly quite severe, in the
reproduction of the color. Our method, as we mentioned briefly
before, consists of using the linear method to obtain an initial
spectrum , which might not be in the desired range, and then
to apply iteratively a correction that will produce metameric
spectra closer to the desired range. Note that any method that
can derive a smooth spectrum from sensor’s data can be used in
place of the linear method. Before presenting our strategy, how-
ever, it is opportune to spend a few words summarizing some
facts about the possible ranges of the reconstructed spectra and
the solutions that they can generate. The reflectance spectrum
specifies, for each wavelength , the fraction of incident light
that an object—in a given geometrical configuration with re-
spect to the light sources and the observer—reflects. Being a
fraction, it is natural to assume that, for each .
We assume that objects are not florescent, and ignore translu-
cency. We call a spectrum that satisfies this condition feasible
in the strong sense, or strongly feasible. When solving the math-
ematical reconstruction problem, however, one can sometimes
accept a weaker constraint. Consider a spectrum in the range [0,
M], with . Since the spectrum satisfies the tristimulus
equations, we can write

(7)

where, of course, is strongly fea-
sible. Any spectrum in the range [0, M] can be transformed
in a strongly feasible spectrum and although is not,
stricti dictu, a metamer of , the same color can be generated

simply by increasing the intensity of the illuminant from to
. For some applications this may be acceptable, leaving

on the reflectance only the constraint . We call a spec-
trum that satisfies this condition feasible in the weak sense, or
weakly feasible. Intuitively, weak feasibility is, as the name im-
plies, a less demanding condition to impose. For a given illu-
minant, the feasibility conditions on place some constraints
on the tristimulus values that one can obtain, that is, on the
colors that can be physically realized. Assuming for the sake of
simplicity weak feasibility and the discrete model (4), let be
the th element of the natural basis of the space of the dis-
crete spectra. Each spectrum can be written as

(8)

with . If we vary the th component of and leave the rest
of it to be zero, that is, if we take , we obtain, from the
tristimulus equation, , where because of the
feasibility constraint, and because and all the
are positive [38]. The locus of the tristimulus is in this case a
half-line in the positive octant of the space . Varying
different components of we obtain such lines. Equation (4)
states that, if the feasibility constraint is valid, the tristimulus
values are a convex combination of values on these lines, that
is, can be realized with the given illuminant if and only if it
falls within the convex hull of these lines. Such a convex hull is
a cone with vertex in the origin, called the color cone generated
by the illuminant . Any value of the tristimulus that falls out-
side of this cone corresponds to a color that can’t be generated
under the given illuminant. In these circumstances, of course,
the method for finding a feasible would fail to converge. In
practice, the tristimulus values from which one starts are often
derived from a color generated under a certain illuminant and,
if the illuminant that we hypothesize for the reconstruction is
not wildly different from that under which the color was gen-
erated in the first place, the desired tristimulus values will fall
within the color cone. This, at least, is the hypothesis that we
will make throughout this paper.

III. THE METHOD

Suppose that we have solved the system (6) obtaining a
weight vector . From the discretization of (5)

(9)

we obtain the sampled reflectance . Define the
clipping functions

if
if
if

(10)

if
if

(11)

if
if

(12)
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then, applying the functions to a vector componentwise, one
can write

(13)

Correspondingly, the tristimulus X can be decomposed from (4)
as

(14)

Consider the component : we can consider it as the datum
of a new spectral estimation problem for which, using (6), we
find the weights

(15)

and from these the reflectance

(16)

Similarly, the negative component is the datum of an esti-
mation problem from which we derive the spectrum

(17)

Define now the reflectance

(18)

From the previous construction, the following property follows
immediately.

Proposition 3.1: The reflectances and are metameric
under the given illuminant.

The procedure can be repeated by decomposing

(19)

computing

(20)

then

(21)

, and so on. In this way we obtain a sequence of metameric
spectra . We claim that this se-
quence converges to a feasible spectrum, that is

(22)

leaving, in the limit, a spectrum which, by construc-
tion, is feasible. The reason why (22) holds will be considered
in the next section but, before doing so, we should like to give an
intuitive sense of why things work. Consider, for the sake of sim-
plicity, only the portion of the spectrum, the reasoning for

Fig. 1. (a) Example of an unfeasible reflectance function. (b) Portion that ex-
ceed the maximum admissible value.

Fig. 2. Spectrum of Fig. 1(b) and a metamer with a larger support and a smaller
maximum value.

being analogous. Take a spectrum with values greater
than 1, as in Fig. 1(a), and isolate the part , as in Fig. 1(b).

The unknown function must be a metamer of , that
is, in the continuum, it must be

(23)

where is the support of that is, in general, smaller than
since represents only a peak in an otherwise feasible spec-
trum. On the other hand, is a combination of smooth basis
functions and has in general the whole spectrum as support. In
other words, in we distribute the same “area” over a much
wider support, so that the magnitudes of will in general be
smaller than those of (see Fig. 2).

This is only a qualitative explanation to give the reader ac-
cess to the intuition that was behind the inception of the method.
In the following, we will put these intuitions on a more formal
footing and determine the conditions of convergence of the al-
gorithm. The complete algorithm is given in Table I.

The function stop determines the point of convergence.
Several criteria are possible: the simplest ones—computation-
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TABLE I
THE ALGORITHM FOR THE RECOVERY OF THE REFLECTANCE FUNCTION GIVEN

THE TRISTIMULUS VALUES AND THE CORRESPONDING ILLUMINANT

ally speaking—compare the norm of the three components
, for instance

(24)

Other criteria consider the error in the color reconstruction, e.g.,

(25)

Smoothing the Spectrum: Reflectance spectra of natural
surfaces are smooth functions of wavelength. Consequently,
the basis functions computed on measured spectra are also
smooth (this is in general true, and comes from the choice of
the basis set). Therefore, a reflectance spectrum obtained as
a solution of the linear system in (6) is a smooth function.
As discussed in Section I, many studies have quantified the
smoothness of natural reflectance functions in terms of content
in the frequency domain. Observing the measured spectra of
real surfaces, it is evident that such functions are characterized
by a slowly varying and bounded curvature, as well. Estimated
or synthesized spectra must exhibit this property in order to
be practically realizable. Physically, it is difficult to reproduce
spectra with very high curvature: each point of high curvature
of the spectrum is a point where reproduction with physical
means will likely fail.

If the obtained spectrum is not feasible, that is, is not in [0,
1], and the method described in the previous paragraph is ap-
plied, it may happen that the curvature of the final spectrum,
which has feasible values, is unbounded or irregularly varying
and will present sharp transitions between the intervals in which
its values are in [0, 1] and those in which they are 0 or 1. See, for
example, Fig. 3: the initial solution obtained solving the linear
model produced the spectrum of Fig. 3(a), which has negative
values in the region of long wavelengths. This spectrum was
corrected for value feasibility, giving the metameric spectrum
of Fig. 3(b). Unfortunately, the transition from positive values
of reflectance to the values equal to zero does not appear to be
“natural.” To overcome this problem, we amend our method to

Fig. 3. (a) Recovered spectrum exhibiting negative values. (b) Metamer of
(a) obtained with the application of the proposed method.

“smooth” the spectrum where it appears to have an unfeasible
shape, in order to increase its naturalness and make it physically
realizable.

We define shape feasibility as the property of a spectrum to
present a smooth curvature. The shape feasibility is a further re-
quirement we impose to the final solution in addition to the value
feasibility discussed in Section II. We consider the reflectance
curve as a line in a 2-D plane where the wavelength abscissa
corresponds to and the reflectance value corresponds to . In
order to set an appropriate scale, reflectance values must be mul-
tiplied for 300, being 700 400 nm the wavelength domain
of the curve. In this way, the ranges of values in the and
coordinates have the same spatial extension. The procedure to
round off the spectrum modifies the procedure of Table I. Inside
the while cycle, after the calculus of and , a smooth()
procedure should be inserted. One possible definition of the pro-
cedure is listed in Table II; however, other different smoothness
measures can be adopted [35], [36].

In Table II, is the number of wavelength samples, and
is the minimum angle between two segments composing the
reflectance curve that ensures a smooth curvature. If we consider
the example of Fig. 3 and impose an angle limit of , we
obtain the rounded spectrum of Fig. 4.

IV. CONVERGENCE

In this section, we put the intuitive explanation of the previous
section on a more formal basis, and study the convergence of the
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TABLE II
ALGORITHM TO INCREASE THE NATURALNESS OF A REFLECTANCE SPECTRUM

Fig. 4. Spectrum of Fig. 4(b) after the application of the procedure described
in Table II.

method. We will start by introducing a class of linear transfor-
mations and their properties. Consider a linear transformation

( being the case of interest here):

(26)

and let be expressed as the weighted sum of b vectors in ,
as in (9). Then, putting together (9) and (26), one obtains

(27)

where

(28)

Let , then one can define the matrix
with . One can consider similar transformations

in which the summation in (28) is extended only to a subset of
the indexes . For instance, if ,
one has

and (29)

The definition can be extended to any subset . Note
that, for all the problems that we are considering here, ,
therefore

(30)

The following properties derive immediately from and
.

Lemma 4.1: For

(31)

In particular, for

(32)

where is the complement of in .
Lemma 4.2: The 1-norm of is a norm for , indicated

as and, if , and , then

(33)

We can now consider the normalization procedure. Let be
the given color (that is, the initial tristimulus of the procedure),
and consider the tristimulus (4). Writing as in (9), the equation
becomes . If , these equations can be solved
for , giving and the reflectance

(34)

with . The reflectance, in general, will not have a
range included in [0, 1]. Here, we assume, for the sake of sim-
plicity, that , that is, that the only correction that we have
to make are for those values . If there are parts with

, one applies the transformation to these parts,
transforming them into parts with values grater than 1.

Define the set and the functions and
as in (10) and (11), respectively, so that

. Note that and that the range of is in
[0, 1]. With these definitions, we have

(35)

where the symbol means “equal by definition.” Note that
in , and that the reflectances are limited so

that one can write

(36)
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In other words, one has

(37)

with . The method now finds a reflectance function that
generates . Expressing this reflectance as

(38)

one can find the coefficients by solving the system
. On the other hand, from (37) and (9), one has

, leading to the relation between and

(39)

In order to analyze this equation, we use the following
property.

Lemma 4.3: Let and be two
reflectance functions giving positive tristimulus values on the
illuminant , and let and satisfy with .
Then, .

Proof: Since the functions are reconstructed from tristim-
ulus values, which are positive by construction, (32) applies.
Consider the th term of the equality

(40)

where the last equality derives from Lemma 4.1. So

(41)

From this and Lemma 4.2, the result follows.
We now replace with and

repeat the iteration. At the end, we have

(42)

where and .
Lemma 4.4: In (42), it is .

Proof: All the values here are positive, so

(43)

From this, it follows that the proposition is true whenever
for all . We have the following cases:

i) ;
ii) and ;

iii)

where the symbol means logical conjunction.
Lemma 4.5: In the iteration, it is .

Proof: From Lemma 4.3 and (39), it follows that
. From this and Lemma 4.4, the result follows.

The main result of this section is given by the following
theorem:

Theorem 4.1: Assume that a feasible spectrum exists, then
the iteration

converges to a feasible solution.
Proof: Applying the previous lemmas to the th iteration,

one obtains

(44)

and, iterating

(45)

therefore

(46)

so that the equilibrium point of the method is

(47)

which, by definition of , is feasible.
The requirement that the bases be positive is too strict for

many a practical situation: one commonly used basis for spec-
tral reconstruction, for instance, is obtained by principal com-
ponents analysis on a suitable training set of reflectances. In this
case, of course, there is no guarantee that the basis will be posi-
tive. It is possible, however, to prove that the same convergence
result holds for a wider class of basis functions.

Definition 4.1: A basis is said to be positive enough with
respect to an illuminant if

(48)

for all . The most important property of positive enough func-
tions, and the basis for the convergence result, is given by the
following theorem.

Theorem 4.2: Let be positive enough with respect to .
Then, it is possible to write , with , and

for all .
Before proving this theorem, we introduce a lemma that will

be used in the proof.
Lemma 4.6: Let be a

matrix with and rank . Then, there is a matrix
such that and is nonsingular, where

(49)
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Proof: Since the matrix has full rank, there are one or
more sets of columns such that the matrix

(50)

is nonsingular. Let the set of indexes for
which this is true. Define the matrix

(51)

Clearly, all the are independent, since all the values in the
same index are different, and . For
with , define

(52)

so that

(53)

any combination of for which will generate
the required nonsingular matrix .

Proof of the Theorem: Let , and consider a
basis of ( in our case) sampled functions such that
the matrix satisfies the previous lemma, and define

(54)

where the coefficients are determined by the equalities

(55)

Because of Lemma 4.6, it is possible to find positive functions
such that the matrix in the last equality is nonsingular and

such that the are positive. Defining completes
the proof. Consider now a system such as (27):

(56)

Since , with , the system can be
rewritten as

(57)

In other words, the solution of the system depends only on the
positive component of the basis : the solution that we find is
the same that we would find if, instead of the basis , we were
using the positive basis . The considerations that were made

based on the positivity of , therefore, still apply; in particular,
(39) still applies. From this point on, in the original demonstra-
tion, the result depend only on the positivity of expressions of
the type and , which hold by construction and
by the assumption that the are positive enough. From this,
therefore, we have the following result.

Theorem 4.3: The result of Theorem 4.1 still holds if the basis
is positive enough with respect to the illuminant .

V. EVALUATION OF THE METHOD

Our method is an iterative procedure that reduces an error at
every step and, from a purely mathematical point of view, two
questions arise quite naturally: how fast does it converge for a
desired final error, and what is the final error if a certain execu-
tion time is allocated. In this section, we report on our measure-
ments of speed and quality comparing the results of our methods
with those of another method that can be used to solve the same
problem. Finally, we will try to determine the properties of the
reconstructed spectrum by looking at the color that the spectrum
determines under a change of illuminant. Before we explain our
tests, we give a brief introduction to the use of linear program-
ming to solve the spectral reconstruction problem, as linear pro-
gramming is the method against which we measure our own.

A. Feasible Spectra by Linear Programming

Linear programming is a well-known optimization technique
that can be used to solve constrained optimization problems
where both the cost functional and the constraints are linear, and
the solutions are required to be positive [18]. That is, problems
in which one seeks a vector such that

is minimal

(58)

where , and are given constants. Note that this is not ex-
actly the form of our reconstruction problem, since we don’t
quite have a cost to minimize and, in the case of strong fea-
sibility, we have the additional constraint . Both these
discrepancies can be eliminated by adopting the standard linear
programming strategy of introducing additional variables. We
can enforce the constraints by introducing the variables

and the constraints

(59)

The introduction of these variables is equivalent to solving the
linear programming problem with conditions

where

(60)

where is the identity matrix, and
.

The lack of a function to be minimized can be solved by intro-
ducing the additional variables , the conditions

, i.e., , and the cost .
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The cost is minimal for , and reaching this minimum en-
tails finding a for which the original condition is satisfied.
In conclusion, in order to find a feasible solution, we solve the
linear programming problem

(61)

where

(62)

and

(63)

We solve this using the standard techniques that can be found in
the literature.

B. Feasible Spectra by the Method Proposed

In all, we do four separate measurements: execution time,
colorimetric reconstruction, curvature of the reconstructed spec-
trum, and color evaluation under change of illuminant. The latter
experiment follows a rather different experimental methodology
than the first three, and will be considered separately in a dif-
ferent sub-section. While the ultimate quality gauge for an algo-
rithm such as this one lies in its reconstruction quality, execution
time is important for applications such as computer graphics,
in which the spectral reconstruction will have to be repeated
tens of hundreds of thousands times per image. In order to give
a general idea of what could be the advantages of the method
in the area, we have included the execution time test. The two
algorithms are implemented in C; for the simplex method, we
used the program provided in a reference book [40]—we also
tried the implementation in a second reference book [18] with
virtually indistinguishable results. All reconstructions assumed
the CIE D65 illuminant. The basis set adopted was obtained ap-
plying PCA to the Vrhel’s dataset of objects reflectance spectra
[41]. For each of the first three experiments, we considered four
different vector sizes: we started with the color matching func-
tions and the illuminant covering the range from 400 nm
to 700 nm in steps of 10 nm, resulting in vectors of size

, and then the experiment was repeated by down-sam-
pling these vectors with steps 2, 3, and 4, obtaining vectors of
dimension 16, 11, 8, respectively. Each experiment con-
sisted of 30 trials, from which our statistics are derived; in each
trial, we generated a random RGB color, converted it to XYZ,
and run the trial on the two methods using the same color. For
the time execution experiment, the two algorithms were com-
piled using the lcc compiler with all optimizations turned off. In
order to avoid interference from other processes running on the
same computer, the time execution experiment was done under
the DOS operating system. The two algorithms were compiled
with the optimizer turned off to avoid having some particularity

of the compiler used here affect the reproducibility of the re-
sults. Moreover, due to the unreliability of measuring short time
intervals with the standard C timing functions, each trial con-
sisted in the separate repetition of each algorithm times. We
indicate in the following the execution time as . The colori-
metric reconstruction experiment attempts to give a measure of
the residual error in the reconstruction of the spectrum by com-
puting back the tristimulus from which the reconstruction had
started and comparing the reconstructed color with the original
one. Given a color X, a method is used to compute a feasible
reflectance and then to this reflectance the tristimulus (4) is ap-
plied to obtain a reconstructed color . The outcome of the ex-
periment is a reconstruction error:

(64)

The last experiment attempts to give a measure of the quality of
the reflectance spectra obtained using the two methods. As dis-
cussed in Section III, reflectance functions of natural surfaces or
the spectra that we can physically construct are always smooth
and relatively slowly varying. So, we take as a measure of the
quality of the reconstructed spectra the average of the estimated
curvature, that is

(65)

In this case, we did not apply the method in Section III to ensure
the naturalness of reflectance functions.

C. Results and Discussion

The results of our three tests are reported in Tables III–V. In
all the tables, the first column contains the size of the vector
used for that test, the second column the number of degrees of
freedom for the mean comparison test (which is equal to the
sum, for the two methods, of the number of observations minus
one), the remaining eight columns contain the summary data for
the two methods, and the p-value of the Wilcoxon rank sum test
[42] for that experiment. Table III contains the results of the time
execution test.

All the tests show statistically significant differences. In the
case of the vector size 31 and 16, the method pro-
posed here appears to perform more than two times faster than
linear programming. The large variance is due to the fact that
for a few colors both methods (the simplex and our own) fail
to converge to the error specified but, when they converge, our
method converges in a few iterations. Table IV contains the re-
sults of the reconstruction error test. The difference between the
reconstruction errors is statistically significant, and, by the av-
erage, the method presented here appears to perform better for
the majority of vector sizes.

The reason for the high variance of the results, shown also
by the high values of the maxima of the errors, is due to the
fact that occasionally the methods failed to converge in the al-
lotted number of iterations. Note, however, that the maxima
for the method presented here are lower than for linear pro-
gramming. It appears, in other words, that our method creates
relatively rapidly an acceptable solution to the reconstruction
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TABLE III
RESULTS OF THE TIME EXECUTION TEST. TIMES ARE IN �S. N IS THE DIMENSIONALITY OF THE SPECTRA BEING CONSIDERED. EACH TRIAL CONSISTS OF 300

RANDOMLY GENERATED RGB COLORS, FROM WHICH SPECTRA ARE SYNTHESIZED

TABLE IV
RESULTS OF THE RECONSTRUCTION ERROR, THAT IS THE EUCLIDEAN DISTANCE BETWEEN THE ACTUAL XYZ VALUES AND THE XYZ VALUES OF THE

RECONSTRUCTED SPECTRA (64). ALL RESULTS ARE �10

TABLE V
RESULTS OF THE CURVATURE TEST

problem so that, even if convergence is not reached within the
allotted number of iterations, a reasonable solution is still found.
Note that some of these problems might be solved by allowing
a greater number of iterations but, as a matter of methodology,
we decided to use here the same number of iterations that we
used for the execution time test.

Finally, the curvature comparison is reported in Table V. In
this case, all the differences are statistically significant, and the
method presented here produced results with a lower curvature,
that is, smoother results, than linear programming. This was, of
course, expected, since linear programming simply tries to find
a vector that solves the optimization problem, without consid-
ering the vector as a sampled function and, therefore, without
trying to enforce any relation between contiguous elements. The
method presented here, on the other hand, derives the correc-
tion vector by sampling smooth basis functions and, therefore,
produces smooth results. In order to give a visual explanation

of the advantages of the method we propose with respect to
a simple clipping of the initial solution obtained by a linear
method, we report the plot of an experiment performed on a
subset of the Munsell samples derived by [38]. Fig. 5 shows
the section of the Munsell set of samples at the same level of
brightness value in the CIE L*a*b* diagram. These data
form the input for a recovery procedure based on the solution of
(6) using the basis set published in [43]. The recovered spectra,
when reflectance values were out of the range [0, 1] were clipped
to ensure physical feasibility. The clipped spectra were then ren-
dered under the CIE standard illuminant C, and the CIELAB co-
ordinates of the colors computed. Results on the color opponent
plane are reported in Fig. 6(a). Note that the gamut of colors has
been significantly compressed. We then performed the same ex-
periment but applying our method to correct the spectra instead
of the clipping. Results are reported in Fig. 6(b). Note the differ-
ence in the gamut extension respect with the case of Fig. 6(a).
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Fig. 5. Subset (value = 5) of the Munsell set of colors in the CIE L*a*b* color
space. These data, converted in tristimulus values assuming the CIE Standard
Illuminant C are the input to the reconstruction experiment.

Fig. 6. Rendering of the estimated reflectance spectra of the Munsell sam-
ples under the illuminant C. (a) Reflectance values out of the range [0, 1] were
clipped to ensure physical feasibility. (b) Method presented in this paper was
applied. Values are in CIE L*a*b* coordinates.

In the first three experiments, for the sake of control and re-
peatability, we used a random set of colors and a fixed illumi-
nant. In this situation, there is no guarantee that any natural ob-
ject, or “natural” reflectance will be able to generate a given
color under the assumed illuminant. There is some indications
that the areas in which the method shows a slow convergence
correspond to rather irregular reflectance functions: since the
reflectance functions that the method builds are created by re-
peated addition and clipping of linear combinations of the bases,
which are very regular and smooth, rendering a highly irregular
reflectance is very difficult, and it may require many iterations.

Fig. 7. (a) Colors in the Munsell plane (value = 5) rendered after spectral
reconstruction with the method proposed under the A illuminant. (b) Colors
in the Munsell plane rendered after spectral reconstruction with the simplex
method and under the A illuminant.

Our method, on the other hand, starts with a nonfeasible solu-
tion and builds increasingly feasible approximations of it. If the
method is interrupted before it converges, it will produce a fea-
sible reflectance by “clipping” whatever approximation it has at
that time. This behavior tends to provide reasonable (although
not strictly metameric) approximations of the true reflectance
and to provide acceptable solutions even in cases in which con-
vergence is not reached. We owe to this, for instance, the fact
that even the points in Fig. 7 for which the iterations were in-
terrupted are not placed in wildly wrong positions of the plane.
This seems to be the case, on the other hand, with the simplex
method: whenever the method cannot converge in the allotted
number of iterations, the approximation of the reflectance pro-
vided is strongly nonmetameric to the initial one, and the corre-
sponding point can be virtually everywhere in the color plane.

D. Change of Illuminant

There is, of course, more to spectral feasibility than having
the range included in [0, 1]: the spectra of natural objects tend
to be smooth, for example. The curvature experiment in the pre-
vious sections tried to measure the extent to which this “phys-
ical” characteristic of naturally occurring spectra was present in
the spectra reconstructed with the different methods. In order to
have a better idea of the behavior of the spectra, however, it is de-
sirable to have some form of colorimetric assessment, which is
what we propose to do in this section. The idea is the following:
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we consider a plane of the Munsell color system with constant
value (we have taken the plane with value equal to 5) thus se-
lecting a subset of samples in the Munsell dataset. For each se-
lected color, we do the spectral reconstruction using a certain il-
luminant (the CIE standard illuminant C in our case). Then, we
render the colors under a different illuminant (the CIE standard
illuminant A), and compute corresponding CIE L*a*b* values.
We then plot the result on a constant lightness plane. If the spec-
tral reconstruction generated “reasonable” spectra, we should
expect that the pattern that we observe in the Munsell plane
should not change too much when the illuminant is changed.
The rationale for this procedure is that changes in illuminant
should not change the relative arrangement of the Munsell chips
in the (a*,b*)-diagram. Results of this experiment using the pro-
posed method and the Simplex method are displayed in Fig. 7(a)
and (b), respectively.

The patterns show that the distortions caused by the simplex
method are significantly larger than those caused by the present
method. The main distortion of the present method, apart from
translation, rotation, and shear (shear is in any case much less
pronounced for our method than for the simplex) appears to be a
compression of the two “long arms” of the Munsell plane corre-
sponding to low values of b* and negative values of a*. In many
cases, this is due to a slow convergence of the method: our test
program would cut the method after 30 iterations, even if the
point of convergence had not been reached. By comparison, the
simplex method causes heavy distortion of the whole portion

of the Munsell plane, to the point that the pattern is al-
most impossible to detect in this region.

VI. CONCLUSION

In this paper we proposed a solution to correct the outcome
of reflectance recovery methods, in order to ensure the physical
feasibility and naturalness of estimated reflectance functions.
Our method is iterative, and converges to a feasible metamer
of the initial recovered reflectance function. As future research,
we would like to investigate the connection between the type of
surfaces, the basis functions adopted, and our method.
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