Local Angular Patterns for Color Texture Classification

@ Workshop on Color Texture and Material Recognition Recognition 2015

Authors: Claudio Cusano, Paolo Napoletano, Raimondo Schettini

Color in Texture classification?

Research question:

it is still not completely clear how much and under what circumstances color information is beneficial.

Previous findings:

- 1. Several works demonstrated that color can be effective only in those cases where illumination conditions do not vary too much between training and test sets;
- 2. A possible strategy consists in the extraction of image features that are invariant with respect to changes in the illumination;
- 3. Illumination variations can be also compensated by preprocessing images with a **color normalization**.

Dealing with illumination changes

Assumption: If we assume a simplified illumination model, some descriptors are capable of exploiting color information while, at the same time, staying invariant to illumination changes.

Example: It has been demonstrated how, under a **diagonal illumination** model in the RGB color space, the relative order of pixels values is preserved.

In practice: illumination changes do not follow the diagonal illumination model because of the presence of acquisition noise and of non-linear interactions between the illuminant, the sample and the camera

In fact, all the proposed solutions that ground on simplified illumination models are not effective

Proposed solution: P3 a new color space

(Part 1)

Most used solution: the luminance value L = 0.299R + 0.587G + 0.114B is very robust to illumination changes. However its robustness is paid in terms of the amount of information lost during the conversion.

Solution: a new color space that keeps part of the advantages of using the luminance, while preserving the color information.

Color TRANSFORMATION/PROJECTION:

$$\begin{pmatrix} P_1 \\ P_2 \\ P_3 \end{pmatrix} = \begin{bmatrix} 0 & 0.587 & 0.114 \\ 0.299 & 0 & 0.114 \\ 0.299 & 0.587 & 0 \end{bmatrix} \times \begin{pmatrix} R \\ G \\ B \end{pmatrix}$$

TRANSFORMATION PROPERTIES

- Full-rank: it preserves all the color information
- **Positive Coefficients:** transformation enjoys the order preserving property of RGB under the diagonal model.

Proposed solution: Local Angular Patterns (LAP)

A new descriptor which is invariant with respect to other transformations of the color space (i.e. rotations, reflections, uniform scalings, and their combinations).

Rationale: the angle between two colors is invariant with respect to similarity transformations.

(Part 2)

Proposed solution: LAP examples

(Part 2)

Proposed solution: new visual descriptor

- 1. We computed a LAP histogram for each channel of the P3 space.
- 2. The final descriptor is formed by concatenating the three histograms with the three obtained by computing standard LBPs on the three components of the P3 space.

Raw Food Texture (RawFooT*) Database

Specially designed to investigate the robustness of descriptors and classification methods with respect to variations in the lighting conditions:

intensity, direction or in a combination of these factors

Details:

- **68** samples of raw food (meat, fish, cereals, fruit etc);
- 46 lighting conditions;
- **68** × 46 = 3128 images;
- 46 shots of a 24 squares Macbeth ColorChecker.

*Evaluating color texture descriptors under large variations of controlled lighting conditions

(Claudio Cusano, Paolo Napoletano, Raimondo Schettini) submitted to JOSA A, 2015

RawFooT: 46 lighting conditions

RawFooT: 68 food classes

Experiments

We used the **nearest neighbor classification** strategy with the **L1 distance**.

Performance is reported as **classification rate** (i.e., the ratio between the number of correctly classified images and the number of test images).

Experiment 1

For the comparison we selected a number of descriptors from several classes of approaches: color based, statistical, spectral, structural and hybrid.

Experiment 2

we experimented several existing normalization methods: McCann, Frankle, Gray World, Gray Edge, Weighted Gray Edge

EXPERIMENTAL SETUP

- For each of the 68 classes we considered 16 non-overlapping squares of size 200×200 pixels.
- For each class eight patches for training and eight for testing by following a chessboard pattern.
- Subsets of 68 × (8 + 8) = 1088 patches: training and test patches under different lighting conditions.
- 364 subsets, grouped in six texture classification tasks: No variations, Light intensity, Daylight temperature, LED temperature, Daylight vs. LED, Color directions

Experiments

Illumination variations can be also compensated by preprocessing images with a **color normalization method**.

Experiment 1: results

Features	No variations avg (min)	Light intensity avg (min)	Daylight temp. avg (min)	LED temp. avg (min)	Daylight vs LED avg (min)	Temp. & Dir. avg (min)	${f Rank}\ {f avg}$
Hist. L Hist. H V Hist. RGB Hist. rgb	78.32 (60.66) 96.38 (84.56) 94.93 (87.13) 97.24 (92.46)	$\begin{array}{c} 6.77 \ (1.47) \\ 31.45 \ (14.52) \\ 15.89 \ (3.12) \\ 67.08 \ (36.95) \end{array}$	$\begin{array}{c} 49.94 \ (11.95) \\ 49.11 \ (9.93) \\ 56.45 \ (18.20) \\ 37.35 \ (6.43) \end{array}$	$\begin{array}{c} 27.18 & (5.88) \\ 51.56 & (23.35) \\ 37.51 & (12.68) \\ 17.38 & (3.31) \end{array}$	$\begin{array}{c} 38.05 \ (6.43) \\ 44.39 \ (9.19) \\ 43.44 \ (8.00) \\ 25.71 \ (5.15) \end{array}$	$\begin{array}{c} 10.45 \ (1.29) \\ 16.47 \ (4.23) \\ 15.53 \ (2.76) \\ 20.16 \ (2.39) \end{array}$	$19.67 \\ 12.33 \\ 14.83 \\ 14.17$
Chrom. mom. Coocc. matr. Coocc. matr. L DT-CWT DT-CWT L	$\begin{array}{c} 82.54 & (58.46) \\ 35.33 & (9.93) \\ 18.68 & (1.47) \\ 92.26 & (81.62) \\ 72.85 & (58.09) \end{array}$	$\begin{array}{c} 68.43 \ (48.90) \\ 7.20 \ (2.02) \\ 3.32 \ (0.00) \\ 21.68 \ (1.65) \\ 10.65 \ (1.29) \end{array}$	$\begin{array}{c} 33.41 \ (4.96) \\ 23.02 \ (9.74) \\ 16.99 \ (6.99) \\ 66.29 \ (25.92) \\ 60.13 \ (27.39) \end{array}$	$\begin{array}{c} 18.66 & (3.68) \\ 19.01 & (6.62) \\ 9.49 & (3.31) \\ 42.31 & (14.34) \\ 32.70 & (4.04) \end{array}$	$\begin{array}{c} 24.16 & (5.06) \\ 19.88 & (5.61) \\ 12.94 & (2.85) \\ 49.77 & (15.44) \\ 44.06 & (5.06) \end{array}$	$\begin{array}{c} 17.03 \ (2.21) \\ 3.30 \ (0.18) \\ 2.49 \ (0.00) \\ 19.23 \ (3.12) \\ 14.70 \ (1.47) \end{array}$	17.00 22.50 24.00 12.83 18.00
Gabor RGB Gabor L Opp. Gabor Gist RGB Granulometry HoG	$\begin{array}{c} 93.02 \ (61.76) \\ 72.91 \ (70.04) \\ 96.15 \ (59.38) \\ 66.20 \ (62.50) \\ 91.98 \ (51.65) \\ 46.74 \ (43.20) \end{array}$	$\begin{array}{c} 66.96 & (32.35) \\ 46.57 & (18.75) \\ 21.51 & (3.49) \\ 55.06 & (31.99) \\ 63.73 & (27.76) \\ 37.52 & (24.82) \end{array}$	$\begin{array}{c} 64.81 & (20.77) \\ 68.94 & (59.56) \\ 67.75 & (22.98) \\ 55.49 & (28.31) \\ 69.80 & (21.51) \\ 41.14 & (29.60) \end{array}$	$\begin{array}{c} 38.13 \ (12.13) \\ 67.62 \ (58.82) \\ 41.78 \ (14.34) \\ 36.78 \ (13.24) \\ 33.58 \ (6.80) \\ 35.29 \ (22.24) \end{array}$	$\begin{array}{c} 48.03 \ (12.59) \\ 66.86 \ (53.40) \\ 50.80 \ (15.07) \\ 43.41 \ (13.79) \\ 48.79 \ (6.34) \\ 36.30 \ (19.30) \end{array}$	$\begin{array}{c} 27.18 & (3.49) \\ 27.58 & (2.57) \\ 20.22 & (3.86) \\ 25.13 & (2.76) \\ 22.20 & (1.65) \\ 16.99 & (3.49) \end{array}$	10.00 9.50 11.17 15.17 11.67 18.00
LBP L LBP RGB LBP Lab LBP $I_1I_2I_3$ OCLBP LCC	$\begin{array}{c} 80.37 & (77.02) \\ 93.55 & (90.81) \\ 92.90 & (88.42) \\ 91.40 & (82.90) \\ 95.92 & (92.28) \\ 92.92 & (88.60) \end{array}$	51.15 (17.83) 68.87 (33.46) 71.88 (32.54) 66.28 (28.12) 78.75 (51.47) 62.64 (26.84)	$\begin{array}{c} 77.76 & (72.24) \\ 72.40 & (24.63) \\ 70.61 & (24.08) \\ 70.58 & (25.92) \\ 67.92 & (19.67) \\ 88.78 & (73.71) \end{array}$	$\begin{array}{c} 70.77 \ (54.60) \\ 48.39 \ (15.07) \\ 51.53 \ (21.69) \\ 49.90 \ (18.38) \\ 49.94 \ (15.81) \\ 74.25 \ (46.88) \end{array}$	$\begin{array}{c} 73.15 \ (55.06) \\ 56.08 \ (16.82) \\ 56.00 \ (19.49) \\ 54.76 \ (17.00) \\ 53.93 \ (15.81) \\ 78.82 \ (50.64) \end{array}$	$\begin{array}{c} 29.54 \ (5.51) \\ 23.72 \ (0.55) \\ 27.55 \ (3.31) \\ 27.05 \ (1.10) \\ 25.73 \ (1.65) \\ 31.13 \ (5.15) \end{array}$	7.67 7.00 6.33 8.67 6.83 5.00
Proposed LBP P3 LAP	88.59 (85.85) 93.76 (89.71)	$56.22 (16.36) \\ 65.59 (24.26)$	86.37 (79.60) 90.02 (75.74)	76.53 (53.49) 76.86 (49.63)	79.84 (54.14) 80.74 (50.46)	$\begin{array}{c} 31.50 \ (4.60) \\ \textbf{33.11} \ (3.12) \end{array}$	5.67 3.00

Experiment 2: results

Features	No variations avg (min)	Light intensity avg (min)	Daylight temp. avg (min)	LED temp. avg (min)	Daylight vs LED avg (min)	Temp. & Dir. avg (min)
Histogram rgb (Hrgb)	97.24 (92.46)	67.08 (36.95)	$37.35\ (6.43)$	17.38 (3.31)	25.71 (5.15)	20.16 (2.39)
Hrgb + McCann	98.66 (95.77)	65.40 (38.60)	32.79(7.17)	$17.54\ (2.76)$	23.76(5.70)	16.22 (2.21)
Hrgb + Frankle	98.82 (95.77)	66.42 (39.52)	34.81 (6.99)	17.95 (3.12)	24.45 (5.24)	$16.73 \ (2.76)$
Hrgb + Gray-World	98.81 (96.32)	47.87 (19.30)	51.90(10.48)	22.42(1.10)	35.12 (0.46)	13.41 (0.00)
Hrgb + Gray-Edge	98.36(96.32)	78.80 (59.38)	64.46(17.10)	$37.95 \ (8.46)$	46.55 (9.47)	33.42 (6.25)
Hrgb + W. Gray-Edge	98.16(84.01)	75.97(55.15)	64.62 (18.38)	38.65 (9.74)	46.90 (8.46)	33.08 (6.99)
Hrgb + Compr.Norm.	$91.16 \ (80.88)$	$52.63\ (21.32)$	49.06(10.11)	$19.06 \ (4.04)$	31.95 (4.50)	$16.35\ (0.74)$
LBP-RGB (LBP)	93.55 (90.81)	68.87 (33.46)	72.40(24.63)	48.39 (15.07)	56.08 (16.82)	$23.72 \ (0.55)$
LBP + McCann	94.07(91.18)	69.61 (38.24)	76.21 (31.80)	56.59 (26.47)	61.71 (23.71)	28.42 (2.94)
LBP + Frankle	94.21 (90.62)	68.37(33.64)	71.99(24.45)	47.73 (16.54)	55.40(16.54)	24.71 (2.21)
LBP + Gray-World	93.63 (90.81)	80.91 (62.68)	77.88 (37.68)	47.09 (12.68)	58.19(13.51)	27.10(0.74)
LBP + Gray-Edge	94.03 (91.18)	62.96 (27.02)	72.79(30.33)	44.01 (10.66)	54.02(13.60)	22.75(0.37)
LBP + W. Gray-Edge	93.93 (81.62)	63.45 (26.65)	$72.83 \ (27.76)$	44.09(10.85)	53.98(14.25)	$22.95 \ (0.55)$
LBP + Compr. Norm.	$93.85 \ (87.32)$	57.63(17.28)	55.29(3.12)	20.70(1.47)	35.02(1.47)	18.16(0.00)
LAP	93.76 (89.71)	65.59(24.26)	90.02 (75.74)	76.86 (49.63)	80.74 (50.46)	$33.11 \ (3.12)$
LAP + McCann	91.47 (87.87)	66.82(30.33)	88.11 (76.65)	72.18(42.10)	77.34(44.12)	34.61 (7.54)
LAP + Frankle	91.86 (86.95)	65.75(31.07)	88.03(73.16)	69.18(38.24)	75.09(38.97)	32.84(7.90)
LAP + Gray-World	90.38 (85.66)	76.18 (54.96)	79.69 (49.82)	49.20 (10.11)	59.58(10.48)	27.50(4.78)
LAP + Gray-Edge	92.48 (88.60)	56.57 (18.93)	85.01 (62.13)	58.75 (19.12)	67.87(22.52)	26.78(4.04)
LAP + W. Gray-Edge	92.39 (82.35)	56.77(20.59)	85.07 (61.95)	59.28 (22.43)	68.11(23.44)	26.84(4.04)
LAP + Compr. Norm.	95.86 (90.07)	57.80(17.28)	61.15(6.62)	24.83(0.18)	39.63(1.93)	20.86(1.10)

Conclusions

- 1. Proposed descriptor demonstrated to be effective to a number of lighting condition variations;
- 2. LAP is not robust to changes in the temperature and direction of the light
- 3. Color normalization helps in some cases, but is difficult to understand which method is better
- 4.
 - We evaluated only hand-crafted features, CNN based features must be tested

Questions?

Proposed solution: Local Angular Patterns

A new descriptor which is invariant with respect to other transformations of the color space (i.e. rotations, reflections, uniform scalings, and their combinations).

Rationale: the angle between two colors is invariant with respect to similarity transformations.

For each pixel $m{p}$, the average color of circular neighborhood $m{c}_1,\ldots,m{c}_n$

$$\begin{split} \alpha &= \cos^{-1} \left(\frac{\boldsymbol{p} \cdot \boldsymbol{\mu}}{\|\boldsymbol{p}\| \|\boldsymbol{\mu}\|} \right) \quad \beta_i = \cos^{-1} \left(\frac{\boldsymbol{c}_i \cdot \boldsymbol{\mu}}{\|\boldsymbol{c}_i\| \|\boldsymbol{\mu}\|} \right), \quad i \in \{1, \dots n\} \\ & \text{with} \quad \boldsymbol{\mu} = \left(\sum_{i=1}^n \boldsymbol{c}_i \right) / n \end{split}$$

A pattern of *n* bits is formed as a results of the comparison between α and β_1, \ldots, β_n

(Part 2)

and is treated as standard LBPs: a histogram of uniform occurrences is formed. In practice, each bit tells whether or not the corresponding neighbor is