Complexity Perception in Images

Visual complexity perception plays an important role in the fields of both psychology and computer vision. We investigate image complexity of different kind of stimuli. We perform different types of psycho-physical experiments and correlate subjective data with objective measures.

 

Content-based retrieval of remote sensing images

We present an extensive evaluation of visual descriptors for the content-based retrieval of remote sensing (RS) images. The evaluation includes global, local, and Convolutional Neural Network (CNNs) features coupled with four different Content-Based Image Retrieval schemes.

 

Food Recognition

Automatic food recognition is an important task to support the users in their daily dietary monitoring and to keep tracks of their food consumption. We have designed datasets and algorithms for automatic dietary monitoring of canteen customers based on robust computer vision techniques.

 

Image Aesthetics

In this paper we investigate the use of a deep Convolutional Neural Network (CNN) to predict …

 

Image orientation detection using LBP-based features and logistic regression

In this work we present an algorithm for the automatic detection of the image orientation that relies on the image content as described by Local Binary Patterns (LBP).

 

Image Quality

Image quality assessment (IQA) is a multidimensional research problem and an active and evolving research …

 

MKL for remote sensing image classification

We propose a strategy for land use classification which exploits Multiple Kernel Learning (MKL) to automatically determine a suitable combination of a set of features without requiring any heuristic knowledge about the classification task.

 

User Preferences Modeling and Learning for Pleasing Photo Collage Generation

We consider the problem of how to automatically create pleasing photo collages: given a set of photos and a canvas area, we want to arrange the photos on the canvas in a pleasant unsupervised manner.